

Recent studies on top quark properties and mass in CMS

Dennis Schwarz

on behalf of the CMS Collaboration

ICHEP 2022

The top quark

- Heaviest particle in the SM
- lacktriangle Yukawa coupling of ~ 1
- Sensitive to QCD and electroweak
- Preferred coupling to new physics?
- So far no signs in direct searches
- → Precision measurements of its properties could reveal indirect effects

Top quark mass

Tensions between:

- \blacksquare Fit \leftrightarrow measurements
- Direct ↔ pole mass measurements

 \rightarrow Precisely measure m_t and explore full phase space

- \blacksquare ℓ +jets channel of $t\bar{t}$
- Kinematic fit
- ℓ , 2 b jets, 2 light jets, p_T^{miss}
- Best hypothesis selected via $P_{gof} = \exp(-\frac{1}{2}\chi^2)$
- 5 observables constructed

Observable	P_{gof}
$m_t^{ m fit}$	≥ 0.2
$m_{ m lb}^{ m reco}$	< 0.2
$m_{\mathrm{W}}^{\mathrm{reco}}$	≥ 0.2
$m_{ m lb}/m_t^{ m fit}$	≥ 0.2
$R_{\rm bq} = (p_{\rm T}^{\rm b1} + p_{\rm T}^{\rm b2})/(p_{\rm T}^{\rm q1} + p_{\rm T}^{\rm q2})$	≥ 0.2

- Simultaneous likelihood fit
- Uncertainties as nuisances
- \blacksquare $m_t^{\rm fit}$, $m_{\rm lb}^{\rm fit}$ and $m_{\rm lb}/m_t^{\rm fit}$ sensitive to m_t
- \blacksquare m_W^{reco} constrains JES of light jets
- \blacksquare R_{bq} constrains b jets

Dominant uncertainties: b jet JES, tt̄ modeling (FSR+CR)

$$m_t = 171.77 \pm 0.38 \; {
m GeV}$$

Most precise measurement of m_t !

Measuring the pole mass [TOP-21-008, submitted to JHEP]

- \blacksquare $t\bar{t}$ +1jet in dilepton channel
- lacksquare Differential cross section as a function of $ho=rac{m_0}{m_{ au au+\mathrm{iet}}}$, $_{m_0}$ = 170 GeV
- Full tt̄ kinematic reconstruction using NN
- Second NN for event classification

Measuring the pole mass [TOP-21-008, submitted to JHEP]

NEW!

■ Likelihood-based unfolding

■ Fit constrains uncertainties

Sebastian's poster

More details:

■ Largest m_t sensitivity at $t\bar{t}$ threshold (large ρ)

$$\rightarrow \boxed{m_t^{\text{pole}} = 172.94^{+1.37}_{-1.34} \text{ GeV}}$$
(ABMP16NLO PDF set)

$$ightarrow egin{pmatrix} m_t^{
m pole} = 172.16^{+1.44}_{-1.41} \ {
m GeV} \ \end{array}$$

- Differential tt cross section as a function of m_{iet}
- \blacksquare ℓ +jets channel in boosted regime
- Two-step jet clustering with XCone
- Previous measurement with 2016 data: $m_t = 172.6 \pm 2.5 \text{ GeV}$
- → Increase precision by calibrating jet mass scale and FSR modeling

Jet mass scale measured with reconstructed W

- Add flavour uncertainty to account for differences of b jets and light jets
- lacksquare $\Delta m_t^{\rm old}({\sf JES}) = 1.5~{\sf GeV}
 ightarrow$ $\Delta m_t(\text{JES+JMS+flavour}) = 0.39 \text{ GeV}$
- FSR modeling calibrated with jet substructure τ_{32}
- Tune MC to describe jet substructure in boosted regime
- lacksquare $\Delta m_t^{\rm old}({\sf FSR}) = 1.2~{\sf GeV}
 ightarrow$ $\Delta m_t(FSR) = 0.03 \text{ GeV}$

- Regularized unfolding with TUnfold
- Extract *m_t* from normalized distribution

$$ightarrow m_t = 172.76 \pm 0.81 \text{ GeV}$$

■ Largely reduced uncertainties

Source	Uncertainty [GeV]
Statistics	0.22
JER	0.40
JMS	0.27
JMS flavor	0.27
Choice of m_t	0.37
h_{damp}	0.19
CR	0.19

Charge asymmetry in tt

NEW!

 $\Delta |y| = (|y| - |y|)$

- Study of central-forward asymmetry in tt̄
- Effect only in $q\bar{q} \rightarrow t\bar{t}$
- Boosted regime enriches $q\bar{q}$ production

$$A_C = \frac{N(\Delta|y|>0) - N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)}$$
$$(\Delta|y| = |y_t| - |y_{\bar{t}}|)$$

- lacksquare SM prediction $\sim 1\%$
- Could be influenced by BSM
- Measurement in ℓ +jets
- Bins of $m_{t\bar{t}}$

- Maximum likelihood fit and likelihood-based unfolding
- \blacksquare A_C also obtained in full phase space
- Good agreement with SM
- Largest uncertainties: QCD scales, FSR, Top p_T modelling, JEC

Summary

- We are within precision era of top physics at LHC
- Measurements of m_t :
 - Most precise direct measurement
 - Pole mass in $t\bar{t}$ +1jet
 - Improved precision in boosted m_{iet} measurement
 - (Run 1 ATLAS+CMS combination in Richard's talk)
- Charge asymmetry in boosted tt̄
- Precision already superseding predictions

