Recent studies on top quark properties and mass in CMS #### **Dennis Schwarz** on behalf of the CMS Collaboration **ICHEP 2022** #### The top quark - Heaviest particle in the SM - lacktriangle Yukawa coupling of ~ 1 - Sensitive to QCD and electroweak - Preferred coupling to new physics? - So far no signs in direct searches - → Precision measurements of its properties could reveal indirect effects #### Top quark mass Tensions between: - \blacksquare Fit \leftrightarrow measurements - Direct ↔ pole mass measurements \rightarrow Precisely measure m_t and explore full phase space - \blacksquare ℓ +jets channel of $t\bar{t}$ - Kinematic fit - ℓ , 2 b jets, 2 light jets, p_T^{miss} - Best hypothesis selected via $P_{gof} = \exp(-\frac{1}{2}\chi^2)$ - 5 observables constructed | Observable | P_{gof} | |--|-----------| | $m_t^{ m fit}$ | ≥ 0.2 | | $m_{ m lb}^{ m reco}$ | < 0.2 | | $m_{\mathrm{W}}^{\mathrm{reco}}$ | ≥ 0.2 | | $m_{ m lb}/m_t^{ m fit}$ | ≥ 0.2 | | $R_{\rm bq} = (p_{\rm T}^{\rm b1} + p_{\rm T}^{\rm b2})/(p_{\rm T}^{\rm q1} + p_{\rm T}^{\rm q2})$ | ≥ 0.2 | - Simultaneous likelihood fit - Uncertainties as nuisances - \blacksquare $m_t^{\rm fit}$, $m_{\rm lb}^{\rm fit}$ and $m_{\rm lb}/m_t^{\rm fit}$ sensitive to m_t - \blacksquare m_W^{reco} constrains JES of light jets - \blacksquare R_{bq} constrains b jets Dominant uncertainties: b jet JES, tt̄ modeling (FSR+CR) $$m_t = 171.77 \pm 0.38 \; { m GeV}$$ Most precise measurement of m_t ! ## Measuring the pole mass [TOP-21-008, submitted to JHEP] - \blacksquare $t\bar{t}$ +1jet in dilepton channel - lacksquare Differential cross section as a function of $ho= rac{m_0}{m_{ au au+\mathrm{iet}}}$, $_{m_0}$ = 170 GeV - Full tt̄ kinematic reconstruction using NN - Second NN for event classification ### Measuring the pole mass [TOP-21-008, submitted to JHEP] #### **NEW!** ■ Likelihood-based unfolding ■ Fit constrains uncertainties Sebastian's poster More details: ■ Largest m_t sensitivity at $t\bar{t}$ threshold (large ρ) $$\rightarrow \boxed{m_t^{\text{pole}} = 172.94^{+1.37}_{-1.34} \text{ GeV}}$$ (ABMP16NLO PDF set) $$ightarrow egin{pmatrix} m_t^{ m pole} = 172.16^{+1.44}_{-1.41} \ { m GeV} \ \end{array}$$ - Differential tt cross section as a function of m_{iet} - \blacksquare ℓ +jets channel in boosted regime - Two-step jet clustering with XCone - Previous measurement with 2016 data: $m_t = 172.6 \pm 2.5 \text{ GeV}$ - → Increase precision by calibrating jet mass scale and FSR modeling Jet mass scale measured with reconstructed W - Add flavour uncertainty to account for differences of b jets and light jets - lacksquare $\Delta m_t^{\rm old}({\sf JES}) = 1.5~{\sf GeV} ightarrow$ $\Delta m_t(\text{JES+JMS+flavour}) = 0.39 \text{ GeV}$ - FSR modeling calibrated with jet substructure τ_{32} - Tune MC to describe jet substructure in boosted regime - lacksquare $\Delta m_t^{\rm old}({\sf FSR}) = 1.2~{\sf GeV} ightarrow$ $\Delta m_t(FSR) = 0.03 \text{ GeV}$ - Regularized unfolding with TUnfold - Extract *m_t* from normalized distribution $$ightarrow m_t = 172.76 \pm 0.81 \text{ GeV}$$ ■ Largely reduced uncertainties | Source | Uncertainty [GeV] | |-----------------|-------------------| | Statistics | 0.22 | | JER | 0.40 | | JMS | 0.27 | | JMS flavor | 0.27 | | Choice of m_t | 0.37 | | h_{damp} | 0.19 | | CR | 0.19 | ### Charge asymmetry in tt #### **NEW!** $\Delta |y| = (|y| - |y|)$ - Study of central-forward asymmetry in tt̄ - Effect only in $q\bar{q} \rightarrow t\bar{t}$ - Boosted regime enriches $q\bar{q}$ production $$A_C = \frac{N(\Delta|y|>0) - N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)}$$ $$(\Delta|y| = |y_t| - |y_{\bar{t}}|)$$ - lacksquare SM prediction $\sim 1\%$ - Could be influenced by BSM - Measurement in ℓ +jets - Bins of $m_{t\bar{t}}$ - Maximum likelihood fit and likelihood-based unfolding - \blacksquare A_C also obtained in full phase space - Good agreement with SM - Largest uncertainties: QCD scales, FSR, Top p_T modelling, JEC ### **Summary** - We are within precision era of top physics at LHC - Measurements of m_t : - Most precise direct measurement - Pole mass in $t\bar{t}$ +1jet - Improved precision in boosted m_{iet} measurement - (Run 1 ATLAS+CMS combination in Richard's talk) - Charge asymmetry in boosted tt̄ - Precision already superseding predictions