

Recent measurements of W Z bosons with the CMS experiment

Marco Cipriani* on behalf of the CMS Collaboration *CERN

07/07/2022 ICHEP 2022 - Bologna

40 years of W and Z bosons at colliders!

Discovered at CERN in 1983 in $p\overline{p}$ collisions

still on the front line of the LHC physics program with pp

Drell-Yan process h_B \bar{q} q γ^*, Z^* h_A \bar{l}

One of most prominent examples of hard scattering processes at hadron colliders

- tests of perturbative QCD and electroweak (EW) calculations to higher orders
- constraints on parton distribution functions (PDFs)
- validation of different generators to model hard scattering and parton shower

Experimental aspects of W and Z bosons

Clean experimental signatures because of leptonic decay to e, μ

1% uncertainty in efficiencies, ≈1% resolution, momentum scale better than 0.1%

Z bosons standard candles for detector calibration

- energy/momentum scale and resolution
- also luminosity calibration from Z counting

Large Run 2 LHC data sets

multi-differential cross section measurements with negligible statistical uncertainty

W/Z are backgrounds in Higgs boson analyses and new physics searches

 as an example, missing transverse momentum (p_T^{miss)} from decays into neutrinos indistinguishable from dark matter production topology

Mass dependence of Z boson p_T

Measured differential cross section in $p_T{}^z$ or φ^* in bins of $m_{\ell\ell}$

- High p_T region usually well described by QCD higher orders in perturbation theory
- Low p_T region sensitive to soft gluon radiation, large log terms need resummation
 - predicted simple dependence on mass scale —> test validity of resummation approach and precision of different predictions

$$\varphi_{\eta}^* \equiv \tan\left(\frac{\pi - \Delta \varphi}{2}\right) \sin(\theta_{\eta}^*)$$

 $\cos(\theta_{\eta}^*) = \tanh\left[(\eta^- - \eta^+)/2\right]$

φ* correlated with Z p_T
 but better resolution
 especially at low p_T
 since only dependent
 on angular variables

 $\varphi^* \thicksim p_T^Z \, / \, m_{\ell \ell}$

Mass dependence of Z boson p_T

Measurement performed using both ee and $\mu\mu$ decays

for inclusive DY production or with at least one jet

Interesting to compare with multiple generators

• MiNNLO_{PS} provides best global description of data

Showing (some) inclusive results (more on >=1 jets in <u>Philippe's talk</u>)

Forward-backward asymmetry in Drell-Yan

A_{FB} in $q\bar{q} \rightarrow Z/\gamma^* \rightarrow \ell^+ \ell^-$ important feature of Z decay

- sensitive to many SM parameters
- was exploited to measure effective weak mixing angle $sin^2 \theta^f_{eff}$ at 8 TeV

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \propto \frac{3}{8} \left[1 + \cos^2\theta + \frac{A_0}{2} \left(1 - 3\cos^2\theta \right) + A_4\cos\theta \right] \longrightarrow$$

from interference of vector and axial-vector contributions (dependent on Z mass)

$\boldsymbol{\theta}$ angle between $\boldsymbol{\ell}^-$ and quark q in Collins-Soper frame

• quark's true direction unknown —> assume it is same as $\ell\ell$ pair —> dilution of A_{FB}

At dilepton masses well above Z peak (>170 GeV) A_{FB} ~ constant

- Deviations can be induced by new phenomena, such as a massive Z' gauge boson
- off-shell interference can modify A_{FB} at m_{ee} significantly lower than Z' mass
 - Complementarity with direct $Z' \rightarrow \ell \ell$ searches

Template fit method rather than counting forward-backward events

• simulated templates represent terms in $d\sigma/dcos\theta$ and account for dilution effect

A_{FB} results

- A_{FB} and A_0 (also difference between e- μ channels) as a function of $m_{\ell\ell}$
- Exclusion of Z' with m_{Z'} < 4.4 TeV assuming same coupling as SM Z
 - Less stringent limits than in direct searches, but also sensitive to wide resonances

Uncertainty dominated by statistical uncertainty in data and PDFs

gain with more data and extended tracker acceptance at HL-LHC

W decay branching fractions

Measured leptonic and hadronic branching ratios ${\mathcal B}$ of W boson, and their ratios

- Stringent test of lepton flavour universality (LFU)
- Hadronic width depends on other SM parameters such as α_s(m_w) and CKM matrix elements V_{ij}
 - CKM unitarity requires $\sum_{i} |V_{ui}|^2 = \sum_{i} |V_{ci}|^2 = 1$ (i=d,s,b)
 - Indirect determination of these variables too
- Simultaneous fit in all decay channels in data using simulated templates for signal and backgrounds
 - CMS more precise than LEP (but limited by systs)

	CMS	LEP
${\cal B}(W o e \overline{ u}_e)$	$(10.83 \pm 0.01 \pm 0.10)\%$	$(10.71 \pm 0.14 \pm 0.07)$ %
$\mathcal{B}(W o \mu \overline{ u}_{\mu})$	$(10.94 \pm 0.01 \pm 0.08)\%$	$(10.63 \pm 0.13 \pm 0.07)$ %
$\mathcal{B}(W o au \overline{ u}_{ au})$	$(10.77 \pm 0.05 \pm 0.21)\%$	$(11.38 \pm 0.17 \pm 0.11)$ %
$\mathcal{B}(W ightarrow q \overline{q}')$	$(67.46 \pm 0.04 \pm 0.28)\%$	
Assuming LFU		
$\mathcal{B}(\mathrm{W} ightarrow \ell \overline{ u})$	$(10.89 \pm 0.01 \pm 0.08)\%$	$(10.86 \pm 0.06 \pm 0.09)\%$
${\cal B}(W\to q\overline{q}')$	$(67.32 \pm 0.02 \pm 0.23)\%$	$(67.41 \pm 0.18 \pm 0.20)\%$

Invisible Z width

First measurement of Z invisible width at a hadron collider

from $Z(vv)/Z(\ell \ell)$ cross section ratio multiplied by $Z(\ell \ell)$ partial width from LEP

Single most precise *direct* measurement

negligible statistical uncertainty

Recoil variable U defined as vector sum of p_T^{miss} and reconstructed leptons' p_T

More in **Philippe's talk**

10

 $\frac{\sigma(Z+jets)B(Z\to\nu\nu)}{\sigma(Z+jets)B(Z\to\ell\ell)} = \frac{\Gamma(Z\to\nu\nu)}{\Gamma(Z\to\ell\ell)}$

Physics prospects at the LH-LHC

20 times more data from HL-LHC phase than in Run 2

- but also daunting levels of pileup, higher trigger rates, intense radiation damage
- detector upgrade and complete overhaul of trigger and DAQ systems mandatory

Substantial improvements in first trigger stage (L1, hardware based)

- faster electronics, increased spacial granularity —> better particle identification
- maintain high signal purity and efficiency
 - W/Z physics requires leptons with p_T~40 GeV
 - Keep low p_T thresholds in trigger

Extended tracker acceptance

- $|\eta| < 4$ instead of current 2.4
- better PDF constraints

Summary

Presented recent results on W and Z physics with CMS at the LHC

- valuable inputs to test theoretical calculations at higher orders
- precise knowledge of production cross sections guarantees more accurate background predictions for Higgs physics and is also vital in searches for new physics

Excellent performance of LHC and of CMS detector

- large data sets allow SM to be probed with unprecedented precision
- looking forward to Run 3 and future HL-LHC data and detector upgrades
- collaboration with theorists paramount to chart the course of future measurements

CMS standard model public results

http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html

More on W/Z + jets in Philippe's talk

CMS detector

Excellent tracking performance also thanks to 3.8 T magnetic field

- Tracker coverage $|\eta| < 2.4$, precise p_T measurement and e/γ discrimination
- Electron reconstruction augmented with electromagnetic calorimeter

Calorimeters coverage up to $|\eta| < 5$, crucial for jets and p_T^{miss}

Z boson and heavy flavour jets

Sensitivity to c and b quark PDFs of proton

- check different b flavour schemes (4NFS or 5NFS) that affect number of final state b
- benchmark to validate MC predictions in VH topologies with $H \rightarrow c\overline{c}$ or $H \rightarrow b\overline{b}$
- compare angular or p_T distributions with calculations at different orders

Z + b jet(s) with full Run 2 data

Statistical uncertainties usually negligible for 1 b jet, relevant for 2 b jets

- main systematic uncertainties from jet energy scale and resolution, and b tagging
- Total $\sigma(Z + \ge 1 \text{ b jets}) = 6.52 \pm 0.04 \text{ (stat)} \pm 0.40 \text{ (syst)} \pm 0.14 \text{ (theo) pb}$
- Total $\sigma(Z + \ge 2 \text{ b jets}) = 0.65 \pm 0.03 \text{ (stat)} \pm 0.07 \text{ (syst)} \pm 0.02 \text{ (theo) pb}$

HL-LHC and detector upgrade

20 times more data from HL-LHC phase than in Run 2

• but also daunting levels of pileup, higher trigger rates, intense radiation damage

Major challenges to reap this benefit

- upgrade detectors for improved granularity and more robust particle identification
- complete overhaul of trigger and DAQ systems

Future physics at the HL-LHC: $\sin^2\theta_{eff}^{f}$

ATL-PHYS-PUB-2018-037 CMS-PAS-FTR-17-001 LHCb-PUB-2018-013

- A_{FB} diluted at larger Vs (valence quarks contribute less), but significant gain from extended detector acceptance
- With 1000/fb statistical uncertainty becomes negligible compared to PDFs

