Measurements of tr and single top production cross sections in CMS

ICHEP 2022

Denise Müller on behalf of the CMS Collaboration

July 7, 2022

CMS-PAS-TOP-20-006

- Cross sections measured as functions of one, two or three kinematic variables for top (anti-)quark and tī systems, as well as leptons, b jets, number of additional jets
- Distributions at parton level (full phase space) and particle level (fiducial phase space)
- First comparisons to predictions beyond NLO accuracy

CMS-PAS-TOP-20-006

Systematic uncertainties:

Dominant sources: jet energy scale, ME level and final-state radiation scales

CMS-PAS-TOP-20-006

Single-differential:

Models predict harder p_T spectra for individual quarks and slightly more central rapidity distributions than seen in data

CMS-PAS-TOP-20-006

Double-differential:

- Increased deviations of models compared to single-differential distributions
- Indicates deficiency for predicting multi-dimensional process dynamics

CMS-PAS-TOP-20-006

Triple-differential:

- > Can be used for simultaneous extraction of top pole mass, α_s , and PDFs
- POWHEG+HERWIG7 overshoots data for \geq 2 additional jets

CMS-PAS-TOP-20-006

Comparison to beyond-NLO predictions:

- ▶ Comparison to MATRIX, STRIPPER, MINNLOPS, and aN³LO
- Provide similar or improved description, e.g., p_T of top quark: trend towards harder distribution decreased compared to NLO

PHYS. REV. D 104, 092013

- First differential measurement combining low top quark p_T (resolved) with high top quark p_T region (boosted)
 - Provides constraints on systematic unc. which improve precision
- Differential cross section extracted via combined \(\chi^2\) fit to several event categories
 - Defined by top quark reconstruction method, lepton flavors, three years of data-taking
 - Boosted tops: reconstruction with NNs
 - Results at parton and particle level: unc. due to theoretical extrapolations reduced by the latter

PHYS. REV. D 104, 092013

- Single and double differential cross section measured for various kinematic distributions defined in the top quark and tt system
- > Dominant systematic uncertainties: jet energy scale and int. luminosity
- χ² tests: most differential distributions in agreement with SM, deviations observed for m(tt
 vs. p_T(t_h), p_T(tt
 vs. p_T(t_h), |Δy<sub>t/t
 | vs. m(tt
)

 </sub>
 - One-dimensional distributions p_T(t_h), m(tt̄), p_T(tt̄) consistent with predictions at 2 std. dev. ⇒ kinematic relations to be further understood

PHYS. REV. D 104, 092013

- ► Tension for double-differential $m(t\bar{t})$ vs. $p_T(t_h)$ distribution:
 - Measured p_T spectra in agreement/softer than predicted at low $m(t\bar{t})$
 - Measured p_{T} spectra harder than predicted at high $m(t\bar{t})$

PHYS. REV. D 104, 092013

- Parton-level cross sections compared to MATRIX (NNLO)
 - MATRIX describes data better than POWHEG+PY8 and MADGRAPH5_AMC@NLO+PY8 and has reduced uncertainties
- Top quark p_T spectrum in data softer than predicted by NLO models at low p_T

PHYS. REV. D 104, 092013

- Calculate inclusive cross section at parton level by summing up all bins
- Individual results correspond to $t\bar{t}$ cross section in e/μ + jets channel
- Measured cross section of $\sigma_{t\bar{t}} = 791 \pm 1 (\text{stat}) \pm 21 (\text{syst}) \pm 14 (\text{lumi}) \text{ pb}$
 - ► Total uncertainty of $3.2\% \Rightarrow$ most precise result in ℓ + jets channel to-date
 - Agrees well with prediction by MATRIX: 797^{+39}_{-51} (scale) ± 39 (PDF) pb

Search for central exclusive tf production with tagged protons

CMS-PAS-TOP-21-007

 Alternative production mode of top quark pairs at the LHC (≈0.3 fb):
 exchange of colorless particles,

e.g., photons or pomerons

- One or both protons remain intact after interaction, energy fraction transferred to tt pair
- ► Exclusive central production via pp → pttp
- ➤ Observation expected to be possible only at HL-LHC, but BSM physics could enhance cross section ⇒ potentially measurable at Run 2

Search for central exclusive tf production with tagged protons

CMS-PAS-TOP-21-007

- Detect two intact forward protons with CMS-TOTEM Precision Proton Spectrometer (CT-PPS), one on each side of interaction region
 - Array of movable near-beam devices called Roman Pots (RP): timing and tracker detectors (only the latter used in analysis)
 - Analysis of 2017 data set, corresponding to 29.4 fb⁻¹ int. lumi

 Reconstruct top quark pair and their decay products in CMS central detector (separately for dilepton and l + jets, combined for final result)

Search for central exclusive $t\bar{t}$ production with tagged protons

CMS-PAS-TOP-21-007

BDT for dilepton (ℓ + jets) with 15 (10) input variables to enhance signal content of selected samples

Search for central exclusive tr production with tagged protons

CMS-PAS-TOP-21-007

Poster by Beatriz Ribeiro Lopes tomorrow! Further CT-PPS results by Andrea Bellora today!

Upper limits at 95% CL extracted via binned fits to BDT output distributions

Observed (expected) limits:

- Dilepton (ee, μμ, eμ): 1.70 pb (2.02 pb)
- ℓ + jets (ℓ = e/µ): 0.78 pb (1.54 pb)
- Combined: 0.59 pb (1.14 pb)

Systematic uncertainties:

- Effect of about 10%
- Dominant: bkg. normalization, FSR modeling, jet energy corrections, proton reconstruction

CMS-PAS-TOP-21-010

- First full Run 2 (2016–2018) measurement of inclusive and differential tW cross section
- Overlap at NLO with tt background considered via diagram removal scheme
- Analysis in **dilepton** $e\mu$ final state
 - Event categories: number selected jets and b-tagged jets "mjnb" (p_T > 30 GeV and |η| < 2.4)
 - 1j1b: signal category, 2j1b: sensitive to tW, 2j2b: constrain tt
 - ► 1j1b: "loose jets" with 20 GeV < p_T < 30 GeV ⇒ use 1j1b category with zero loose jets for differential measurement</p>

CMS-PAS-TOP-21-010

Inclusive cross section measurement:

- ► Two BDTs, one for 1j1b and one for 2j1b category:
 - ▶ 1j1b: 6 input variables, most discriminating: $p_T(e^{\pm}, \mu^{\pm}, j)$ and $m(e^{\pm}, \mu^{\pm}, j, p_T^{miss})$
 - > 2j1b: 3 input variables $\Delta R(\ell_1, j_1)$, $\Delta R(\ell_{12}, j_{12})$, subleading jet p_T

CMS-PAS-TOP-21-010

Inclusive cross section measurement:

- Maximum likelihood fit performed to 1j1b and 2j1b BDT output distributions and 2j2b distribution of subleading jet p_T
- Measured cross section: $\sigma_{tW} = 79.2 \pm 0.8 (stat)^{+7.0}_{-7.2} (syst) \pm 1.1 (lumi) pb$ \Rightarrow uncertainty of 9.3%, consistent with predicted cross section of $71.7 \pm 1.8 (scale) \pm 3.4 (PDF) pb (NNLO)$
- Dominant syst. unc.: jet energy scale corrections, ME scales for tW process

CMS-PAS-TOP-21-010

Poster by Alejandro Soto Rodriguez tomorrow!

Differential cross section measurement:

Differential cross section measured in 6 different kinematic distributions, e.g.:

- Leading lepton $p_T \Rightarrow$ additional probe of top quark p_T
- $\Delta \phi(e^{\pm}, \mu^{\pm}) \Rightarrow$ correlations between top and W, spin-related properties
- ▶ $p_z(e^{\pm}, \mu^{\pm}, j) \Rightarrow \text{boost of tW system}$
- Small diff. in produced tW types \Rightarrow small effect due to tW/tt interference

Run 1 ATLAS + CMS tt cross section combination: talk by Richard Hawkings!

- ► LHC @ Run 2:
 - Top quark pair factory \Rightarrow multi-differential measurements
 - Sufficient amount of single top events for inclusive and differential measurements
- ► First search for central exclusive tt production
- Results in good agreement with SM predictions
 - Deviations of NLO predictions from data in double- and triple tt differential distributions, and single-differential tt and tW cross sections related to top p_T
 - First comparisons with beyond-NLO predictions for single-differential tt
 distributions
- More data at Run 3 expected: further increase precision of tt and single top results, better access to more exotic/rare production modes!