

Searches for FCNC interactions of the top quark with the ATLAS experiment at the LHC

Mingming Xia (Tsinghua University) On behalf of ATLAS collaboration

ICHEP 2022 Bologna, Italy, 07/07, 2022

Outline

- Motivation of Top FCNC interaction
- Latest full run-2 analysis at ATLAS
 - tqy tqZ tqg tqH
- Summary

Why FCNC?

Flavor-changing neutral currents (FCNC) decays

- are forbidden at tree level
- occur at one-loop level but are strongly suppressed by the **GIM mechanism**
- significantly enhanced in BSM extensions (maximum up to ~10⁻³)
- Any observation of top FCNC = BSM physics

Process	SM	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS	
$t \to Z u$	7×10^{-17}	—	_	$\leq 10^{-7}$	$\leq 10^{-6}$		
$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$	
$t \to g u$	4×10^{-14}	—	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_	
$t \to gc$	$5 imes 10^{-12}$	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$	1011 0000
$t\to \gamma u$	$4 imes 10^{-16}$	—	—	$\leq 10^{-8}$	$\leq 10^{-9}$	—	<u>1311.2028</u>
$t\to \gamma c$	$5 imes 10^{-14}$	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$	
$t \to h u$	$2 imes 10^{-17}$	$6 imes 10^{-6}$	_	$\leq 10^{-5}$	$\leq 10^{-9}$	_	
$t \to hc$	$3 imes 10^{-15}$	$2 imes 10^{-3}$	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$	

Why Top?

- is the heaviest (short lifetime) known fundamental particle
 - * it is the only quark that decays before hadronising
 - spin information passes to decay products
- dominant decay mode: $t \rightarrow Wb$
 - * all other couplings can be considered rare =>
 FCNC decay
- many SM extensions predict the new particles that couple to top quarks
- LHC is a Top quark factory
 - Large top production allows many precision measurements/searches for many SM and BSM analyses
 - FCNC involving lighter quark covered by B and Charm factories (1204.0735 ATL-PHYS-PROC-2016-136)

Mingming Xia, THU

FCNC $t \rightarrow q\gamma$ 2205.02537

- Analysis Strategy:
 - optimize for FCNC production & decay
 - One SR: 1γ + 1lep + missing Et >30GeV + 1 b-jet + >= 1jet \bullet
 - Control regions for main background processes with prompt photons
 - CR $t\bar{t} + \gamma$
 - CR $W + \gamma$ + jets
 - Normalization of $t\overline{t} + \gamma$ and $W + \gamma + jets$ free-floating in the fit
 - Other main background: photon fakes (data-driven estimate of $e \rightarrow \gamma$ and $h \rightarrow \gamma$ fakes)

FCNC $t \rightarrow q\gamma$ <u>2205.02537</u>

- Multi-class neural network (NN): for separation of both signal modes from background
 - ~ 30% better than binary classification
 - separate network for up & charm (2 NNs)
 - for classification of prod, decay, bkg (three output class, multinomial classifier)
 - $\overrightarrow{y} = (y_{prod}, y_{de}, y_{bkg})$
- NN architecture:
 - Input: 37 variables
 - fully-connected, feed-forward NNs, six hidden layers
 - Adam optimiser, ReLU activation, L2 regularization
 - Categorical cross-entropy loss with 3D softmax output
- Signal outputs combined in likelihood ratio: $D = \ln \frac{a * y_{prod} + (1 - a) * y_{dec}}{y_{tec}}$

NN output

FCNC $t \rightarrow q\gamma$ <u>2205.02537</u>

- background model in agreement with data
- NN output score distribution used for a profile-likelihood fit to data
 - Factors 3.3 5.4 better than 81fb⁻¹ analysis (<u>1908.08461</u>)
 - adding events with more than one jet
 - Statistical uncertainties dominate
 - All systematics together worsen limits by ~20% (*tuγ*) or ~40% (*tcγ*)

Mingming Xia,THU

FCNC $t \rightarrow qZ$ <u>ATLAS-CONF-2021-049</u>

- Analysis Strategy
 - $Z \to \ell \ell$ with $\ell = e, \mu$ isolated leptons and $m_{\ell \ell} \sim m_Z$, 1b-jet, W decay leptonically
 - **2 SRs**: SR1 (FCNC decay) SR2 (FCNC production)
 - 4 CRs: ttbar CR, ttbarZ CR, Side-band CRs (mass of SM top and FCNC top)
 - χ^2 minimization to

$$\chi_{t\bar{t}}^{2} = \frac{(m_{j_{a}\ell'\ell'}^{reco} - m_{t_{FCNC}})^{2}}{\sigma_{t_{FCNC}}^{2}} + \frac{(m_{j_{b}\ell'_{W}\nu}^{reco} - m_{t_{SM}})^{2}}{\sigma_{t_{SM}}^{2}} + \frac{(m_{\ell'_{W}\nu}^{reco} - m_{W})^{2}}{\sigma_{W}^{2}}$$

- Central value of masses and widths are taken from fit to reconstructed FCNC decay signal events.
- Select FCNC jet (for FCNC decay only, for FCNC production, χ^2_{tZ} is constructed.)
- Fit $P_z(\nu)$

FCNC $t \rightarrow qZ$ <u>ATLAS-CONF-2021-049</u>

- Signal separation:
 - GBDTs were built in each SR
 - Applying 5-fold Cross-Validation
 - Training BDTs for:
 - FCNC decay
 - FCNC production via up quark
 - FCNC production/decay with charm
- Upper limits on Branching ratio and Wilson coefficient are extracted from profile-likelihood fit to BDT scores.
- Comparison between previous (36fb⁻¹) and current observed limits show a significant improvement using the full Run-2 dataset with:
 - a factor of ~3 for tZu ~2 for tZc coupling
 - 36 fb⁻¹ result: decay mode only
 - The statistical uncertainty is the dominant contribution

	SRs+CRs			
$\mathcal{B}(t \to Z q) \ [10^{-5}]$	tZu	LH	6.2	$4.9^{+2.1}_{-1.4}$
$\mathcal{B}(t \to Z q) \ [10^{-5}]$	tZu	$\mathbf{R}\mathbf{H}$	6.6	$5.1^{+2.1}_{-1.4}$
$\mathcal{B}(t \to Z q) \ [10^{-5}]$	tZc	LH	13	11^{+5}_{-3}
$\mathcal{B}(t \to Z q) \ [10^{-5}]$	tZc	\mathbf{RH}	12	10^{+4}_{-3}
$ C_{uW}^{(13)*} $ and $ C_{uB}^{(13)*} $	tZu	LH	0.15	$0.13\substack{+0.03\\-0.02}$
$ C_{uW}^{(31)} $ and $ C_{uB}^{(31)} $	tZu	$\mathbf{R}\mathbf{H}$	0.16	$0.14_{-0.02}^{+0.03}$
$ C_{uW}^{(23)*} $ and $ C_{uB}^{(23)*} $	tZc	LH	0.22	$0.20\substack{+0.04\\-0.03}$
$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	$\mathbf{R}\mathbf{H}$	0.21	$0.19\substack{+0.04\\-0.03}$

FCNC $t \rightarrow qg$ Eur.Phys.J.C82(2022)334

- Analysis Strategy:
 - 1 b-jet + high- P_T leptons (e or μ) + large missing Et
 - Consider production ONLY
 - decay mode contains a jet initiating gluon, indistinguishable with QCD bkg.
 - Top quark can be constructed using 4-momentum conservation (W on-shell)
 - Fake rate determined in a data-driven way for multi-jet estimation (jets fake leptons)
 - Custom very tight b-tag to suppress light-jets

10

Mingming Xia,THU

FCNC $t \rightarrow qg$ Eur.Phys.J.C82(2022)334

- Train artificial neural networks to obtain discriminants separating signal and background
 - 2 NNs: **D1** for $\bar{u}g\bar{t}, cgt, \bar{c}g\bar{t}$ **D2** for ugt
 - three-layer feed forward NN with transformation of 12/9 input variables
- Profile maximum-likelihood fit to the NN discriminant
- Factors of 1.5 2 better than run-1 analysis, main systematics: bkg modelling, jet/METrelated
 - BR($t \rightarrow ug$) < 0.61 x 10⁻⁴ (expected: BR($t \rightarrow ug$)< 0.49 x 10⁻⁴)
 - BR($t \rightarrow cg$) < 3.7 x 10⁻⁴ (expected: BR($t \rightarrow cg$)< 2.0 x 10⁻⁴)

11

Mingming Xia, THU

ICHEP2022

FCNC $t \rightarrow qH(\tau \tau)$ <u>ATLAS-CONF-2022-014</u>

- Analysis Strategy (7 SRs are defined based on):
 - # of leptons, (b-)jet multiplicities, tau decay mode, W decay mode
 - $t_{\ell}(t_h)$: W from SM top decays leptonically (hadronically)
 - $\tau_{lep}(\tau_{had})$: tau lepton decays leptonically (hadronically)

Dequirement		hadronia ahannal			
	$t_h \tau_{\rm lep} \tau_{\rm had}$	$t_l au_{ m had} au_{ m had}$	$t_l au_{ m had}$	$t_h \tau_{had} \tau_{had}$	
Trigger		single-lepton trigger		di- $ au$ trigger	
Leptons	=1 isolated e or μ			no isolated e or μ	
$ au_{ ext{had}}$	=1 $ au_{had}$	$2 au_{ m had}$	=1 τ_{had}	$2 au_{ m had}$	
Electric charge (Q)	$Q_\ell imes Q_{ au_{ ext{had},1}} < 0$	$Q_{\tau_{\mathrm{had},1}} imes Q_{\tau_{\mathrm{had},2}} < 0$	$Q_\ell \times Q_{\tau_{\mathrm{had},1}} > 0$	$Q_{ au_{\mathrm{had},1}} imes Q_{ au_{\mathrm{had},2}} < 0$	
Jets	$3, \ge 4$ jets	≥ 1 jets	2, \geq 3 jets	$3, \geq 4$ jets	
<i>b</i> -tagging		=1 <i>b</i> -tagged jets		=1 <i>b</i> -tagged jets	

FCNC $t \rightarrow qH(\tau \tau)$ ATLAS-CONF-2022-014

- Lep channel: data-MC scale factors from tt CRs (2 b-tags or 2 leptons)
- Had channel: events with looser τ ID multiplied with fake factors (from W+jets CR)
- One BDT per signal region with 12-17 kinematic input features
- Comparison between previous (36fb⁻¹ <u>JHEP05(2019)123</u>) and current observed limits show a significant improvement using the full Run-2 dataset with:

13

- a factor of ~5 (2.5) for expected (observed) upper limit
- The statistical uncertainty is the dominant contribution

Most sensitive leptonic SR

ICHEP2022

• Small excess of data are observed with significance of 2.3σ, mainly in tlep + 2 hadtau

Most sensitive hadronic SR

Mingming Xia,THU

FCNC $t \rightarrow qX(bb)$ <u>ATLAS-CONF-2022-027</u>

- Search for t→qX (X→bb) for 20<mX<160 GeV from ttbar decay with SM t→ℓvb and similar to Hbb when mX=120 GeV
- Analysis strategy:
 - One isolated lepton, ≥4 jets, ≥3b
 - Categorization: SRs: 4j3b, 5j3b, 6j3b CRs: 4b(4,5,6)j, 2b-tag + 1b-tag loose(bl)
- Background dominated by ttbar+jets
 - ttbar reweighting from data/MC ratios in CR(2b+1bl)
- Train NNs with kinematics to separate sig from bkg for X

FCNC $t \rightarrow qX(bb)$ <u>ATLAS-CONF-2022-027</u>

- NN scores are fitted for each mass and decay hypothesis
 - When mX=120 GeV, similar to tqH(bb) process, small excess of 1-2σ
- Set upper limits on BR(t→qX) x BR(X→bb) vs mX
- when mX = 120 GeV
 - B(t→uX) < 8x10⁻⁴
 - B(t→cX) < 7x10⁻⁴
 - Improvement of ~6 in expected limits compared to tqH(bb) results (JHEP05(2019)123)
- Dominated systematics: b-tag & ttbar modeling & JER, JES

ICHEP2022

FCNC summary

- LHC is a Top factory and ideal for probing FCNC signatures with top quark for all elementary bosons — tqγ, tqZ, tqg and tqH
- New top FCNC search results improved the limits by factors up to ~6
- Run-3 expects more exciting opportunities!

	Expected		Observed		
	up	charm	up	charm	
γ	~5	~6	~3-5	~4-5	
Z	~5	~3	~3	~2	
Н	~2	~2	~2	~ .	
00	~2	~3	~2	~2	

Improvement factor wirt previous best ATLAS search

ICHEP2022

Mingming Xia,THU