Quantum information with Top quarks at the LHC ICHEP 2022, Bologna, Italy

Based on EPJP 136, 907 (2021) and 2203.05582

Yoav Afik¹, Juan Ramón Muñoz de Nova²

¹Experimental Physics Department, CERN

²Departamento de Física de Materiales, Universidad Complutense de Madrid

08.07.2022

Overview

- The Standard Model is a QFT:
 - Special Relativity.
 - Quantum Mechanics.
- Fundamental properties of Quantum Mechanics can be tested via the Standard Model.

- Implementation of canonical techniques of Quantum Information at High-Energy Colliders.
- Fundamental Quantum Mechanics at the Frontier of known Physics.

Top-Quark

• General:

• Hadronisation: $\sim 10^{-23}$ s.

Spin-decorrelation: $\sim 10^{-21} s.$

Top quark:

• Lifetime: $\sim 10^{-25}$ s.

- Spin information → decay products.
- Spin-correlations between a pair of top-quarks can be measured.
- Considering leptonic decays.

Spin-Correlations between Top-Quark Pairs

- Studied extensively theoreticaly.
- Measured by the D0, CDF, ATLAS and CMS collaborations.
- No link between spin-correlations and quantum entanglement so far.
- Spin-Correlations ≠ Quantum Entanglement!
 However, Quantum Entanglement ⊂ Spin-Correlations.

LO Analytical Calculation

- Analytical calculation at leading-order. The system is defined by:
 - \hat{k} : the direction of the top with respect to the beam axis.
 - lacktriangle The invariant mass $M_{t\bar{t}}$, $eta=\sqrt{1-rac{4\cdot m_t^2}{M_{t\bar{t}}^2}}$.
- Each one $I = q\bar{q}, gg$ gives rise to $\rho^I(M_{t\bar{t}}, \hat{k})$ with probability $w_I(M_{t\bar{t}}, \hat{k})$, which is PDF dependent.
- The spin density matrix: $\rho(M_{t\bar{t}}, \hat{k}) = \sum_{l=q\bar{q},gg} w_l(M_{t\bar{t}}, \hat{k}) \rho^l(M_{t\bar{t}}, \hat{k})$.
- The total quantum state: $\rho(M_{t\bar{t}}) \equiv \int_{2m_t}^{M_{t\bar{t}}} \mathrm{d}M \int \mathrm{d}\Omega \ p(M,\hat{k}) \rho(M,\hat{k}) = \int_{2m_t}^{M_{t\bar{t}}} \mathrm{d}M \ p(M) \rho_{\Omega}(M)$

LO Analytical Calculation

- Analytical calculation at leading-order. The system is defined by:
 - \hat{k} : the direction of the top with respect to the beam axis.
 - lacktriangle The invariant mass $M_{t\bar{t}}$, $eta=\sqrt{1-rac{4\cdot m_t^2}{M_{t\bar{t}}^2}}$
- Each one $I = q\bar{q}, gg$ gives rise to $\rho^I(M_{t\bar{t}}, \hat{k})$ with probability $w_I(M_{t\bar{t}}, \hat{k})$, which is PDF dependent.
- The spin density matrix: $\rho(M_{t\bar{t}}, \hat{k}) = \sum_{l=q\bar{q},gg} w_l(M_{t\bar{t}}, \hat{k}) \rho^l(M_{t\bar{t}}, \hat{k})$.
- The total quantum state: $\rho(M_{t\bar{t}}) \equiv \int_{2m_t}^{M_{t\bar{t}}} \mathrm{d}M \int \mathrm{d}\Omega \ p(M,\hat{k}) \rho(M,\hat{k}) = \int_{2m_t}^{M_{t\bar{t}}} \mathrm{d}M \ p(M) \rho_{\Omega}(M)$

Experimental Observables

Quantum Entanglement:

- Concurrence $C[\rho]$: quantitative measurement of entanglement.
- $0 \le C[\rho] \le 1$, $C[\rho] \ne 0$ iff the state is entangled.
- Here, $C[\rho] = \max(\Delta, 0)$; $\Delta = \frac{-C_{nn} + |C_{kk} + C_{rr}| 1}{2}$.

Non-Separable

Experimental Observables

Quantum Entanglement:

- Concurrence $C[\rho]$: quantitative measurement of entanglement.
- $0 \le C[\rho] \le 1$, $C[\rho] \ne 0$ iff the state is entangled.
- Here, $C[\rho] = \max(\Delta, 0)$; $\Delta = \frac{-C_{nn} + |C_{kk} + C_{rr}| 1}{2}$.

Non-Separable

Bell's Inequality:

- A violation of the CHSH inequality: $|\mathbf{a}_1^{\mathrm{T}}\mathbf{C}(\mathbf{b}_1 \mathbf{b}_2) + \mathbf{a}_2^{\mathrm{T}}\mathbf{C}(\mathbf{b}_1 + \mathbf{b}_2)| > 2$.
 - C spin correlation matrix.
 - **a**₁, \mathbf{a}_2 (\mathbf{b}_1 , \mathbf{b}_2) axes in which we measure the spin of the top (antitop).
- Maximization: $2\sqrt{\mu_1 + \mu_2} \le 2\sqrt{2}$ where $0 \le \mu_i \le 1$ are the eigenvalues of $\mathbf{C}^T \mathbf{C}$.

Loopholes in a Collider Experiment

- Loopholes: experimental tests of Bell's inequality may not fulfill all hypotheses of the theorem.
- Collider experiment:
 - Free-will loophole: spin measurement directions should be free, independent from hidden-variables.
 - <u>Detection loophole</u>: only a subset of events is selected for the measurement, which can be biased.
- Collider experiments were not designed to test Bell's Inequality.

Loopholes in a Collider Experiment

- Loopholes: experimental tests of Bell's inequality may not fulfill all hypotheses of the theorem.
- Collider experiment:
 - Free-will loophole: spin measurement directions should be free, independent from hidden-variables.
 - <u>Detection loophole</u>: only a subset of events is selected for the measurement, which can be biased.
- Collider experiments were not designed to test Bell's Inequality.
- → Can only detect a weak violation of CHSH (Bell's) Inequality.

Entanglement and Bell's Inequality Before Integration

- a) $gg \rightarrow t\bar{t}$ Concurrence.
- b) $q\bar{q} \rightarrow t\bar{t}$ Concurrence.
- c) Full LHC $\rho(M_{t\bar{t}}, \hat{k})$ Concurrence.
- d) Full Tevatron $\rho(M_{t\bar{t}}, \hat{k})$ Concurrence.
- Solid line: entanglement limit; Dashed line: Bell's inequality limit.

• It is possible to control the $gg/q\bar{q}$ fraction by further selections, see Aguilar-Saavedra, Casas, 2205.00542.

Critical Values After Integration

- We focus on pp interactions.
- Clear motivation to restrict to selected regions of phase space.
- Plot is shown with integration only for $[2m_t, M_{t\bar{t}}]$.
- We focus on the region close to threshold. For high p_T see:
 - Fabbrichesi, Floreanini, Panizzo, PRL (2021).
 - Severi, Boschi, Maltoni, Sioli, EPJC (2022).

Figure: Critical values below which entanglement and CHSH violation can be observed, for different COM values.

Measurable Entanglement Marker

- Plots are shown with integration only for $[2m_t, M_{t\bar{t}}]$.
- In particular:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi} = \frac{1}{2}(1 - D\cos\varphi)$$
 where φ is the angle between the lepton directions in each one of the parent top and antitop rest frames.

•
$$\Delta > 0 \Leftrightarrow D = \frac{\operatorname{tr}[\mathbf{C}]}{3} < -\frac{1}{3}$$
.

• Recently, D was measured with no selection on $M_{t\bar{t}}$ by the CMS collaboration in Phys. Rev. D 100, 072002:

$$D = -0.237 \pm 0.011 > -1/3;$$

 $\Delta D/D = 4.6\%.$

Figure: Up: the value of D; bottom: statistical deviation from the null hypothesis (D = -1/3).

Quantum Tomography

- Quantum Tomography: reconstruction of the quantum state from measurement of a set of expectation values.
- Spin polarizations ${\bf B}^{\pm}$ and spin correlation matrix ${\bf C}$ can be extracted from cross-section $\sigma_{\ell\bar{\ell}}$ of dileptonic decay:

$$\frac{1}{\sigma_{\ell\bar{\ell}}} \frac{\mathrm{d}\sigma_{\ell\bar{\ell}}}{\mathrm{d}\Omega_{+}\mathrm{d}\Omega_{-}} = \frac{1}{(4\pi)^{2}} \left[1 + \mathbf{B}^{+} \cdot \hat{\ell}_{+} - \mathbf{B}^{-} \cdot \hat{\ell}_{-} - \hat{\ell}_{+} \cdot \mathbf{C} \cdot \hat{\ell}_{-} \right]$$

- Symmetry around beam axis:
 - \bigcirc 2 spin correlations C_{\perp} , C_{z} .
 - 2 individual spin (longitudinal) polarizations B_z^{\pm} .
- No assumption on the particular form of the quantum state:
 - \odot 9 spin correlations C_{ij} .
 - 6 individual spin polarizations

 B.±.

Conclusions and outlook

- Implementation of ABC in quantum information at hadron colliders, in particular at the LHC: interdisciplinary, huge potential and great interest.
- Quantum Information perspective: new system to test quantum foundations at the highest-energy scale so far. Genuinely relativistic, exotic symmetries and interactions, fundamental nature.
- High-Energy perspective: quantum information techniques can inspire new approaches to test physics beyond the Standard Model:
 - See e.g. Aoude, Madge, Maltoni, Mantani, 2203.05619 and next talk by Luca Mantani.

Thank You

Backup Slides

High Energy Physics Example

- At B-Factories, e^+e^- collisions can be properly adjusted in order to create $\Upsilon(4S)(b\bar{b})$.
- $\Upsilon(4S)(b\bar{b})$ decays to $B^0 + \bar{B}^0$, where we have $|B^0\rangle = |\bar{b}d\rangle, |\bar{B}^0\rangle = |b\bar{d}\rangle.$

• We get an entangled state: $\frac{1}{\sqrt{2}}(|B^0\rangle|\bar{B}^0\rangle - |\bar{B}^0\rangle|B^0\rangle).$

Intuition: Spin States at Threshold

- The state is determined by the initial spins.
- $q\bar{q}$: $\rho^{q\bar{q}} = (|\uparrow_{\hat{p}}\uparrow_{\hat{p}}\rangle \langle \uparrow_{\hat{p}}\uparrow_{\hat{p}}| + |\downarrow_{\hat{p}}\downarrow_{\hat{p}}\rangle \langle \downarrow_{\hat{p}}\downarrow_{\hat{p}}|)/2$.
- $gg: \rho^{gg} = |\Psi_0\rangle \langle \Psi_0|$, with $|\Psi_0\rangle = (|\uparrow_{\hat{\rho}}\downarrow_{\hat{\rho}}\rangle |\downarrow_{\hat{\rho}}\uparrow_{\hat{\rho}}\rangle)/\sqrt{2}$.
- ullet qar q o correlated, not entangled; gg o correlated, entangled.

Experimental Entanglement

- Entanglement has been observed in a wide variety of systems
- Testing entanglement in any new system is highly interesting by itself!

What is Quantum Entanglement?

- Quantum state of one particle cannot be described independently from another particle.
- ⇒ Correlations of observed physical properties of both systems.
- Measurement performed on one system seems to be influencing other systems entangled with it.

 Observed in photons, atoms, superconductors, mesons, analog Hawking radiation, nitrogen-vacancy centers in diamond and even macroscopic diamond.

Basis Selection

- Helicity basis: $\{\hat{k}, \hat{r}, \hat{n}\}$:
 - \hat{k} direction of the top in the $t\bar{t}$ CM frame.
 - \hat{p} direction of the beam.

 - $\hat{r} = (\hat{p} \cos\Theta\hat{k})/\sin\Theta.$
 - $\hat{n} = \hat{r} \times \hat{k}$.

- Beam basis: $\{\hat{x}, \hat{y}, \hat{z}\}$:
 - $\hat{\mathbf{g}}$ along the beam axis.
 - \hat{x}, \hat{y} transverse directions to the beam.
 - After averaging: $C_x = C_v = C_{\perp}$.

Figure: Helicity and beam bases.

Quantum Tomography: One Qubit

- Qubit: quantum system with two states (e.g., spin-1/2 particle).
- Most general density matrix for a qubit:

$$\rho = \frac{1 + \sum_{i} B_{i} \sigma^{i}}{2} = \frac{1}{2} \begin{bmatrix} 1 + B_{3} & B_{1} - iB_{2} \\ B_{1} + iB_{2} & 1 - B_{3} \end{bmatrix}$$

• Only 3 parameters $B_i \rightarrow \text{Quantum tomography}$ is the measurement of spin polarization **B**:

$$B_i = \langle \sigma^i \rangle = \operatorname{tr}(\sigma^i \rho)$$

Quantum Tomography: Two Qubits

Most general density matrix for 2 qubits:

$$\rho = \frac{1 + \sum_{i} \left(B_{i}^{+} \sigma^{i} + B_{i}^{-} \bar{\sigma}^{i} \right) + \sum_{i,j} C_{ij} \sigma^{i} \bar{\sigma}^{j}}{4}$$

• 15 parameters B_i^{\pm} , $C_{ij} \rightarrow \text{Quantum tomography} = \text{Measurement of individual spin polarizations } \mathbf{B}^{\pm}$ and spin correlation matrix \mathbf{C} :

$$B_i^+ = \langle \sigma^i \rangle, \ B_i^- = \langle \bar{\sigma}^i \rangle, \ C_{ij} = \langle \sigma^i \bar{\sigma}^j \rangle$$

Quantum State

Quantum State

• Pure state: can be described by wave-functions $\sum_{i} \alpha_{i} \cdot |\psi_{i}\rangle$.

Example: at the LHC we cannot control the initial state.

Quantum Entanglement

- Two different systems A and B: $\mathcal{H} = \mathcal{H}_a \otimes \mathcal{H}_b$.
- Separable: $\rho = \sum_{n} p_{n} \rho_{n}^{a} \otimes \rho_{n}^{b}$.
- $\rho_n^{a,b}$ are quantum states in $A, B, \sum_n p_n = 1, p_n \ge 0$
- Classically correlated state in $\mathcal{H} \to \text{can}$ be written in this form.
- Non-separable state is called entangled and hence, it is a non-classical state.

Separable

Non-Separable

EPR Paradox

A. Einstein

B. Podolsky

N. Rosen

MAY 15, 1935

PHYSICAL REVIEW

VOLUME 47

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINSTEIN, B. PODOLSKY AND N. ROSEN, Institute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

EPR Paradox

Entanglement: "spooky action at a distance" (A. Einstein).

- Assuming two particles with spacial distance.
- When a measurement is done on one of the particles, the other one "knows" about it immediately.
- Information travel faster than light?
- Contradicts the theory of relativity.
- Conclusion: the theory of Quantum Mechanics is incomplete.

Hidden Variables

- By EPR, each particle "carries" variables that knows the state before the measurement.
- There are some hidden variables that are missing in order to have a full theory.
- The Copenhagen Interpretation: superposition of states until a measurement was done.
- Bohr Vs. Einstein.

"God does not play at dice with the universe".

"Quit telling God what to do!"

• Who is right?

Bell's Inequality

III.5 ON THE EINSTEIN PODOLSKY ROSEN PARADOX* JOHN S. BELL[†]

- If local hidden variables hold, they should satisfy some inequality.
- C(x, y) are the correlations between different measurements at different detectors.
- The parameters a,b,c are different directions for the measurement.
- Original form: $1 + C(b, c) \ge |C(a, b) C(a, c)|$.

Recent Related Measurement

- Recently, D was measured with no selection on $M_{t\bar{t}}$ by the CMS collaboration.
- Results: $D = -0.237 \pm 0.011 > -1/3$;

 $\Delta D/D = 4.6\%$.

No evidence of quantum entanglement.

Figure: Distribution of $cos\varphi$. Figure is from Phys. Rev. D 100, 072002.