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The EW Fit: Predicting mH
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‣ Predictions from loop effects since 1997 
‣ The fits have always been able to predict mH correctly
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Figure 2.2: Higher-order corrections to the gauge-boson propagators arising due to insertion of fermion
and boson loops. Contributions from unphysical degrees of freedom are not shown. The loop insertions
may be iterated. At two-loop order, QCD enters through gluon exchange in the quark loops.

2.11.2.1 QED Corrections

The QED contribution arises from the photonic vacuum polarisation, also called photon self energy,
consisting of fermion-loop insertions in the propagator of the photon. This effect is expected in any
theory containing QED. The correction is usually reinterpreted as the dependence of the electromag-
netic coupling strength on the energy of the probing photon, leading to an effective finestructure
constant, αem, running with momentum transfer:

αem ≡ αem(0) → αem(s) =
αem

1 − ∆αem(s)
, (2.52)

where 1/αem(0) = 137.0359895(61) [31].
Each light charged fermion, 4m2

f < s, contributes to ∆αem(s) by an amount of:
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where Nf
C is the QCD colour factor, Nf

C = 1 for leptons and Nf
C = 3 for quarks, and βf =

√

1 − 4m2
f/s

is the fermion velocity. The running of αem(s) is driven by the light charged fermions, while heavy
charged fermions, 4m2

f > s, decouple and are not visible:
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For ∆r, αem(s) must be evolved from the Thomson limit s = 0, where αem is defined, to the scale
s = M2

Z set by the Z mass. The contribution of the three charged leptons is calculated up to three-

loop order, ∆α(eµτ)
em (M2

Z) = 0.03150 with negligible uncertainty [43]. The top contribution is small,

∆α(t)
em(M2

Z) = −0.00007(1), showing numerically the decoupling of the heavy top quark.
For the light quarks q = d,u, s, c,b with mq $ MZ, large QCD corrections make the above

expression for ∆α(q)
em unreliable. Instead, the contribution of the five light quarks is calculated based
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Calculations
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All observables calculated at 2-loop level 

‣MW : full EW one- and two-loop calculation  
of fermionic and bosonic contributions 
[M Awramik et al., PRD 69, 053006 (2004), PRL 89, 241801 (2002)] 
+ 4-loop QCD correction [Chetyrkin et al., PRL 97, 102003 (2006)] 
‣ sin2θleff : same order as MW, calculations for leptons and all quark flavours 

[M Awramik et al, PRL 93, 201805 (2004), JHEP 11, 048 (2006), Nucl. Phys. B813, 174 (2009)] 
‣ partial widths Γf : fermionic corrections in two-loop for  

all flavours (includes predictions for σ0had) [A. Freitas, JHEP04, 070 (2014)] 
‣ Radiator functions: QCD corrections at N3LO  

[Baikov et al., PRL 108, 222003 (2012)] 
‣ ΓW : only one-loop EW corrections available, negligible impact on fit  

[Cho et al, JHEP 1111, 068 (2011)] 
‣ all calculations: one- and two-loop QCD corrections and leading  

terms of higher order corrections

A. Freitas et al. / Physics Letters B 495 (2000) 338–346 341

Fig. 2. Two-loop vertex diagrams containing a triangle subgraph,
which require a careful treatment of γ5 in D dimensions.

a finite contribution, so that it can be evaluated in
four dimensions without further complications. 1 The
fermion line appearing in the second loop also yields
an ε-tensor contribution, which results, after contrac-
tion with the ε-tensor from the triangle subgraph, in a
non-vanishing contribution to the result for #r .
As mentioned above, we perform the renormaliza-

tion within the on-shell scheme. It involves a one-loop
subrenormalization of the Faddeev–Popov ghost sec-
tor of the theory, which is associated with the gauge-
fixing part. The gauge-fixing part is kept invariant un-
der renormalization. For technical convenience, we
manage this by a renormalization of the gauge pa-
rameters in such a way that it precisely cancels the
renormalization of the parameters and fields in the
gauge-fixing Lagrangian. 2 To this end we have al-
lowed two different bare gauge parameters for both W
and Z, ξW,Z

1 and ξ
W,Z
2 , and also mixing gauge parame-

ters, ξγZ and ξZγ . The renormalized parameters com-
ply with the Rξ gauge, with one free gauge parameter
for each gauge boson. With this prescription no coun-

1 For recent discussions of practical ways of treating γ5 in
higher-order calculations, see also Refs. [28,29].
2 An alternative way of achieving that the gauge-fixing sector

does not give rise to counterterm contributions would have been to
add the gauge-fixing part to the Lagrangian only after renormaliza-
tion, in which case the renormalized gauge transformations would
have to be used.

terterm contributions arise from the gauge-fixing sec-
tor. Starting at the two-loop level, counterterm contri-
butions from the ghost sector have to be taken into ac-
count in the calculation of physical amplitudes. They
follow from the variation of the gauge-fixing terms Fa

under infinitesimal gauge transformations. We have
derived all the counterterms arising from the ghost
sector (extending the results of Ref. [30] to a gen-
eral Rξ gauge) and implemented them into the pro-
gram FeynArts. In this way we could verify the finite-
ness of individual (gauge-parameter-dependent) build-
ing blocks (e.g., the W- and the Z-boson self-energy)
as a further check of the calculation.
Concerning the mass renormalization of unstable

particles, from two-loop order on it makes a difference
whether the mass is defined according to the real part
of the complex pole of the S matrix,

(4)M2 = !M2 − i !M !Γ ,

or according to the pole of the real part of the
propagator. In Eq. (4) M denotes the complex pole
of the S matrix and !M , !Γ the corresponding mass and
width of the unstable particle. We use the symbol M̃
for the real pole.
In the context of the present calculation, these

considerations are relevant to the renormalization of
the gauge-boson masses, MW and MZ. The two-loop
mass counterterms according to the definition of the
mass as the real part of the complex pole are given by
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where ΣT,(1), ΣT,(2) denote the transverse parts of
the one-loop and two-loop self-energies (the terms
from subloop renormalization are understood to be
contained in the two-loop self-energies), and Σ ′

T,(1)
means the derivative of the one-loop self-energy with
respect to the external momentum squared. Field
renormalization constants are indicated as δZV . The
relations to the mass counterterms according to the
real-pole definition, δM̃2

W,(2) and δM̃2
Z,(2), are given

loop momenta. When both momenta are ‘‘soft’’ (! MW),
as in Fig. 1(b), the propagators of the W and Z bosons are
expanded leading to a correction of order !=M4

W in the
effective theory. For one momentum soft and one ‘‘hard’’
("MW), as in Figs. 1(c) and 1(d), corrections of either
order, !=M2

W or 1=M4
W in the effective theory, are gen-

erated. The contribution to the matching coefficient
comes only from the region where both momenta are
hard, as in Fig. 1(e). In this case, all of the light particle
masses and momenta should be put to zero. By these
arguments it can be shown that !r can be obtained by
simply taking the sum of all the diagrams and putting all
external momenta and light masses to zero. The proce-
dure should generate no spurious infrared divergences,
while the physical divergences connected with the photon
should be contained in the corrections of the effective
theory. As is known, the Fermi theory corrections are
finite; therefore, the !r correction obtained as above
should also be finite.

Previous calculations of !r have been based on a
different method of factorization originally devised in
[11]. This procedure consists of subtracting from the
infrared divergent SM diagrams the respective Fermi
theory diagrams in Pauli-Villars regularization. The dif-
ference is well defined in the limit of zero light masses
and external momenta. It turns out, however, that the
QEDWard identity, which is responsible for the finiteness
of the corrections in the Fermi theory, implies in this case
the vanishing of the sum of the subtracted diagrams. This
proves that both procedures are equivalent.

The evaluation of two loop corrections to a four-
fermion process requires the full second order renormali-
zation of the SM Lagrangian in all but the Higgs sector,
where first order suffices. The comparison with experi-
ment imposes the use of on-shell parameters for the final
result. Throughout this work the on-shell scheme was

used, with a procedure similar to the one described in
[5]. The only substantial difference concerns the treat-
ment of tadpoles.

It is known that gauge invariance of mass counterterms
requires inclusion of tadpoles [12,13] (at the two loop
level this has been explicitly shown in [14]). In this case,
however, one cannot use one-particle-irreducible (1PI)
Green functions. In order to have gauge invariant counter-
terms and 1PI Green functions only, a special procedure
was designed. An additional renormalization constant for
the bare vacuum expectation value v0, denoted Zv, has
been introduced and explicitly split from the bare masses

v0 ! v0Z
1=2
v ; (4)

M0
W;Z ! M0

W;ZZ
1=2
v : (5)

The term linear in the Higgs field H in the Lagrangian

T0H0 # M0
Ws

0
W

e0
$M0

H%2Z1=2
v $Zv & 1%H0 (6)

is then used to determine Zv, through the requirement that
tadpoles are canceled. It can be proved [12,15] that the
bare masses are gauge invariant in this case (an equiva-
lent procedure which makes use of the effective potential
has been used in [16]).

The calculation of the two loop bosonic contributions
to muon decay was performed by means of a completely
automated system. The diagram generation stage was
done by the C'' library DiaGen [17]. The tensor reduc-
tion of two loop propagator diagrams was accomplished
with the algorithm described in [18], whereas vacuum
diagrams were treated with integration by parts identities
[19]. For algebraic manipulations, the program FORM [20]
was used. The two loop two-point integrals were numeri-
cally evaluated with single integral representations of
the package S2LSE [21]. The latter was modified for qua-
druple precision, which was needed due to large cancel-
lations (independent terms grow as M8

H, while the result
behaves as M2

H).
The size of the software required several tests. The

following algebraic checks were performed: ultraviolet
and infrared finiteness, by cancellation of poles in dimen-
sional regularization; gauge invariance, by independence
of the three gauge parameters of the general R" gauge for
the SM; Slavnov-Taylor identities for two-point func-
tions, as given in [18], both for on-shell integrals and
by expansion in the external momentum to second order.

Several numerical tests were also done: (i) All of
the master integrals were evaluated independently by
means of deep mass difference and large-mass expan-
sions. (ii) Each of the two-point on-shell diagrams was
calculated separately with the help of small-momentum
and different large-mass expansions. (iii) The result of
[14] for the W and Z mass counterterms was reproduced
to precision dictated by the order of the expansions

FIG. 1. A typical muon decay diagram (a) and the contribu-
tions to its large mass expansion according to the momenta
(b) k1-soft, k2-soft; (c) soft-hard; (d) hard-soft; (e) hard-hard.
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Experimental Input
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Free w/o exp. input w/o exp. inputParameter Input value
in fit

Fit Result
in line in line, no theo. unc

MH [GeV] 125.1± 0.2 yes 125.1+0.2
�0.2 99.5+25.2

�21.0 99.5+23.7
�20.0

MW [GeV] 80.369± 0.016 – 80.356± 0.006 80.354± 0.007 80.353± 0.005

�W [GeV] 2.085± 0.042 – 2.091± 0.001 2.091± 0.001 2.091± 0.001

MZ [GeV] 91.1875± 0.0021 yes 91.1878± 0.0021 91.1956± 0.0105 91.1959± 0.0100

�Z [GeV] 2.4952± 0.0023 – 2.4948± 0.0014 2.4943± 0.0016 2.4942± 0.0016

�0
had [nb] 41.540± 0.037 – 41.482± 0.015 41.472± 0.016 41.472± 0.015

R0
`

20.767± 0.025 – 20.745± 0.017 20.727± 0.026 20.726± 0.026

A0,`
FB 0.0171± 0.0010 – 0.01619± 0.0001 0.01618± 0.0001 0.01617± 0.0001

A`
(?)

0.1499± 0.0018 – 0.1469± 0.0005 0.1469± 0.0005 0.1468± 0.0003

sin
2✓`e↵(QFB) 0.2324± 0.0012 – 0.23154± 0.00006 0.23153± 0.00006 0.23154± 0.00004

sin
2✓`e↵(Tev + LHC) 0.23141± 0.00026 – 0.23154± 0.00006 0.23154± 0.00006 0.23155± 0.00004

Ac 0.670± 0.027 – 0.6678± 0.00021 0.6678± 0.00021 0.6678± 0.00014

Ab 0.923± 0.020 – 0.93475± 0.00004 0.93475± 0.00004 0.93474± 0.00002

A0,c
FB 0.0707± 0.0035 – 0.0736± 0.0003 0.0736± 0.0003 0.0736± 0.0002

A0,b
FB 0.0992± 0.0016 – 0.1030± 0.0003 0.1031± 0.0003 0.1030± 0.0002

R0
c

0.1721± 0.0030 – 0.17225+0.00009
�0.00008 0.17225± 0.00008 0.17225± 0.00006

R0
b

0.21629± 0.00066 – 0.21582± 0.00011 0.21581± 0.00011 0.21581± 0.00004

mc [GeV] 1.27+0.07
�0.11 yes 1.27+0.07

�0.11 – –
mb [GeV] 4.20+0.17

�0.07 yes 4.20+0.17
�0.07 – –

mt [GeV](5)
172.47± 0.68 yes 172.67± 0.65 175.15+2.37

�2.39 175.17+2.30
�2.32

�↵(5)
had(M

2
Z
)
(†4)

2761± 9 yes 2759± 10 2728± 39 2728± 37

↵s(M2
Z
) – yes 0.1198+0.0030

�0.0029 0.1198± 0.0030 0.1199± 0.0028

(?)Average of LEP (A` = 0.1465± 0.0033) and SLD (A` = 0.1513± 0.0021) measurements, used as two measurements in the
fit. The fit w/o the LEP (SLD) measurement gives A` = 0.1469± 0.0005 (A` = 0.1467± 0.0005 ). (5)Combination of

experimental (0.46 GeV) and theory uncertainty (0.5 GeV).(†)In units of 10�5. (4)Rescaled due to ↵s dependency.

LHC

Tev.
LEP

LEP

SLD

SLD
Tev. LHC

LEP

low E

low E
LHC

Fit is overconstrained 

‣ All free parameters measured 
(αs(MZ) unconstrained in fit) 
• Most input from e+e− 

colliders 
- MZ : 0.002% 

• Crucial input from  
hadron colliders: 
- mt : 0.4% 
- MW :  0.02% 
- MH :   0.2% 

• Remarkable precision (<1%)



MW average from LEP and LHC
Poor-man’s combination until Tevatron MW is understood 
Average of LEP and LHC: 
‣ LEP combination:  80 376 ± 25 stat ± 22 syst MeV 
‣ ATLAS:                     80 370 ± 7 stat ± 11 exp syst ± 14 model ± 8 PDF MeV  
‣ LHCb:                       80 354 ± 23 stat ± 10 exp syst ± 17 model ± 9 PDF MeV 
‣ Assume correlations:  

• ATLAS/LHCb: model between 0 and 1, PDF between 0 and -0.5 
• LEP/LHC: none
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‣ MW(LHC) = 80366 ± 19 MeV

‣ Combine with LEP (fully uncorrelated): 
    MW(LEP+LHC) = 80369 ± 16 MeV 

‣ Previous TEV+LEP+ATLAS combination: 80379 ± 13 MeV

(Same result if all three measurements combined in one step, with χ2/ndf = 0.28/2)



Our MW Combination
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Compatibility  
between our average 
and CDF II: 

χ2 / ndf =  12.1 - 16.4 
for correlations between  
0 and 0.3 (*) 

p-value: 5 ⋅ 10−4 to 5 ⋅ 10−5 

corresponds to  
3.5 - 4.0 σ

(*) Note: correlation of 0.3  
obtained by fully correlating 
model and PDF uncertainties

80300 80350 80400
 [MeV]WM

LEP

ATLAS

LHCb

Average

D0

CDF II

 33 MeV± = 80376 WM

 21 MeV± = 80370 WM

 32 MeV± = 80354 WM

 16 MeV± = 80369 WM
 15 MeV)±(Uncorrelated 

 23 MeV± = 80383 WM

 9.4 MeV± = 80433.5 WM
(Tevatron results not included in average)



Top Quark Mass
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167 168 169 170 171 172 173 174 175 176
 [GeV]tm

ATLAS Run 1

CMS Run 1

LHC Average

D0

CDF

 0.50 GeV± = 172.51 tm

 0.49 GeV± = 172.44 tm

 0.46 GeV± = 172.47 tm
 0.35 GeV)±(Uncorrelated 

 0.75 GeV± = 174.95 tm

 0.93 GeV± = 173.16 tm
(Tevatron results not included in average)

(same default as 
previously)

Deviation of 3 - 4σ w.r.t.
LHC average 
Depending on assumed  
correlations
Tevatron combination:  
incompatibility of 2.3-3σ  

Additional theoretical   
uncertainty of 0.5 GeV 

Poor-man’s combination  
until LHC TOP WG results  
are finalised



Effective Weak Mixing Angle
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0.2295 0.23 0.2305 0.231 0.2315 0.232 0.2325
l
effθ 2sin

Tevatron

ATLAS

CMS

LHCb

Average

 0.00033±0.23148 

 0.00036±0.23140 

 0.00053±0.23101 

 0.00106±0.23142 

 0.00026±0.23141 
 0.00022)±(Uncorrelated 

[1801.06283] 

[ATLAS-CONF-2018-037]

[1806.00863]

[1509.07645]
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χ2min / ndf = 16.62 / 15 
p value = 0.34

(*) comparison to PDG value, not included in fit as input parameter

*

‣MW: −0.8σ (−1.5σ previously (Δ))
• central value smaller by 2 MeV

• uncertainty reduced by 1 MeV

• measurement lower

‣mt: 0.3σ (0.5σ previously (Δ))
• central value: 175.9 →177.2 GeV

• uncertainty increased by 0.3 GeV

• can reach ±0.9 GeV with perfect 
knowledge of MW

(Δ) previous results: [1803.01853]



W Mass

Roman Kogler The Global Electroweak Fit10

‣ Agreement within 1σ between prediction and LHC+LEP average 
‣ CDF II measurement disagrees with prediction by 6.8σ

Prediction: MW = 80.354 ± 0.007 GeV

80.35 80.4 80.45

 [GeV]WM

0
1
2
3
4
5
6
7
8
9

102 χ
Δ

σ1

σ2

σ3
 measurementsWSM fit w/o M

 measurementsH and MWSM fit w/o M

LHC+LEP Average

CDF II

G fitter SM

Jul '22



W Mass
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‣ MW = 80.349 ± 0.007 GeV (5 MeV smaller) 
‣ Disagreement with CDF II measurement larger

New CMS mt = 171.77 ± 0.04 (stat) ± 0.38 (syst) GeV

80.35 80.4 80.45

 [GeV]WM

0
1
2
3
4
5
6
7
8
9

102 χ
Δ

σ1

σ2

σ3 measurementsWSM fit w/o M

, TOP-20-008tNew CMS m

 measurementsH and MWSM fit w/o M

LHC+LEP Average

CDF II

G fitter SM

Jul '22



170 172 174 176 178 180 182 184 186 188

 [GeV]tm

0
1
2
3
4
5
6
7
8
9

102 χ
Δ

σ1

σ2

σ3 measurementstSM fit w/o m

 measurementst from CDF II w/o mWM

 measurementst and mHNo M

LHC Average

Pole mass, PDG average

D0 [PRD 95, 112004 (2017)]

G fitter SM

Jul '22

Top Quark Mass
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Prediction:  mt = 175.2 ± 2.4 GeV 
‣ Compatible with LHC average within 1σ 
‣ Prediction using CDF II MW:  mt = 184.2 ± 1.7 GeV



20 40 60 80 100 120 140

 [GeV]HM

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

52 χ
Δ

σ1

σ2

SM fit

 measurementH from CDF II w/o MWM

 measurementHSM fit w/o M

LHC combination [PRL 114, 191803 (2015)]

G fitter SM

Jul '22

MH
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Prediction:  mH = 99.5 +25.2−21 GeV 
‣ Prediction using CDF II MW:  mH = 42.3+10.2−8.7 GeV (about 8σ) 
‣ CDF II MW results in small MH < 47 GeV @ 95% CL



SM Fit with MW from CDF II
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χ2 / ndf = 62.6 / 15 
p-value = 8.9 ⋅ 10−8  

corresponds to 5.1σ 

3− 2− 1− 0 1 2 3

measσ) / meas O− 
fit

(O

)2
Z

(Msα

)2
Z

(M(5)
hadαΔ

tm
b
0R
c
0R
bA
cA

0,b
FBA

0,c
FBA

(Tev+LHC)lept
effΘ2sin

)
FB

(Qlept
effΘ2sin

(SLD)lA
(LEP)lA

0,l
FBA
lep
0R

0
hadσ

ZΓ
ZM

WΓ
WM
HM

-2.7
-0.9
2.4

-0.7
0.0
0.6
0.0
2.8
1.0
0.0

-0.8
-1.7
0.4

-0.7
-1.9
-1.1
-0.7
1.5
0.1

-5.5
0.0G fitter SM

Jul '22largest pull in MW 
(80.3817 GeV)

mt preferred higher 
(174.07 GeV)

αs(MZ) preferred 
low (0.1155)

would shift MZ up 
by 1.3σ 

R0lep down by 1σ 

Smaller pull in Aℓ(SLD)

Larger pull in AbFB 



Summary
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140 150 160 170 180 190
 [GeV]tm

80.25

80.3

80.35

80.4

80.45

80.5 [G
eV

]
W

M

68% and 95% CL contours
 measurementst and mWFit w/o M

 measurementst and mWDirect M
 

t
, CMS TOP-20-008 mWCDF II M

σ 1± comb. WM
 0.016 GeV± = 80.369 WM

σ 1± comb. tm
 = 172.47 GeVtm

 = 0.46 GeVσ
 GeV theo 0.50⊕ = 0.46 σ

 = 125 GeV

HM = 50 GeV

HM  = 300 GeV

HM  = 600 GeV

HM
G fitter SM

Jul '22

‣ SM very consistent 
using MW from 
LEP+LHC 

‣ Need to resolve 
tension with CDF II 
MW experimentally 

‣ Looking forward to 
mt and MW 
combinations from 
Collaborations

www.cern.ch/gfitter

We cannot know  
MW and sin2θleff  

precisely enough
(theoretically and experimentally)

http://www.cern.ch/Gfitter


Additional Material
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Effective Weak Mixing Angle
 Private combination of sin2(θℓeff) measurements:    
+ Tevatron combination [1801.06283] 
+ ATLAS 8 TeV (ATLAS-CONF-2018-037) 
+ CMS 8 TeV [1806.00863] 
+ LHCb 7+8 TeV [1509.07645] 
 
Assumptions 
Correlate PDF unc: 100% between ATLAS/CMS  
                                      50% between Tev/ATLAS-CMS  
                                      50% between LHCb/ATLAS-CMS  
                                      30% between Tev/LHCb 

sin2(θℓeff)= 0.23141 ± 0.00026 

Roman Kogler The Global Electroweak Fit17

Uncertainty of 0.00028 for fully correlated PDF uncertainties, 0.00022 for no correlation

(χ2/ndf = 0.74/3)
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‣ estimated using a geometric series (an = a rn), example:

• similar results from scale variations

‣ reasonable estimates for all observables

‣ exception: mt !

• kin definition, relation to mpole unknown

• uncertainties from colour structure,  
hadronisation and mpole → mt(mt) smaller

‣ 10 additional free parameters, Gaussian likelihood

‣ important missing higher order terms:

• O(α2αs), O(ααs2), O(α2bos) (in some cases), O(α3), O(αs5) (rad. functions)

Theoretical Uncertainties

JHEP11(2006)048

rections in ZFITTER, uses the MS definition for ∆ρ, which is numerically larger than the

leading m2
t term, so that the resummation effects of ∆ρMS are rather large. Finally, Zfit-

ter versions before 6.40 use an outdated implementation of the QCD corrections. Since

all these contributions are non-negligible at the current level of precision, it is interesting

to study them separately.

In particular, using the results of section 3.1 the effect of the truncated top-mass

expansion is shown in Tab. 3 (b)2. It turns out that the expansion converges quite well

for realistic values of mt and MH. However, the terms beyond the order m2
t induce a

difference of 4.3% in the two-loop corrections with top-bottom loops, corresponding to a

shift of about 0.2 × 10−4 in sin2 θlept
eff , which is roughly a quarter of the total difference

reported in Tab. 3 (a). As a cross-check, also the result for very large values of mt and MH

are shown in Tab. 3 (b), to illustrate that in this case the series converges much faster.

5.2 Error estimate

While the inclusion of the fermionic two-loop corrections is a substantial improvement of

the prediction of sin2 θlept
eff in the Standard Model, uncertainties from missing higher order

contributions can still be sizeable. Here we try to give an estimate of the error induced

by these unknown contributions. The most relevant missing higher order contributions are

corrections of the order O(α2αs) beyond the leading m4
t term, O(α3) beyond the leading

m6
t term and O(αα3

s ). Since the final prediction for sin2 θlept
eff is based on Gµ as input, the

loop effects in the both quantities ∆r (for the computation of MW) and ∆κ (for the Zl+l−

vertex corrections) need to be considered.

When combining the two form factors, it turns out that there are some cancellations

between the known corrections to MW and the Z vertex. It is expected that similar

cancellations occur when adding an additional QCD loop, since QCD corrections enter

with the same relative sign in the corrections to MW and the Z vertex. Since the dominant

missing higher order effects are contributions with an additional QCD loop, it is assumed in

the following that these cancellations are natural and it is justified to study the theoretical

error of both quantities ∆r and ∆κ in conjunction.

A simple method to estimate the higher order uncertainties is based on the assumption

that the perturbation series follows roughly a geometric progression. This presumption

implies relations like

O(α2αs) =
O(α2)

O(α)
O(ααs). (5.4)

From this one obtains the error estimates in the second column of Tab. 4 for the different

higher order contributions, which are given for a range of the Higgs MH mass between 10

GeV and 1000 GeV. To account for possible deviations from the geometric series behavior,

an ad-hoc overall factor
√

2 was included in all error determined via this method.

Alternatively, the error from a higher-order QCD loop can be assessed by varying the

scale of the strong coupling constant αs or the top-quark mass mt in the MS scheme in

2As a by-product of this comparison, we found a typo in Ref. [45], where a term 3

2
m2

t/(M
2
Zs2

W) log c2
W is

missing in the expression for MH ! mt.

– 21 –

important

0.5 GeV

Definition of mtop

If Γtop were < 1 GeV, top would 
hadronize before decaying. Same as b-
quark

T
p1

pn

t

q

m2
T =

0

@
X

i=1,...,n

pi

1

A
2

But Γtop is > 1 GeV, top decays before 
hadronizing. Extra antiquarks must be 
added to the top-quark decay final state 
in order to produce the physical state 
whose mass will be measured

As a result, Mexp is not equal to mpoletop, 
and will vary in each event, depending 
on the way the event has evolved. 

The top mass extracted in hadron 
collisions is not well defined below a 
precision of O(Γtop)~ 1 GeV
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Goal: 
- correctly quantify the systematic uncertainty
- identify observables that allow to validate the 
theoretical modeling of hadronization in top 
decays
- identify observables less sensitive to these 
effects
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[A. Hoang arXiv:1412.3649, M. Mangano]



SM Fit
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Free w/o exp. input w/o exp. inputParameter Input value
in fit

Fit Result
in line in line, no theo. unc

MH [GeV] 125.1± 0.2 yes 125.1+0.2
�0.2 99.5+25.2

�21.0 99.5+23.7
�20.0

MW [GeV] 80.369± 0.016 – 80.356± 0.006 80.354± 0.007 80.353± 0.005

�W [GeV] 2.085± 0.042 – 2.091± 0.001 2.091± 0.001 2.091± 0.001

MZ [GeV] 91.1875± 0.0021 yes 91.1878± 0.0021 91.1956± 0.0105 91.1959± 0.0100

�Z [GeV] 2.4952± 0.0023 – 2.4948± 0.0014 2.4943± 0.0016 2.4942± 0.0016

�0
had [nb] 41.540± 0.037 – 41.482± 0.015 41.472± 0.016 41.472± 0.015

R0
`

20.767± 0.025 – 20.745± 0.017 20.727± 0.026 20.726± 0.026

A0,`
FB 0.0171± 0.0010 – 0.01619± 0.0001 0.01618± 0.0001 0.01617± 0.0001

A`
(?)

0.1499± 0.0018 – 0.1469± 0.0005 0.1469± 0.0005 0.1468± 0.0003

sin
2✓`e↵(QFB) 0.2324± 0.0012 – 0.23154± 0.00006 0.23153± 0.00006 0.23154± 0.00004

sin
2✓`e↵(Tev + LHC) 0.23141± 0.00026 – 0.23154± 0.00006 0.23154± 0.00006 0.23155± 0.00004

Ac 0.670± 0.027 – 0.6678± 0.00021 0.6678± 0.00021 0.6678± 0.00014

Ab 0.923± 0.020 – 0.93475± 0.00004 0.93475± 0.00004 0.93474± 0.00002

A0,c
FB 0.0707± 0.0035 – 0.0736± 0.0003 0.0736± 0.0003 0.0736± 0.0002

A0,b
FB 0.0992± 0.0016 – 0.1030± 0.0003 0.1031± 0.0003 0.1030± 0.0002

R0
c

0.1721± 0.0030 – 0.17225+0.00009
�0.00008 0.17225± 0.00008 0.17225± 0.00006

R0
b

0.21629± 0.00066 – 0.21582± 0.00011 0.21581± 0.00011 0.21581± 0.00004

mc [GeV] 1.27+0.07
�0.11 yes 1.27+0.07

�0.11 – –
mb [GeV] 4.20+0.17

�0.07 yes 4.20+0.17
�0.07 – –

mt [GeV](5)
172.47± 0.68 yes 172.67± 0.65 175.15+2.37

�2.39 175.17+2.30
�2.32

�↵(5)
had(M

2
Z
)
(†4)

2761± 9 yes 2759± 10 2728± 39 2728± 37

↵s(M2
Z
) – yes 0.1198+0.0030

�0.0029 0.1198± 0.0030 0.1199± 0.0028

(?)Average of LEP (A` = 0.1465± 0.0033) and SLD (A` = 0.1513± 0.0021) measurements, used as two measurements in the
fit. The fit w/o the LEP (SLD) measurement gives A` = 0.1469± 0.0005 (A` = 0.1467± 0.0005 ). (5)Combination of

experimental (0.46 GeV) and theory uncertainty (0.5 GeV).(†)In units of 10�5. (4)Rescaled due to ↵s dependency.

χ2 / ndf = 16.62 / 15 
p-value = 0.34
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SM Fit
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χ2 / ndf = 16.62 / 15 
p-value = 0.34

(*) comparison to PDG value,  
not included in fit as input parameter

*



Effective Weak Mixing Angle
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Impact of CDF II W mass not as large 
‣ Predictions compatible with Tev/LHC and LEP/SLD averages within 1σ

0.231 0.2312 0.2314 0.2316 0.2318
l
effθ 2sin

0
1
2
3
4
5
6
7
8
9

102 χ
Δ

σ1

σ2

σ3)l
effθ(2SM fit w/o meas. sensitive to sin

 from CDF IIWM

 meas.
H

) and Ml
effθ(2SM fit w/o meas. sensitive to sin

LEP/SLD [Phys. Rep. 427, 257 (2006)]

Tevatron+LHC average

G fitter SM
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MH Main Observables
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CDF II MW results in low Higgs Mass: MH < 47 GeV @ 95% CL



MW and mt
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MW and sin2θℓeff
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