

STATUS OF THE TEVATRON/LHC W-BOSON MASS COMBINATION

JULY 7^{TH} , 2022, BOLOGNA

ICHEP 2022

SIMONE AMOROSO (DESY), FOR THE TEVATRON/LHC M_W WG

HADRON COLLIDER MEASUREMENTS OF M_W

DO (4.3+1.1 fb⁻¹) [Phys. Rev. **D89** (2014) 012005] $m_W = 80375 \pm 11$ (stat.) ± 20 (sys.) MeV

CDF (8.8 fb⁻¹) [Science **376** (2022) 170] $m_W = 80433.5 \pm 6.4$ (stat.) ± 6.9 (sys.) MeV

ATLAS (4.6 fb⁻¹) [Eur. Phys. J. C78 (2018) 110] $m_W = 80370 \pm 7 \text{ (stat.)} \pm 18 \text{ (sys.)} \text{ MeV}$

LHCb (1.7 fb⁻¹) [JHEP 01 (2022) 036] $m_W = 80354 \pm 23$ (stat.) ± 22 (sys.) MeV

TEVATRON/LHC W-MASS COMBINATION

Provide endorsed world average combination of hadron collider mw results

- Establish a **methodology** to combine present and future measurements
- Enable physics modelling updates of past measurements (i.e. PDFs, p_T^W)
- Properly correlate m_W and $\sin^2 \theta_{eff}^l$ measurements in EW fits

COMBINATION STRATEGY

$$m_W^{new} = m_W^{ref} - \delta m_W^{QCD} - \delta m_W^{QCD}$$

published value

Improved predictions

PDF W PDF extrapolation

Correction applied in a two-step procedure: × 1. Correct all measurements to a common PDF/QCD 2. Combine them properly including correlations

 δm_W^{PDF} correction to reference PDF δm_{W}^{QCD} correction to QCD modelling beyond quoted uncertainties

DETECTOR EMULATION

- Original analyses and detector simulations cannot be easily reproduced
 - Exception is LHCb for which the analysis will be rerun
- Use parametrized detector response, following published information
 - Leptons : η- and p_T-dependent energy/momentum scale as well as resolution and efficiencies
 - Recoil response: include "lepton removal" effects, dependence on boson p_T and event activity
 - Reproduces published distributions at the % level corresponding to ~1-2 MeV precision in $\delta m_W^{QCD,PDF}$
- Event selection and fit ranges from publications

GENERATOR CORRECTIONS

Fully reproduced the event generation chain from the original measurements

- **D0**: Resbos CP (NNLO+NNLL) generated with CTEQ66 (NLO)
- **CDF**: Resbos C (NLO+NNLL) generated with CTEQ6M (NLO)
- **ATLAS**: Powheg+Pythia8 (NLO+PS); y_W + Ai at NNLO with CT10 (NNLO)
- **LHCb:** Powheg+Pythia8 (NLO+PS); Ai at NNLO, as PDF the average of NNPDF3.1,CT18,MSHT20 (NLO)
- Variety of predictions used to validate the PDF shifts and estimate the possible need of QCD correction to published m_W
 - Powheg (NLO+PS), MiNNLOPS (NNLO+PS), DYNNLO (NLO/NNLO F.O.)
 - In addition, updated integration grids from the Resbos authors (dubbed here Resbos2) at NLO+NNLL and NNLO+NNLL with improved treatment of spin correlations [2205.02788]

W-BOSON INVARIANT MASS

- Invariant mass distribution shows trends wrt modern generators
 - Solution Visible cut of $m_W < 150$ GeV in the CDF Resbos sample, small bias on m_W
 - Structures at low invariant masses (m_W<50 GeV for D0, m_W< 70 GeV for CDF) and small overall slope through the full mass range, negligible impact on m_W

W-BOSON RAPIDITY

D0 Resbos events agree with the updated Resbos predictions

- ***** For the CDF Resbos, differences at the 1-2% level for high boson rapidity, $|y_W| > 1.5$
 - Reflecting differences in mass
 - Small in size, affects few events at the edge of the phase-space

SPIN CORRELATIONS IN W-BOSON DECAYS

The cross-section for the production of a spin-1 resonance can be expanded to all-orders in QCD into an **angular coefficients decomposition**:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{dmdp_{\rm T}dy} \left[\left(1 + \cos^2 \theta \right) \right]$$

+
$$\frac{1}{2}A_0(1 - 3\cos^2\theta) + A_1\sin 2\theta\cos\phi$$

+ $\frac{1}{2}A_2\sin^2\theta\cos 2\phi + A_3\sin\theta\cos\phi$
+ $A_4\cos\theta + A_5\sin^2\theta\sin 2\phi$
+ $A_6\sin 2\theta\sin\phi + A_7\sin\theta\sin\phi$],

* Measured to high precision in Z events at the LHC [JHEP 08(2016) 159, 2203.01602] and well described by fixed-order calculations (known to $O(\alpha_S^3)$ [JHEP 11 (2017) 003])

SPIN CORRELATIONS IN RESBOS

NNLO matching in Resbos × not fully differential

→ affects D0

Issue with Ai resummation, → affects CDF/D0

Only unpolarised and A₄ resummed, leads to differences from fixed-order Ai

Differences visible comparing to DYNNLO or MiNNLOPS

Motivates a correction of X Tevatron measurements to a common QCD calculation

10

SPIN CORRELATIONS IN W-BOSON DECAYS

Change in the full phase-space Ai modifies the fiducial p^{-W/Z} distribution

Overestimate δm_W as measurements tune their p_T^W model to data

To gauge an uncertainty, change evaluated also constraining the p_T^W distribution

IMPACT ON THE (DD) W-BOSON MASS

* δm_W^{QCD} reweighing the D0 Resbos-CP NNLO+NNLL predictions to the newer Resbos2 at NLO+NNLL

		Correction			δm_W^{QC}	D [MeV]		
Nealiaible effect of			$p_{\rm T}^W$ -constrained			No constraint		
Alam	corrocting var and m		p_{T}^ℓ	$m_{ m T}$	p_{T}^{ν}	p_{T}^ℓ	$m_{ m T}$	p_{T}^{ν}
	contecting yw and minv	Invariant mass	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
	Ai-reweighting dominated	Rapidity	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
10 ⁻⁰	$h_{\rm V}$ $\Lambda_{\rm e}$ coofficient	A_0	7.6	10.0	15.8	16.0	12.6	19.5
	Dy A0 COemclent	A_1	-2.4	-1.9	-1.8	-1.2	-1.6	-1.4
	δw about $10 Mo/dononding$	A_2	-3.0	-2.6	2.9	-4.2	-3.0	2.3
	$\sim om_W$ about - 10 lively depending	A_3	2.9	1.6	-0.5	3.5	1.8	-0.2
	on distribution and p_T^W constraint	A_4	2.4	-0.1	-0.5	0.1	-0.7	-1.0
		$A_0 - A_4$	7.6	7.0	16.0	14.1	9.1	18.9
	~2 MeV uncertainty from	Total	7.6	7.0	16.0	14.1	9.1	18.9
	systematics on the emulation	ResBos2	7.3±1.1	8.4±1.0	16.6±1.2	13.9 ± 1.1	10.3 ± 1.0	19.8±
		Non-closure	-0.3±1.1	$1.4{\pm}1.0$	0.6 ± 1.2	-0.2±1.1	$1.2{\pm}1.0$	0.9±1

- Performed a benchmarking of PDF sets against Tevatron and LHC cross-section measurements
 - Considering measurements of W and Z cross-sections from Tevatron and LHC
 - Theory predictions at NNLO QCD x NLO EW

PDF set	Chi2/ndf	PDF set	
Cteq66	231/126	CT18NNLO	
CT10	179/126	CT18ANNLO	
NNPDF31	200/126	MSHT20	
NNPDF40	195/126	ABMP16	

* Modern NNLO PDFs provide the best description, no set gives a χ^2 /ndf~1

×

Decision on the final PDF will consider χ^2 and uncertainty of the combination itself

CHDICE OF PDF SET

CONCLUSIONS

X

- Measurement correlations dominated by PDF uncertainties ×
 - Evaluated through a simplified emulation of the detector response
 - Benchmarking at NNLO QCDxNLO EW shows all modern global PDFs a suitable choice

- Motivates update of Tevatron measurements to $O(\alpha_S^2)$ fixed-order QCD predictions for the Ai Preliminary numbers for D0 show a correction at the level of -10 MeV
- Some issues in the description of W spin correlations in legacy Resbos codes

Studies documented in a public note: CERN-LPCC-2022-06

- Full combination coming ~soon, pending further validation of emulations
- Will include LHCb, with known PDF anti-correlation to ATLAS measurement

Presented studies towards a combination of Tevatron and LHC W-mass measurements

14

BACKUP

RECOIL RESOLUTION TEVATRON/LHC

_	_	_		
1			<u>ا</u> ا	
			-	
			_	
			_	
			-	
			-	
			-	
			-	
			-	1
			-	
		_	_	
			- 11	
			-	1
			-	1
			-	1
			-	1
			-	1
			-	1
			-	
			-	1
			-	1
			-	1
			-	1
			_	1
			-	1
			_	1
			_	1
			_	1
				1
			-	
			_	
			_	
			_	
			_	
			_	
			-	
			-	
_	_	_		1
				0
)			4	υ
			-	
1		0	\ /1	1
	J G	e	V	

RESUMMATION OF ANGULAR COEFFICIENTS - CDF

Ratio of the A₀₋₃ angular coefficients in the legacy CDF Resbos to the Resbos2 samples is broadly consistent with resumming or not the helicity cross-sections

RESUMMATION OF ANGULAR COEFFICIENTS - DO

Ratio of the A₀₋₃ angular coefficients in the legacy D0 Resbos to the Resbos2 samples is broadly consistent with resumming or not the helicity cross-sections

CDF EMULATION

DD EMULATION

DD EMULATION - II

ATLAS EMULATION

A_{\Box} in Z events at the LHC

ſ	
	н
	-4
	-
	-
	⊢
	1
	1
	_
	コ
	_
	4
,	—
	-
	-
	-1
	. 1
-	Ť
-	Ē
	_
	7
	н
	-
	_
	-
00	Ŀ

A_ COMPARISON - DO/CDF Y_W

24

AI COMPARISON - CDF

AI REWEIGHTING FOR CDF/DD

PDF BENCHMARKING - I

Dataset	CT10	cteq6	cteq66
CDF Z rapidity	29 33 / 28	33 29 / 28	31 32/28
CDF W asymmetry	14 22/13	14 21/13	16 18/13
D0 Z rapidity	22 22 / 28	22 22 / 28	22 22 / 28
D0 Wev lepton asymmetry	20 33 / 13	20 22 / 13	22 26 / 13
D0 $W\mu\nu$ lepton asymmetry	11 13 / 10	12 13 / 10	11 12/10
ATLAS peak CC Z rapidity	14 25 / 12	21 214/12	18 29 / 12
ATLAS W^- lepton rapidity	10 25 / 11	21 38/11	14 44 / 11
ATLAS W ⁺ lepton rapidity	11 28 / 11	12 59 / 11	12 59 / 11
Correlated χ^2	52 166	158 513	90 236
Log penalty χ^2	-3.94 -3.94	-7.70 -7.70	-4.37 -4.37
Total χ^2 / dof	179 364 / 126	306 923 / 126	231 472 / 126
χ^2 p-value	0.00	0.00	0.00

PDF BENCHMARKING - II

Dataset	NNPDF31	NNPDF40	MMHT14	MSHT20	CT18NNLO	ABMP16
CDF Z rapidity	24 28/28	28 30/28	30 31 / 28	32 32/28	27 27 / 28	31 31/28
CDF W asymmetry	11 57/13	14 17 / 13	12 13 / 13	28 27/13	11 35/13	21 43 / 13
D0 Z rapidity	22 22 / 28	23 23 / 28	23 23 / 28	24 23/28	22 22/28	22 22/28
D0 Wev lepton asymmetry	22 32/13	23 29 / 13	52 51 / 13	42 40/13	19 32 / 13	26 24/13
D0 $W\mu\nu$ lepton asymmetry	12 14 / 10	12 16 / 10	11 14 / 10	11 13/10	12 13/10	11 12/10
ATLAS peak CC Z rapidity	13 18 / 12	13 17 / 12	58 89 / 12	17 19/12	11 77 / 12	18 32/12
ATLAS W ⁻ lepton rapidity	12 18 / 11	12 15/11	33 33 / 11	16 17/11	9.9 28 / 11	14 17 / 11
ATLAS W ⁺ lepton rapidity	8.9 13/11	8.6 11 / 11	15 21/11	12 13/11	9.4 16/11	10 12/11
Correlated χ^2	76 110	63 83	212 236	91 102	43 251	86 108
Log penalty χ^2	-0.62 -0.62	-0.58 -0.58	-1.62 -1.62	-2.89 -2.89	-1.68 -1.68	-2.72 -2.72
Total χ^2 / dof	200 312 /	195 242 /	445 509 /	270 283 /	163 499 /	236 300 /
	126	126	126	126	126	126
χ^2 p-value	0.00	0.00	0.00	0.00	0.02	0.00

PDF BENCHMARKING - III

Dataset	CT18ANNLO	CT18ZNNLO	CT18XNNLO	CT14nnlo	CT10nnlo	CJ15nlo
CDF Z rapidity	28 29/28	28 29/28	28 27 / 28	29 29/28	29 28 / 28	32 30/28
CDF W asymmetry	12 30 / 13	12 28 / 13	11 33 / 13	12 28/13	16 34/13	21 27 / 13
D0 Z rapidity	22 22 / 28	22 23 / 28	22 22 / 28	22 22 / 28	22 22/28	23 22 / 28
D0 Wev lepton asymmetry	21 33 / 13	21 29 / 13	21 31 / 13	20 32/13	24 69 / 13	39 49 / 13
D0 $W\mu\nu$ lepton asymmetry	11 12 / 10	11 12 / 10	11 13 / 10	11 13/10	11 18/10	17 26/10
ATLAS peak CC Z rapidity	10 19 / 12	9.7 21 / 12	12 71 / 12	13 42 / 12	12 27/12	60 104/12
ATLAS W^- lepton rapidity	10 17 / 11	10 17 / 11	13 27 / 11	11 27/11	10 41/11	23 27 / 11
ATLAS W ⁺ lepton rapidity	8.7 10 / 11	8.1 9.5 / 11	8.9 15/11	9.3 12 / 11	9.6 43 / 11	14 15/11
Correlated χ^2	49 113	43 113	82 230	63 175	58 198	269 314
Log penalty χ^2	-1.69 -1.69	-0.33 -0.33	-1.05 -1.05	-2.04 -2.04	-1.51 -1.51	-5.38 -5.38
Total χ^2 / dof	170 284 /	165 280 /	209 468 /	187 376 /	190 478 /	492 610 /
	126	126	126	126	126	126
χ^2 p-value	0.01	0.01	0.00	0.00	0.00	0.00