

Department of Physics and Astronomy

ICHEP 2022 XLI International Conference on High Energy Physics July 6th -13th Bologna

> Donatella Lucchesi University of Padova and INFN on behalf of LHCb Collaboration

Electroweak Physics in the Forward Region

Electroweak Physics in the 2020s

Global analysis of electroweak data in the Standard Model December 2021 https://arxiv.org/pdf/2112.07274v1.pdf

- Current measurements of EW observables are consistent with the SM predictions.
- CDF W boson mass measurement needs dedicated discussion, see EWK session at 5:00pm
- Precision measurements of EKW observables allow to search for New Physics effects

Dedicated session today's afternoon

Electroweak Physics at LHCb

LCHb detector covers the forward region

Complementary to ATLAS and CMS

LHCb characteristics allow to perform unique observable measurements! At this conference:

- Dark Matter searches (Daniel Johnson)
- Jet fragmentation and QCD measurements (Naomi Cooke)
- Probing Parton Distribution Functions (Menglin Xu)
- W mass measurement (Miguel Ramos Pernas)

EWK Physics in the forward region D. Lucchesi

LHC 13 TeV kinematics

General Purpose Detector in the Forward Region

Excellent tracking:

- momentum resolution $\frac{\delta p}{p} \sim 0.5 - 1\%$ for tracks (5 - 100 GeV/c)
- efficiency > 96%
- IP resolution ~20µm for high p_T tracks

Well suited also for electroweak measurements:

- full rapidity coverage $2 \le \eta \le 4.5$ (ATLAS/CMS $|\eta| \le 2.5$);
- low momentum triggers;
- low pile-up environment.

Disadvantages:

- o low acceptance for high mass objects, low luminosity respect to ATLAS/CMS;
- \circ no missing energy measurement.

July 7, 2022

HCO Z⁰- boson Cross Section arXiv:2112.07458

See Probing Parton Distribution Functions (Menglin Xu)

* Test NNLO QCD and used for constraining *u*- and *d*-quark parton distribution function.

* Data: $2016-2018 \longrightarrow 5.1 \pm 0.1 \text{ fb}^{-1}$

 $\sigma(Z \to \mu^+ \mu^-) = 195.3 \pm 0.2(stat.) \pm 1.5(sys.) \pm 3.9(lumi.)$ pb

Most precise measurement in the forward region @ $\sqrt{s}=13$ TeV

CHCO $Z^0 \rightarrow \mu^+ \mu^-$ Angular Coefficients Measurements

A_i Results in the Z⁰-boson region arXiv:2203.01602

First results of *pp* collisions at $\sqrt{s} = 13$ TeV:

- Data: $2016-2018 \rightarrow 5.1 \text{ fb}^{-1}$
- $y_Z > 2$
- $75 < M_{\mu\mu} < 105 \text{ GeV/c}^2$

Total uncertainty dominated by the statistical component

- A_1 not in agreement with Pythia8.
- Lam-Tung relation, $A_0 = A_2$, violated consistently with CMS and ATLAS results.

 $A_4 \cos \theta$ parity violation term

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

 $\sigma_{F(B)}$: integrated cross section for $\cos \theta > 0$ ($\cos \theta < 0$) related to weak mixing angle, $\sin \theta_W$

Possibility to reach the SLD+LEP precision with HL-LHC [CERN-LHCC-2018-027]

0.3

0.2

0.1

-0.1

-0.2

 ΔA_{4}

EWK Physics in the forward region D. Lucchesi

arXiv:2203.01602

A₂, Boer-Mulders function

- * A_2 is sensitive to transverse momentum dependent (TMD) nucleon parton distribution functions, not experimentally tested yet.
- Boer-Mulders function is T-odd TMD function involves non-perturbative correlation between quark transverse momentum and transverse spin in an unpolarized nucleon.

* None of the predictions include non-perturbative spin-momentum correlations.

Summary and Conclusions

The LHC high statistics data sample is giving the possibility to test electroweak physics sector with a precision that could compete with LEP and SLD. LHCb with its coverage and detector performance is one of the most important players.

The Run III data will allow LHCb to perform high precision measurement of fundamental parameters as $\sin \theta_W$ and m_W

