

Measurements of top quark production cross-sections with the ATLAS detector

Richard Hawkings (CERN)

on behalf of the ATLAS collaboration

ICHEP2022 conference, Bologna, Italy, 7/7/2022

- Inclusive top quark production at LHC
 - Introduction
 - Top-pair measurements at 13 TeV
 - Top-pair measurements at 5.02 TeV
 - Run-1 combination of ATLAS+CMS results
 - Single top: s-channel with full Run-2 dataset

More information: ATLAS <u>TopPublicResults</u>

Introduction – top production at LHC

Top quarks are copiously produced at LHC – some leading-order diagrams

- Top quarks decay t \rightarrow Wb, \rightarrow Ivb or qqb
 - Final states include leptons, missing transverse energy, b-tagged jets and jets
- Top pair-production can be selected with high purity, especially in dilepton
 - But only ~2% produce the 'golden' eµ final state, so I+jets events also useful
- Cross-sections for single top channels are much smaller
 - Rely on final states with leptons $(t \rightarrow l\nu b)$, and need multivariate techniques

Double-tagging in eµ events at 13 TeV

- Count $e^{\pm}\mu^{\mp}$ events with 1 or 2 b-tagged jets
 - Assume top quarks decay independently
 - Fit σ_{tT} and probability ε_{b} to select and b-tag jet:

$$N_1 = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{\text{bkg}}$$
$$N_2 = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_b \epsilon_b^2 + N_2^{\text{bkg}}$$

- ε_{eu} is efficiency to to select the two leptons
- 1/2 b-tag regions 88/96% pure in top-pair events
- Method minimises uncertainties due to top-pair modelling, jets and background
 - Remaining uncertainty dominated by luminosity and top-pair modelling (eµ acceptance)

 $826.4 \pm 3.6 \pm 11.5 \pm 15.7 \pm 1.9 \text{ pb}$ $\sigma_{t\bar{t}} =$

Precise result also used to measure m_t^{pole} and constrain PDFs via ratios $\sigma_{\rm tt}/\sigma_7$

	9
Category	Uncertainty (%)
Statistics	0.4
Top-pair modelling	1.0
Leptons	0.6
Jets / b-tagging	0.2
Backgrounds	0.8
Luminosity/beam energy	1.9
Total	2.4
	0

U

 $\mathbf{0}$

C Ň

 $\mathbf{0}$

- Lepton+jets channel uses events with one lepton, at least 4 jets and E_T^{miss}
 - Almost 7M selected events, but lower toppair purity than in dilepton selection
- Select 3 signal regions:
 - SR1: ≥4 jets, 1 b-tagged jet
 - SR2: 4 jets, 2 b-tagged jets
 - SR3: ≥5 jets, 2 b-tagged jets
- Fit to a different discriminating variable in each region, e.g. m_{lj}^{min} in SR2
 - Profile likelihood to constrain physics, detector modelling and background systs.

 $\sigma_{\rm inc} = 830 \pm 0.4 \text{ (stat.)} \pm 36 \text{ (syst.)} \pm 14 \text{ (lumi.) pb}$

- Uncertainties dominated by top modelling and jet energy scale – heavy use of jets
 - 4.6% uncertainty; factor 2 larger than $e\mu$

	SR1	SR2	SR3
<i>ī</i> V+jets Single top Z+jets & diboson <i>ī X</i> Multijet Fotal prediction	$\begin{array}{c} 3\ 630\ 000\ \pm\ 210\ 000\\ 350\ 000\ \pm\ 160\ 000\\ 255\ 000\ \pm\ 31\ 000\\ 80\ 000\ \pm\ 40\ 000\\ 15\ 600\ \pm\ 2100\\ 210\ 000\ \pm\ 80\ 000\\ \end{array}$	$\begin{array}{c} 990\ 000\ \pm\ 90\ 000\\ 24\ 000\ \pm\ 10\ 000\\ 52\ 000\ \pm\ 7000\\ 8000\ \pm\ 4000\\ 2110\ \pm\ 290\\ 28\ 000\ \pm\ 10\ 000\\ \hline \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Data	4 540 886	1 100 558	1 103 317
S/B (%):	80	89	92
A 10 ³ 200 A 1 180 VS 180 VS 160 Po 140 120 100 80 40 20 40 20 0	7LAS ← = 13 TeV, 139 fb ⁻¹ 12 st-Fit	Data [] tī Single top W+jets Other bkg. /// Uncertai	PLB 810 (2020) 13579
Data / Da		100 120 1 m ^{min} [G	40 eV] 4

Dilepton events at 5.02 TeV

- ATLAS recorded 257 pb⁻¹ at $\sqrt{s}=5.02$ TeV in 2017
 - σ_{tt} ~12x smaller than at 13 TeV, but qqbar fraction increased from 11% to 25%, and average x larger
 - Opportunity for complementary PDF constraints
- Small data sample, dilepton channel stat. limited
 - Increase lepton acceptance (p_T>18 GeV)
 - Use 85% efficient b-tagging WP (70% @ 13 TeV)
- Use ee / $\mu\mu$ channels in addition to $e\mu$
 - Dominant Z \rightarrow ee/ $\mu\mu$ b/g, require E_T^{miss}>30 GeV
 - Fit m_{II} distribution to determine N₁, N₂ vs. m_{II}
 - 1/2 b-tag samples 60/94% pure tt for |m_{II}-m_Z|>10 GeV 10⁻¹
 - c.f. 80/96% in eµ channel

 $\sigma_{t\bar{t}} = 65.7 \pm 4.5 \,(\text{stat.}) \pm 1.6 \,(\text{syst.}) \pm 1.2 \,(\text{lumi.}) \pm 0.2 \,(\text{beam}) \,\text{pb}$

- Total uncertainty of 7.5%; 6.8% stat, 2.4% syst
 - eµ channel alone has total uncertainty of 8.4%

Lepton+jets events at 5.02 TeV

Events / bi

250

200

150

100

50

0.7 0.5

120

100

80

60

40

20

0.75

-0.8 -0.6 -0.4 -0.2 0

ATLAS

Select events with 1 lepton, ≥ 2 jets and ≥ 1 b-tag

Together with cuts on E_{T}^{miss} and m_{T}^{W}

6 subsamples with different n_{iet} , n_{b-tag} to constrain backgrounds in profile likelihood fit:

	$\ell+2j\geq\!\!1b$	$\ell + 3j 1b$	$\ell + 3j \ 2b$	$\ell + \geq 4j \ 1b$	$\ell + 4j \ 2b$	$\ell + {\geq} 5j \ 2b$	_
$t\overline{t}$	194 ± 27	310 ± 33	199 ± 24	690 ± 60	318 ± 32	380 ± 60	-
Single top	195 ± 22	98 ± 12	38 ± 5	67 ± 9	22 ± 4	15.9 ± 2.7	
W+jets	1700 ± 400	690 ± 210	58 ± 23	350 ± 120	30 ± 14	19 ± 10	red.
Other bkg.	110 ± 40	55 ± 23	7.2 ± 3.0	29 ± 12	3.5 ± 1.5	3.7 ± 1.7	A/P
Misidentified leptons	250 ± 130	110 ± 60	10 ± 5	60 ± 30	6 ± 3	8 ± 5	Data
Total	2500 ± 400	1260 ± 210	312 ± 34	1200 ± 160	380 ± 40	430 ± 70	_
Data	2411	1214	293	1135	375	444	/ bin
S/B (%):	8	25	64	58	84	89	Events

Fit to output of BDTs based on kinematic info in each of the six regions

 $\sigma_{t\bar{t}} = 68.2 \pm 0.9 \,(\text{stat.}) \pm 2.9 \,(\text{syst.}) \pm 1.1 \,(\text{lumi.}) \pm 0.2 \,(\text{beam}) \,\text{pb}$

- Total uncertainty 4.5%, syst. dominated (W+jets)
 - Slightly smaller uncertainty than the 13 TeV result !
 - Much less radiation at 5 TeV smaller top modelling a uncertainties

7th July 2022

0.6

0.8 BDT output

6

0.2 0.4

♦ Data 2017 □ tī

- Impressive agreement of measurements with predictions from 5-13 TeV

- Legacy eµ results from ATLAS+CMS at \sqrt{s} =7, 8 TeV have been combined
 - ATLAS measurements used simple tag-counting
 - CMS used profile likelihood fit inducing post-fit correlations between systematics
- Combination of all data at 7+8 TeV using χ^2 minimisation with <u>Convino</u> tool
 - Careful accounting of correlations between experiments and beam energies
- Total uncertainties:

Uncert. (%)	$\sigma_{ m tt}$ (7 Tev)	$\sigma_{\rm tt}$ (8 Tev)
ATLAS	3.5	3.2
CMS	+3.6 -3.5	+3.7 -3.5
Comb ⁿ	+2.7 -2.6	+2.5 -2.4

• 25/28% better c.f. most precise input

$$\sigma_{t\bar{t}} (\sqrt{s} = 7 \text{ TeV}) = 178.5 \pm 4.7 \text{ pb}$$

 $\sigma_{t\bar{t}} (\sqrt{s} = 8 \text{ TeV}) = 243.3^{+6.0}_{-5.9} \text{ pb},$

Results compatible with recent PDFs¹⁵⁰¹⁶⁰ 160

arXiv:2205.13830

- Measured $\sigma_{\rm tt}$ can be used to extract pole mass $m_{\rm t}^{\rm pole}$, assuming a value of $\alpha_{\rm S}$
 - Or vice versa assume m_t^{pole} and extract α_s
 - σ_{tt} results depend on assumed MC mass as acceptance/kinematics depend on m_t
 - Have to assume m_t^{pole} and m_t^{MC} are equal within a few GeV

- Simultaneous χ^2 fits to 7+8 TeV $\sigma_{
 m tt}$
 - Precision of ~2 GeV on m_t^{pole}, limited by PDF and scale uncertainties on predⁿ
 - Most precise $\alpha_{\rm S}$ extraction from top events

s-channel single top production at 13 TeV

- Most difficult single-top channel at LHC predicted $\sigma_s=10.3\pm0.4 \text{ pb}$ $\overline{q'}$
 - Select events with lepton + 2 jets, both b-tagged
 - E_T^{miss}>35 GeV and m_T^W>30 GeV, veto 2nd lepton
 - 130k events selected, 3% s-chan, 60% top-pair
- Matrix-element based likelihoods for signal/bkg
 - Convolution of diff. x-sec and transfer function, based on reconstructed event kinematics X

$$\mathcal{P}(X \mid H_{\text{proc}}) = \int d\Phi \frac{1}{\sigma_{H_{\text{proc}}}} \frac{d\sigma_{H_{\text{proc}}}}{d\Phi} T_{H_{\text{proc}}}(X \mid \Phi)$$

Compute per-event signal probability P(S|X)

 Modelling checked in validation regions for W+jets (looser b-tag) and top-pair (3 or 4 jets)
 7th July 2022 Richard Hawkings

S-CONF-2022-030

- Fit to P(S|X) distribution in SR constrains main backgrounds, extracts signal
 - Normalisation factors for top-pair 0.81^{+0.13}-0.12 and W+jets 1.37^{+0.35}-0.31
 - s-channel cross-section measured to be σ_s =8.2 ± 0.6 (stat) ^{+3.4}_{-2.8} (syst) pb
 - Largest uncertainties from top-pair normalisation and jet energy scale
 - S/B around 10% in highest-purity bins
- Observed significance 3.3σ compared with expectation of 3.9σ
 - Compared to obs. 3.2 σ / expected 3.9 σ at 8 TeV where S/B is more favourable

13 TeV t-channel and Wt measurements still based on 3.2 fb⁻¹ from 2015

Including √s dependence

- Inclusive top-pair cross-section measurements reaching maturity at Run-2
 - Precise measurements in $e\mu$ (2.4%) and lepton+jets (4.6%) channels at 13 TeV
 - Now joined by competitive measurements at 5.02 TeV, complementing earlier Run-1 measurements at 7 and 8 TeV, where ATLAS+CMS have been combined
 - All measurements in good agreement with QCD NLLO+NLLL predictions, over >1 order of magnitude
 - Can extract m_t^{pole} or α_s , or constrain PDFs
 - Measurements more precise than theory need even higher-order calculations?
- Single top measurements more difficult due to large backgrounds
 - s-channel measurements reached 3σ significance at 13 and 8 TeV
 - Full Run2 t-channel and Wt results still to come
- A wealth of differential measurements also available ...
 - See <u>Friday talk</u> from Christopher Garner
- More details at <u>TopPublicResults</u>

Backup slides

Beyond inclusive cross-sections ...

- Large data samples \rightarrow differential cross-sections
 - Compare to predictions of MC generators and fixedorder QCD calculations
 - E.g. in eµ channel, precise measurements of final state lepton kinematics
 - Baseline Powheg+Pythia8 predicts harder lepton p_T spectrum than seen in data

- In lepton+jets channel, fully reconstruct top-pair
 - Unfold to 'parton-level' top quarks
 - Many measurements of 1D and 2D distributions
 - E.g. 1D top-quark p_T well described by Powheg+Pythia8 and NNLO fixed order
 - Efforts now focusing on 'boosted' regime with high p_T collimated top quark decays
- See <u>Friday talk</u> from Christopher Garner Richard Hawkings

13 TeV dilepton uncertainty breakdown for $\sigma_{\rm tT}$

_	Lineartaintian for		Uncertainty source	$\Delta \epsilon_{e\mu} / \epsilon_{e\mu}$	$\Delta G_{e\mu}/G_{e\mu}$	$\Delta C_b/C_b$	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$	$\Delta \sigma_{t\bar{t}}^{\rm fid} / \sigma_{t\bar{t}}^{\rm fid}$
-	Uncertainties for			(%)	(%)	(%)	(%)	(%)
			Data statistics				0.44	0.44
	• Efficiency ε_{eu} , reconstruction	$t\bar{t}$ mod.	<i>tt</i> generator	0.38	0.05	0.05	0.43	0.10
	officionav G for fiducial C		<i>tt</i> hadronisation	0.24	0.42	0.25	0.49	0.67
	Efficiency $G_{e\mu}$ for nuclear, C_b		Initial/final-state radiation	0.30	0.26	0.16	0.45	0.41
	- Inclusive and fiducial grass		<i>tt</i> heavy-flavour production	0.01	0.01	0.26	0.26	0.26
	Inclusive and inductal closs-		Parton distribution functions	0.44	0.05	-	0.45	0.07
	sections	T	Simulation statistics	0.22	0.15	0.17	0.22	0.18
	36010113	Lept.	Electron energy scale	0.06	0.06	-	0.06	0.06
_	Catagoriaa		Electron energy resolution	0.01	0.01	-	0.01	0.01
	Calegones.		Electron identification	0.34	0.34	-	0.57	0.37
	(T)		Electron charge mis-id	0.09	0.09	-	0.10	0.10
	ti modelling		Much momentum seels	0.22	0.22	-	0.24	0.24
			Muon momentum resolution	0.03	0.03	-	0.03	0.03
	Leptons – efficiency, energy		Muon identification	0.01	0.28	-	0.01	0.30
	apple/resolution isolation		Muon isolation	0.20	0.26	_	0.50	0.18
	scale/resolution, isolation		Lepton trigger	0.13	0.13	-	0.14	0.14
		.Iet/b	Jet energy scale	0.02	0.02	0.06	0.03	0.03
	Jets and b-tagging		Jet energy resolution	0.01	0.01	0.04	0.01	0.01
	Dealanasada		Pileup jet veto	-	_	-	0.02	0.02
	Backgrounds		<i>b</i> -tagging efficiency	-	-	0.04	0.20	0.20
			<i>b</i> -tag mistagging	-	-	0.06	0.06	0.06
	Luminosity and E _{beam}	Bkg.	Single-top cross-section	-	-	-	0.52	0.52
	• boarn	-	Single-top/ $t\bar{t}$ interference	-	-	-	0.15	0.15
			Single-top modelling	-	-	-	0.34	0.34
			Z+jets extrapolation	-	-	-	0.09	0.09
			Diboson cross-sections	-	-	-	0.02	0.02
			Diboson modelling	-	-	-	0.03	0.03
			Misidentified leptons	-	-	-	0.43	0.43
			Analysis systematics	0.91	0.75	0.44	1.39	1.31
		$L/E_{\rm b}$	Integrated luminosity	-	-	-	1.90	1.90
			Beam energy	-	-	-	0.23	0.23
			Total uncertainty	0.91	0.75	0.44	2.40	2.36
7t	h Julv 2022	Richard Ha	wkinas				-	16

13 TeV lepton+jets uncertainties and pulls

Category	$rac{\Delta \sigma_{ ext{fid}}}{\sigma_{ ext{fid}}}$ [%]	$\frac{\Delta\sigma_{\rm inc}}{\sigma_{\rm inc}}$ [%]	Pro fit impost on a / a ^{pred}	۸۵ / م ^{pred}
Signal mo	delling		$\theta = \hat{\theta} + \Delta \theta \qquad \theta = \hat{\theta} - \Delta \theta$	-0.04 - 0.02 0 0.02 0.04
$t\bar{t}$ shower/hadronisation $t\bar{t}$ scale variationsTop $p_{\rm T}$ NNLO reweighting $t\bar{t}$ $h_{\rm damp}$ $t\bar{t}$ PDFBackground modellingMultijet background	± 2.8 ± 1.4 ± 0.4 ± 1.5 ± 1.4 modelling ± 1.8 ± 0.8	$\pm 2.9 \\ \pm 2.0 \\ \pm 1.1 \\ \pm 1.4 \\ \pm 1.5 \\ \pm 2.0 \\ \pm 0.6 \\ \pm 0.$	Post-fit impact on $\sigma_{inc}/\sigma_{inc}^{pred}$ $\theta = \hat{\theta} + \Delta \hat{\theta}$ $\theta = \hat{\theta} - \Delta \hat{\theta}$ - Nuis. Param. Pull Shower model incl. acceptance Luminosity Shower migration parameter	ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$
Detector m	odelling		FSR model SR1 Top p __ NNLO reweighting	
Jet reconstruction Luminosity Flavour tagging $E_{\rm T}^{\rm miss}$ + pile-up Muon reconstruction Electron reconstruction Simulation stat. uncertainty	± 2.5 ± 1.7 ± 1.2 ± 0.3 ± 0.6 ± 0.7 ± 0.6	± 2.6 ± 1.7 ± 1.3 ± 0.3 ± 0.5 ± 0.6 ± 0.7	JES (pile-up subtraction) JVT tt̄ h _{damp} PDF4LHC NP4 Shower model shape SR2	
Total systematic uncertainty Data statistical uncertainty Total uncertainty	$\pm 4.3 \pm 0.05 \pm 4.3$	$ \pm 4.6 \\ \pm 0.05 \\ \pm 4.6 $	_	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

7th July 2022

5.02 TeV uncertainties and PDF comparison

Category	$\delta\sigma_{t\bar{t}}$ [%]			
	Dilepton	Single lepton	Combination	
$t\bar{t}$ generator [†]	1.2	1.0	0.8	
$t\bar{t}$ parton-shower/hadronisation ^{*,†}	0.3	0.9	0.7	
$t\bar{t} h_{\rm damp}$ and scale variations [†]	1.0	1.1	0.8	
$t\bar{t}$ parton-distribution functions [†]	0.2	0.2	0.2	
Single-top background	1.1	0.8	0.6	
W/Z+jets background*	0.8	2.4	1.8	
Diboson background	0.3	0.1	< 0.1	
Misidentified leptons [*]	0.7	0.3	0.3	
Electron identification/isolation	0.8	1.2	0.8	
Electron energy scale/resolution	0.1	0.1	< 0.1	
Muon identification/isolation	0.6	0.2	0.3	
Muon momentum scale/resolution	0.1	0.1	0.1	
Lepton-trigger efficiency	0.2	0.9	0.7	
Jet-energy scale/resolution	0.1	1.1	0.8	
$\sqrt{s} = 5.02 \mathrm{TeV}$ JES correction	0.1	0.6	0.5	
Jet-vertex tagging	< 0.1	0.2	0.2	
Flavour tagging	0.1	1.1	0.8	
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.1	0.4	0.3	
Simulation statistical uncertainty $\!\!\!\!*$	0.2	0.6	0.5	
Data statistical uncertainty [*]	6.8	1.3	1.3	
Total systematic uncertainty	3.1	4.2	3.7	
Integrated luminosity	1.8	1.6	1.6	
Beam energy	0.3	0.3	0.3	
Total uncertainty	7.5	4.5	3.9	

7th July 2022

13 TeV s-channel uncertainty breakdown

Source	$\Delta \sigma / \sigma$ [%]
$t\bar{t}$ normalisation	+24/-17
Jet energy resolution	+18/-12
Jet energy scale	+18/-13
Other s-channel modelling sources	+18/-8
Top-quark processes ISR/FSR	+13/-11
MC statistics	+13/-11
Other $t\bar{t}$ shape modelling sources	+12/-10
Flavour tagging	+12/-10
W+jets normalisation	+11/-8
Top-quark processes PDFs	+10/-9
W+jets $\mu_{\rm R}/\mu_{\rm F}$ shape	+6/-5
Other processes normalisation	+6/-5
Pileup	+5/-3
Other t-channel modelling sources	± 5
Luminosity	+4/-3
Other tW modelling sources	+1/-2
Missing transverse energy	± 1
Multijet shape modelling	± 1
Other sources	< 1
Systematic uncertainties	+42/-34
Data statistics	±8
Total	+42/-35

7th July 2022

19