

Measurement of top-quark properties with the ATLAS detector at the LHC

Nello Bruscino - Sapienza Università di Roma & INFN Roma 1 on behalf of the ATLAS Collaboration

Up Charm Top Down Strange Botom

Top quark physics

Why top quarks?

- heaviest known particle, only "bare" quark
- high statistics allows precision tests and search for new physics (Effective Field Theory frameworks)

Copious production at the LHC (top-factory):

⁻ ≈140/fb @13TeV collected in Run 2 by ATLAS...

$$\frac{dN}{dt} = \mathscr{L} \cdot \sigma_{t\bar{t}},$$
$$\sigma_{t\bar{t}} \approx 830 \,\text{pb}, \implies$$
$$\mathscr{L} \approx 15 \cdot 10^{33} \,\text{cm}^2 \,\text{s}^{-1}$$

Top recent results* (24) * released since ICHEP 2020

Shon	Journal Reference 🔶	Date	¢	√s (TeV)	¢	L (
Inclusive Top cross section at 5 TeV NEW	Submitted to JHEP	2022-07-04		5		260 pb ⁻¹
Run 1 ATLAS+CMS combined ttbar xsec	Submitted to JHEP	2022-05-27		7, 8		20 fb ⁻¹ , 5 fb ⁻¹
Differential cross-section measurement for boosted all-hadronic ttbar	Submitted to JHEP	2022-05-05		13		139 fb ⁻¹
Search for flavor-changing neutral-current couplings between the top-quark and the photon with the ATLAS detector	Submitted to PLB	2022-05-05		13		139 fb ⁻¹
b fragmentation in ttbar events at 13 TeV	Submitted to PRD	2022-02-28		13		36 fb ⁻¹
Boosted differential ttbar cross section in the I+jets channel	JHEP 06 (2022) 063	2022-02-24		13		139 fb ⁻¹
13 TeV Single-top-quark polarization and EFT limits	Submitted to JHEP	2022-02-23		13		139 fb ⁻¹
Global PDF fit	Eur. Phys. J. C 82 (2022) 438	2021-12-21		13, 7, 8	20	fb ⁻¹ , 36 fb ⁻¹ , 5 fb ⁻¹
Search for tqg FCNC in single top at 13 TeV	Eur. Phys. J. C 82 (2022) 334	2021-12-02		13		139 fb ⁻¹
Measurement of the top-antitop energy asymmetry	Eur. Phys. J. C 82 (2022) 374	2021-10-11		13		139 fb ⁻¹
4-top xsec measurement	JHEP 11 (2021) 118	2021-06-22		13		139 fb ⁻¹
Measurement of ttZ cross sections in Run 2	Eur. Phys. J. C 81 (2021) 737	2021-03-23		13		139 fb ⁻¹

Short Title	Document number 🛛 🔶	Date	¢	√s (TeV)	L
ttgamma charge asymmetry	ATLAS-CONF-2022-049	2022-07-03		13	139 fb ⁻¹
Measurement of the s-channel single top cross-section at 13 TeV	ATLAS-CONF-2022-030	2022-05-14		13	139 fb ⁻¹
Search for flavor-changing neutral-current couplings between the top-quark and the Higgs boson in the H to tau tau decay channel with the ATLAS detector	ATLAS-CONF-2022-014	2022-03-22		13	139 fb ⁻¹
Observation of the tgamma production	ATLAS-CONF-2022-013	2022-03-15		13	140 fb ⁻¹
Search for ttH/A→4-top production in multilepton final states	ATLAS-CONF-2022-008	2022-03-11		13	139 fb ⁻¹
Search for flavour-changing neutral-current couplings between the top-quark and the Z boson with the ATLAS detector	ATLAS-CONF-2021-049	2021-09-14		13	139 fb ⁻¹
ttbar cross section with dileptons at sqrt(s) = 5.02 TeV	ATLAS-CONF-2021-003	2021-03-06		5	260 pb ⁻¹

Short Title	Document number	Date	√s (TeV)
Snowmass ATLAS-CMS white paper	ATL-PHYS-PUB-2022-018	2022-03-15	14
HL-LHC Standard Model four-top-quark production Studies	ATL-PHYS-PUB-2022-004	2022-02-10	13
Powheg-bb4l validation	ATL-PHYS-PUB-2021-042	2021-12-01	13
"Relating the top-quark mass parameter in Monte Carlo generators to a short-distance mass scheme"	ATL-PHYS-PUB-2021-034	2021-07-27	13
ATLAS and CMS Common ttbar MC sample	ATL-PHYS-PUB-2021-016	2021-05-19	13

More public results <u>here</u>

released since ICHEP 2020

Shor	Journal Reference 4	Date	♦ √s (TeV)	¢	L
Inclusive Top cross section at 5 TeV NEW	Submitted to JHEP	2022-07-04	5		260 pb ⁻¹
Run 1 ATLAS+CMS combined ttbar xsec	Submitted to JHEP	2022-05-27	7, 8	20	fb ⁻¹ , 5 fb ⁻¹
Differential cross-section measurement for boosted all-hadronic ttbar	Submitted to JHEP	2022-05-05	13		139 fb ⁻¹
Search for flavor-changing neutral-current couplings between the top-quark and the photon with the ATLAS detector	Submitted to PLB	2022-05-05	13		139 fb ⁻¹
b fragmentation in ttbar events at 13 TeV	Submitted to PRD	2022-02-28	13		36 fb ⁻¹
Boosted differential ttbar cross section in the I+jets channel	JHEP 06 (2022) 063	2022-02-24	13		139 fb ⁻¹
13 TeV Single-top-quark polarization and EFT limits	Submitted to JHEP	2022-02-23	13		139 fb ⁻¹
Global PDF fit	Eur. Phys. J. C 82 (2022) 438	2021-12-21	13, 7, 8	20 fb ⁻¹	, 36 fb ⁻¹ , 5 fb ⁻¹
Search for tqg FCNC in single top at 13 TeV	Eur. Phys. J. C 82 (2022) 334	2021-12-02	13		139 fb ⁻¹
Measurement of the top-antitop energy asymmetry	Eur. Phys. J. C 82 (2022) 374	2021-10-11	13		139 fb ⁻¹
4-top xsec measurement	JHEP 11 (2021) 118	2021-06-22	13		139 fb ⁻¹
Measurement of ttZ cross sections in Run 2	Eur. Phys. J. C 81 (2021) 737	2021-03-23	13		139 fb ⁻¹
Short Title	⇔ Docu	ment number 🔶	Date 🗍	√s (T	eV) ≑
ttgamma charge asymmetry	ATLAS-0	CONF-2022-049	2022-07-03	13	
Measurement of the s-channel single top cross-section at 13 TeV	ATLAS-0	CONF-2022-030	2022-05-14	13	

Talk: *boosted tt̃ x-section* Christopher Garner

> Talk: <u>*tt̃ x-section*</u> Richard Hawkings

Measurement of the s-channel single top cross-section at 13 TeV		ATLAS-CONF-2022	-030	2022-05-14		13	139 fb ⁻¹
Search for flavor-changing neutral-current couplings between the top-quark and the Higgs boson in the H to the ATLAS detector	o tau tau decay channel with	ATLAS-CONF-2022	-014	2022-03-22		13	139 fb ⁻¹
Observation of the tgamma production		ATLAS-CONF-2022	-013	2022-03-15		13	140 fb ⁻¹
Search for ttH/A \rightarrow 4-top production in multilepton final states		ATLAS-CONF-2022	-008	2022-03-11		13	139 fb ⁻¹
Search for flavour-changing neutral-current couplings between the top-quark and the Z boson with the ATLA	AS detector	ATLAS-CONF-2021	-049	2021-09-14		13	139 fb ⁻¹
ttbar cross section with dileptons at sqrt(s) = 5.02 TeV		ATLAS-CONF-2021	-003	2021-03-06		5	260 pb ⁻¹
Short Title	Document number	۵	Date	۵	√s (TeV)		
Snowmass ATLAS-CMS white paper	ATL-PHYS-PUB-2022-018		2022-03-15		14		Тор х
HL-LHC Standard Model four-top-quark production Studies	ATL-PHYS-PUB-2022-004		2022-02-10		13		

ATL-PHYS-PUB-2021-042

ATL-PHYS-PUB-2021-034

ATL-PHYS-PUB-2021-016

2021-12-01

2021-07-27

2021-05-19

13

13

13

Top x-section

More public results here

[N. Bruscino | Top properties in ATLAS | ICHEP 2022 | 08-Jul-2022]

"Relating the top-quark mass parameter in Monte Carlo generators to a short-distance mass scheme

Powheg-bb4l validation

ATLAS and CMS Common ttbar MC sample

released since ICHEP 2020

Short	+ Journal Re	ference 🔶	Date	¢	√s (TeV)	¢	L	\$
Inclusive Top cross section at 5 TeV NEW	Submitted to	JHEP	2022-07-04		5	2	60 pb ⁻¹	
Run 1 ATLAS+CMS combined ttbar xsec	Submitted to	JHEP	2022-05-27		7, 8	20 f	b ⁻¹ , 5 fb ⁻¹	
Differential cross-section measurement for boosted all-hadronic ttbar	Submitted to	JHEP	2022-05-05		13	1	39 fb ⁻¹	
Search for flavor-changing neutral-current couplings between the top-quark and the photon with the ATLAS detecto	or Submitted to	PLB	2022-05-05		13	1	39 fb ⁻¹	
b fragmentation in ttbar events at 13 TeV	Submitted to	PRD	2022-02-28		13	:	36 fb ⁻¹	
Boosted differential ttbar cross section in the I+jets channel	JHEP 06 (202	22) 063	2022-02-24		13	1	39 fb ⁻¹	
13 TeV Single-top-quark polarization and EFT limits	Submitted to	JHEP	2022-02-23		13	1	39 fb ⁻¹	
Global PDF fit	Eur. Phys. J. (2022) 438	<u>C 82</u>	2021-12-21		13, 7, 8	20 fb ⁻¹ ,	36 fb ⁻¹ , 5 fb ⁻	1
Search for tqg FCNC in single top at 13 TeV	Eur. Phys. J. (2022) 334	<u>C 82</u>	2021-12-02		13	1	39 fb ⁻¹	
Measurement of the top-antitop energy asymmetry	Eur. Phys. J. (2022) 374	C 82	2021-10-11		13	1	39 fb ⁻¹	
4-top xsec measurement	JHEP 11 (202	21) 118	2021-06-22		13	1	39 fb ⁻¹	
Measurement of ttZ cross sections in Run 2	Eur. Phys. J. (2021) 737	C 81	2021-03-23		13	1	39 fb ⁻¹	
Short Title	\$;	Document num	ber 🔶	Date	¢	√s (Te	√) ≑	
ttgamma charge asymmetry		ATLAS-CONF-202	22-049	2022-07-	03	13		1;
Measurement of the s-channel single top cross-section at 13 TeV		ATLAS-CONF-202	22-030	2022-05-	14	13		1:
Search for flavor-changing neutral-current couplings between the top-quark and the Higgs boson in the H to tau tau decay the ATLAS detector	channel with	ATLAS-CONF-202	22-014	2022-03-	22	13		13
Observation of the tgamma production		ATLAS-CONF-202	22-013	2022-03-	15	13		14
Search for ttH/A→4-top production in multilepton final states		ATLAS-CONF-202	22-008	2022-03-	11	13		13
Search for flavour-changing neutral-current couplings between the top-quark and the Z boson with the ATLAS detector		ATLAS-CONF-202	21-049	2021-09-	14	13		13
ttbar cross section with dileptons at sqrt(s) = 5.02 TeV		ATLAS-CONF-202	21-003	2021-03-	06	5		26

Short Title	Document number	Date	√s (TeV)
Snowmass ATLAS-CMS white paper	ATL-PHYS-PUB-2022-018	2022-03-15	14
HL-LHC Standard Model four-top-quark production Studies	ATL-PHYS-PUB-2022-004	2022-02-10	13
Powheg-bb4l validation	ATL-PHYS-PUB-2021-042	2021-12-01	13
"Relating the top-quark mass parameter in Monte Carlo generators to a short-distance mass scheme"	ATL-PHYS-PUB-2021-034	2021-07-27	13
ATLAS and CMS Common ttbar MC sample	ATL-PHYS-PUB-2021-016	2021-05-19	13

Talk: *boosted tt̃ x-section* Christopher Garner

> Talk: <u>*tt̃ x-section*</u> Richard Hawkings

Talk: *FCNC t+X* Mingming Xia

Talk: <u>Observation of t+X</u> Steffen Korn

Top x-section

Top + X

More public results here

released since ICHEP 2020

Shor	⇒ Journal R	eference 🔶	Date	\$	√s (TeV)	\$	L	\$
Inclusive Top cross section at 5 TeV NEW	Submitted to	JHEP	2022-07-04		5	2	60 pb ⁻¹	
Run 1 ATLAS+CMS combined ttbar xsec	Submitted to	JHEP	2022-05-27		7, 8	20 f	b ⁻¹ , 5 fb ⁻¹	
Differential cross-section measurement for boosted all-hadronic ttbar	Submitted to	JHEP	2022-05-05		13	1	39 fb ⁻¹	
Search for flavor-changing neutral-current couplings between the top-quark and the photon with the ATLAS detecto	or Submitted to	PLB	2022-05-05		13	1	39 fb ⁻¹	
b fragmentation in ttbar events at 13 TeV	Submitted to	PRD	2022-02-28		13	:	86 fb ⁻¹	
Boosted differential ttbar cross section in the I+jets channel	JHEP 06 (20	22) 063	2022-02-24		13	1	39 fb ⁻¹	
13 TeV Single-top-quark polarization and EFT limits	Submitted to	JHEP	2022-02-23		13	1	39 fb ⁻¹	
Global PDF fit	Eur. Phys. J. (2022) 438	<u>C 82</u>	2021-12-21		13, 7, 8	20 fb ⁻¹ ,	36 fb ⁻¹ , 5 fb	-1
Search for tqg FCNC in single top at 13 TeV	Eur. Phys. J. (2022) 334	C 82	2021-12-02		13	1	39 fb ⁻¹	
Measurement of the top-antitop energy asymmetry	Eur. Phys. J. (2022) 374	C 82	2021-10-11		13	1	39 fb ⁻¹	
4-top xsec measurement	JHEP 11 (20	21) 118	2021-06-22		13	1	39 fb ⁻¹	
Measurement of ttZ cross sections in Run 2	Eur. Phys. J. (2021) 737	C 81	2021-03-23		13	1	39 fb ⁻¹	
Short Title	\$;	Document	number 🝦	Date	¢	√s (Te'	/) 🔶	
ttgamma charge asymmetry		ATLAS-CONF	-2022-049	2022-07-0	13	13		1:
Measurement of the s-channel single top cross-section at 13 TeV		ATLAS-CONF	-2022-030	2022-05-1	4	13		1
Search for flavor-changing neutral-current couplings between the top-quark and the Higgs boson in the H to tau tau decay the ATLAS detector	channel with	ATLAS-CONF	-2022-014	2022-03-2	2	13		1:
Observation of the tgamma production		ATLAS-CONF	-2022-013	2022-03-1	5	13		1
Search for ttH/A→4-top production in multilepton final states		ATLAS-CONF	-2022-008	2022-03-1	1	13		1:
Search for flavour-changing neutral-current couplings between the top-quark and the Z boson with the ATLAS detector		ATLAS-CONF	-2021-049	2021-09-1	4	13		1:
ttbar cross section with dileptons at sqrt(s) = 5.02 TeV		ATLAS-CONF	-2021-003	2021-03-0	16	5		26

Short Title	Document number	Date	√s (TeV)
Snowmass ATLAS-CMS white paper	ATL-PHYS-PUB-2022-018	2022-03-15	14
HL-LHC Standard Model four-top-quark production Studies	ATL-PHYS-PUB-2022-004	2022-02-10	13
Powheg-bb4I validation	ATL-PHYS-PUB-2021-042	2021-12-01	13
"Relating the top-quark mass parameter in Monte Carlo generators to a short-distance mass scheme"	ATL-PHYS-PUB-2021-034	2021-07-27	13
ATLAS and CMS Common ttbar MC sample	ATL-PHYS-PUB-2021-016	2021-05-19	13

ATLA

Talk: *boosted tt̃ x-section* Christopher Garner

> Talk: <u>*tt̃ x-section*</u> Richard Hawkings

Talk: <u>FCNC t+X</u> Mingming Xia

Talk: Observation of t+X Steffen Korn

Talk: *Top-quark mass* Davide Melini

More public results here

released since ICHEP 2020

Shor	⊧ Journal Re	ference 🔶	Date	¢	√s (TeV)	¢	L \$	
Inclusive Top cross section at 5 TeV NEW	Submitted to	JHEP	2022-07-04		5	260) pb ⁻¹	
Run 1 ATLAS+CMS combined ttbar xsec	Submitted to	JHEP	2022-05-27		7, 8	20 fb ⁻	⁻¹ , 5 fb ⁻¹	
Differential cross-section measurement for boosted all-hadronic ttbar	Submitted to	JHEP	2022-05-05		13	139	9 fb ⁻¹	
Search for flavor-changing neutral-current couplings between the top-quark and the photon with the	e ATLAS detector Submitted to	PLB	2022-05-05		13	139	9 fb ⁻¹	
b fragmentation in ttbar events at 13 TeV	Submitted to	PRD	2022-02-28		13	36	fb ⁻¹	
Boosted differential ttbar cross section in the I+jets channel	JHEP 06 (202	22) 063	2022-02-24		13	13	9 fb ⁻¹	
13 TeV Single-top-quark polarization and EFT limits	Submitted I	by JHEP	02-23		13	13	9 fb ⁻¹	
Global PDF fit	Eur. Phys. J. (2022) 438	C 82	2021-12-21		13, 7, 8	20 fb ⁻¹ , 3	6 fb ⁻¹ , 5 fb ⁻¹	
Search for tqg FCNC in single top at 13 TeV	Eur. Phys. J. (2022) 334	C 82	2021-12-02		13	13	9 fb ⁻¹	
Measurement of the top-antitop energy asymmetry	Published by	y EPJC	1-10-11		13	13	9 fb ⁻¹	
4-top xsec measurement	JHEP 11 (202	21) 118	2021-06-22		13	13	9 fb ⁻¹	
Measurement of ttZ cross sections in Run 2	Eur. Phys. J. (2021) 737	<u>C 81</u>	2021-03-23		13	13	9 fb ⁻¹	
Short Title	\$;	Document nur	nber 🔶	Date	¢	√s (TeV)	¢ (
ttgamma charge asymmetry		NEW)49	2022-07-	03	13		13
Measurement of the s-channel single top cross-section at 13 TeV		ATLAS-CONF-20	22-030	2022-05-	·14	13		13
Search for flavor-changing neutral-current couplings between the top-quark and the Higgs boson in the H the ATLAS detector	I to tau tau decay channel with	ATLAS-CONF-20	22-014	2022-03-	22	13		13
Observation of the tgamma production		ATLAS-CONF-20	22-013	2022-03-	15	13		14
Search for ttH/A→4-top production in multilepton final states		ATLAS-CONF-20	22-008	2022-03-	-11	13		13
Search for flavour-changing neutral-current couplings between the top-quark and the Z boson with the AT	TLAS detector	ATLAS-CONF-20	21-049	2021-09-	.14	13		13
ttbar cross section with dileptons at sqrt(s) = 5.02 TeV		ATLAS-CONF-20	21-003	2021-03-	-06	5		260
Short Title	Document number	÷	Date	۵	√s	(TeV)		
Snowmass ATLAS-CMS white paper	ATL-PHYS-PUB-2022-018		2022-03-15			14		То
HL-LHC Standard Model four-top-quark production Studies	ATL-PHYS-PUB-2022-004		2022-02-10			13		
Powheg-bb4l validation	ATL-PHYS-PUB-2021-042		2021-12-01			13		

ATL-PHYS-PUB-2021-034

ATL-PHYS-PUB-2021-016

2021-07-27

2021-05-19

13

13

Talk: *boosted tt̃ x-section* Christopher Garner

> Talk: <u>*tt̃ x-section</u>* Richard Hawkings</u>

Talk: *FCNC t+X* Mingming Xia

Talk: Observation of t+X Steffen Korn

Talk: <u>Top-quark mass</u> Davide Melini

Top x-section	Тор + Х
Top mass	Top properties

More public results here

[N. Bruscino | Top properties in ATLAS | ICHEP 2022 | 08-Jul-2022]

"Relating the top-quark mass parameter in Monte Carlo generators to a short-distance mass scheme

ATLAS and CMS Common ttbar MC sample

Energy asymmetry in tt+j at 13 TeV and interpretation in the SMEFT framework

Energy Asymmetry: introduction

Eur. Phys. J. C 82 (2022) 374

t \bar{t} energy asymmetry (A_E^{t\bar{t}}) happens at LO mainly through qg $\rightarrow t \bar{t} g$

- different probability of t and \overline{t} from to be emitted in a certain phase-space
- → t and \overline{t} have different energy in $t\overline{t}$ + high p_T jet
- \rightarrow measure asymmetry in top quark energy in tt + 1 jet boosted events and search for BSM

 $\text{Observable defined for t} \bar{\mathbf{t}} + \mathbf{j} \text{ production as } A_E(\theta_j) = \frac{\sigma^{\mathsf{opt}}(\theta_j | \Delta E > 0) - \sigma^{\mathsf{opt}}(\theta_j | \Delta E < 0)}{\sigma^{\mathsf{opt}}(\theta_j | \Delta E > 0) + \sigma^{\mathsf{opt}}(\theta_j | \Delta E < 0)}$

- where $\Delta E = E_t E_{\bar{t}}$ and θ_j scattering angle of additional jet in tt+j rest frame
- QCD asymmetry is closely related to the charge asymmetry in inclusive $\ensuremath{t\bar{t}}$ production
- observable probes for possible new physics in tt+j events

Energy Asymmetry: strategy

Eur. Phys. J. C 82 (2022) 374

Select I+jets boosted events:

- "leptonic" top (large m_T^W and E_T^{miss})
- high p_T hadronic top (p_T > 350 GeV) as R=1 jet tagged by substructure based Neural Network (NN)
- high p_T (> 350 GeV) additional jet

Energy Asymmetry: strategy

Eur. Phys. J. C 82 (2022) 374

Select I+jets boosted events:

- "leptonic" top (large m_T^W and E_T^{miss})
- high p_T hadronic top (p_T > 350 GeV) as R=1 jet tagged by substructure based Neural Network (NN)
- high pT (> 350 GeV) additional jet

Count events with $\Delta E > 0$ or <0 in bins of θ_j and unfolded data with Fully Bayesian Unfolding technique (FBU)

- analysis currently limited by available data statistics and tt FSR modelling

Energy Asymmetry: EFT

Eur. Phys. J. C 82 (2022) 374

$A_E^{t\bar{t}}$ sensitive to top chirality in 4-quark operators

- → valuable new observable in global SMEFT fits
- it probes new directions in dim-6 parameter space (w.r.t. charge asymmetry, for instance)
- 2D limits on pairs of 6 corresponding Wilson coefficients breaking degeneracy

$t\bar{t}$ charge asymmetry (A_C^{t\bar{t}}) happens only at NLO

- gg initiated process (~90% @13 TeV) remains charge symmetric to all orders
 - + \Rightarrow challenging to measure $A_C{}^{t\bar{t}}$ at LHC
- higher orders interference in qg and q \bar{q} , and EW contributions lead to asymmetries
 - + also BSM physics can lead to enhancements
- evidence by ATLAS in Run II [ATLAS-CONF-2019-026] in agreement with NNLO QCD + NLO EW predictions

$t\bar{t}+\gamma$ has enhanced $q\bar{q}$ initiated production \rightarrow perfect playground for tests of $A_C^{t\bar{t}}$

 enhancement only for events where the photon is radiated by initial state partons (a.k.a. "tt+γ production")

Charge Asymmetry: strategy

ATLAS-CONF-2022-049

$I+\gamma+jets$ selection with Run II data:

- e/ μ trigger-matched with p_T>27 GeV
- isolated photon p_T>20 GeV and $\Delta R(I, \gamma)$ >0.4
- m(e, γ) outside Z-mass window (m_z ± 5 GeV)
- ≥4 jets of which ≥1 b-tagged
- kinematic likelihood fit (KLFitter) to reconstruct tt system
- Neural Network (NN) to separate signal ($t\bar{t}+\gamma$ production) vs. backgrounds
 - + "t \bar{t} +y decay" as irreducible background
 - + 21 input variables, 3 hidden layers, 5-fold cross validation
 - + two regions NN<0.6 and NN>0.6

Main backgrounds: prompt $\gamma,$ jet- and e-faking γ

- tt+γ decay (30%) and prompt-γ (15%) estimated with MC
 + validated in Zγ and Wγ dedicated regions
- data-driven e-faking γ (16%) using tag-and-probe Z→ee/eγ events
- data-driven jet-faking γ (7%) using ABCD method (y-iso and y-ID)

$A_{C^{t\bar{t}}}$ extraction by Profile Likelihood Unfolding (PLU)

- $A_C^{t\bar{t}} = -0.006 \pm 0.030 = -0.006 \pm 0.024(stat) \pm 0.018(syst)$
- precision is limited by the statistical uncertainty

statistic procession of the second se

Top polarisation at 13 TeV in single-top t-channel and bounds on tWb dipole operator

Top Polarisation: introduction

Submitted to JHEP

At the LHC (pp collisions)...

- EW production: highly polarised top quarks due to V-A nature
 - + Top-quark polarisation (P) can only be measured in single top-quark t-channel events* * In tī production, top quarks are produced unpolarised because of parity conservation in QCD
- detectable: accessible via angular distributions (in top rest frame)
- spin polarisation: depends upon specific top-/antitop- sample and chosen basis
 - + valence <u>u</u>-quark density ~2x valence d-quark density (pp collisions)

+
$$P_i = \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)}, \quad \uparrow / \downarrow \text{ w.r.t. } i$$

Top Polarisation: strategy

Fiducial measurement of top polarisation in t-channel with full Run II dataset (139 /fb)

- <u>template fit:</u> measurement of top quark and anti-quark polarisations (P_x,P_y,P_z) in the t-channel events, at reco. level within a fiducial region
- <u>unfolding</u>: normalised differential measurements ($\cos\theta_{x/y/z}$) unfolded at particle level within the same fiducial region
- EFT interpretation of the unfolded results

Cut-based analysis in 1L final state:

Submitted to JHEP

- exactly 1 triggering lepton (e/µ),
- exactly 2 jets, of which 1 b-quark tagged,
- $m_T{}^W$ and $E_T{}^{miss}$ cuts to reject QCD background
- QCD background estimated via data-driven methods
 jet-electron (e-channel) and *anti-muon* (µ-channel)
- further split into 1 signal region and 2 control regions

Top Polarisation: template fit

Submitted to JHEP

Simultaneous profile likelihood fit of top and antitop polarisations:

- $-\frac{1}{\Gamma}\frac{d\Gamma}{d\Omega d\Omega^*} = \frac{1+P_z}{2}\mathcal{F}_{z+} + \frac{1-P_z}{2}\mathcal{F}_{z-} + \frac{P_x}{2}\mathcal{F}_x + \frac{P_y}{2i}\mathcal{F}_y$
- <u>4 regions:</u> 2 SRs (top, anti-top) + 2 CRs (W+jets, tt)
- <u>6 polarisation parameters</u> $P(t) = \{P_x^t, P_y^t, P_z^t\}$ and $P(\bar{t}) = \{P_x^{\bar{t}}, P_y^{\bar{t}}, P_z^{\bar{t}}\}$
- 3 normalisations Nt-ch, Ntt and Nw+jets
- Octant distribution "Q" to fit in SR (split the phase space into 8 regions in terms of signs of cosθ_x / cosθ_y / cosθ_z)
- "lepton charge" distribution in CRs

Extracted value	(stat.)
$+1.045 \pm 0.022$	(±0.006)
$+1.148 \pm 0.027$	(± 0.005)
$+1.005 \pm 0.016$	(± 0.004)
$+0.01 \pm 0.18$	(±0.02)
-0.02 ± 0.20	(±0.03)
-0.029 ± 0.027	(± 0.011)
-0.007 ± 0.051	(±0.017)
$+0.91 \pm 0.10$	(± 0.02)
-0.79 ± 0.16	(±0.03)
	Extracted value +1.045 \pm 0.022 +1.148 \pm 0.027 +1.005 \pm 0.016 +0.01 \pm 0.18 -0.02 \pm 0.20 -0.029 \pm 0.027 -0.007 \pm 0.051 +0.91 \pm 0.10 -0.79 \pm 0.16

Top Polarisation: template fit

Submitted to JHEP

Simultaneous profile likelihood fit of top and antitop polarisations:

- $-\frac{1}{\Gamma}\frac{d\Gamma}{d\Omega d\Omega^*} = \frac{1+P_z}{2}\mathcal{F}_{z+} + \frac{1-P_z}{2}\mathcal{F}_{z-} + \frac{P_x}{2}\mathcal{F}_x + \frac{P_y}{2i}\mathcal{F}_y$
- <u>4 regions:</u> 2 SRs (top, anti-top) + 2 CRs (W+jets, tt)
- <u>6 polarisation parameters</u> $P(t) = \{P_x^t, P_y^t, P_z^t\}$ and $P(\bar{t}) = \{P_x^{\bar{t}}, P_y^{\bar{t}}, P_z^{\bar{t}}\}$
- 3 normalisations Nt-ch, Ntt and Nw+jets
- <u>Octant distribution "Q"</u> to fit in SR (split the phase space into 8 regions in terms of signs of cosθ_x / cosθ_y / cosθ_z)
- "lepton charge" distribution in CRs

Parameter	Extracted value	(stat.)
<i>t</i> -channel norm.	$+1.045 \pm 0.022$	(±0.006)
W+ jets norm.	$+1.148\pm0.027$	(± 0.005)
$t\bar{t}$ norm.	$+1.005 \pm 0.016$	(± 0.004)
$P_{x'}^t$	$+0.01 \pm 0.18$	(±0.02)
$P_{x'}^{\overline{t}}$	-0.02 ± 0.20	(±0.03)
$P_{y'}^t$	-0.029 ± 0.027	(±0.011)
$P_{v'}^{\overline{t}}$	-0.007 ± 0.051	(±0.017)
$P_{z'}^{t}$	$+0.91 \pm 0.10$	(±0.02)
$P_{z'}^{\overline{t}}$	-0.79 ± 0.16	(± 0.03)

Top Polarisation: unfolding

Submitted to JHEP

Three normalised angular observables ($\cos\theta_x$, $\cos\theta_z$, $\cos\theta_z$) unfolded to particle level

- Iterative Bayesian Unfolding (IBU) employed for deconvolution
- comparisons with different MC predictions at particle level in fiducial region
- results (including covariance matrix) to be published in HepData

EFT interpretation of normalised $\cos\theta_{x/y}$ with morphing technique

- parametric description for EFT operators using minimal number of templates
- focus on O_{tW} (variables not sensitive to $O_{\phi Q}$, O_{qQ})
 - + Re[C_{tW}] \in [0.4±1.1]
 - + $Im[C_{tW}] \in [-0.3\pm0.4]$

	C	tW	C _{itW}		
	68% CL 95% CL		68% CL	95% CL	
All terms	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]	
Order $1/\Lambda^4$	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]	
Order $1/\Lambda^2$	[-0.2, 1.0]	[-0.7, 1.7]	[-0.5, -0.1]	[-0.8, 0.2]	

Top Polarisation: unfolding

Submitted to JHEP

Three normalised angular observables ($\cos\theta_x$, $\cos\theta_z$, $\cos\theta_z$) unfolded to particle level

- Iterative Bayesian Unfolding (IBU) employed for deconvolution
- comparisons with different MC predictions at particle level in fiducial region
- results (including covariance matrix) to be published in HepData

EFT interpretation of normalised $\cos\theta_{x/y}$ with morphing technique

ATLAS EXPERIMENT

The top quark has come a long way since 1995 (discovery)

- back then: missing quark, similar to other quarks
- today: know that top quark is special

In precision era, top quark is key to an abundance of different research areas

- many different properties of top quarks measured by ATLAS
- so far, Standard Model describes data extremely well
- more results with the Run 2 dataset in the pipeline
- Run 3 (and beyond) promise even larger datasets

Many more exciting top physics results still to come!

Conclusion

ATLAS Experiment
@ATLAS experiment · Follow

The top quark

- back then: n
- today: know

In precision era

- many differe
- so far, Stand
- more results
- Run 3 (and k

Many more ex

The higher beam energy and intensity of **#LHCRun3** will allow ATLAS to push the very limits of its physics research. Learn about today's exciting LHC restart: cern.ch/go/6vxq

Look at these stunning new collision event displays

recorded in the ATLAS Experiment at @CERN!

reas

1.5

P_{-'}

(anti-top) polarisation surement at 13 TeV

Ac^{tī} vs. Ae^{tī}

tt charge asymmetry (A_C^{tt}) strongly diluted @LHC (gg-fusion (\approx 90%))

- $gg \rightarrow t\overline{t}$ (LO): charge symmetric to all orders
- $q\overline{q} \rightarrow t\overline{t}$ (NLO): top (anti-top) produced preferentially along q (\overline{q})
- @LHC (*p*-*p*): momentum imbalance of initial-state q and \overline{q}
 - $+ \rightarrow$ tops more longitudinally boosted than anti-tops

tt+lj energy asymmetry (AEtt) happens at any order thanks to the additional jet

- \rightarrow gateway for $A_C^{t\overline{t}}$ in a different phase-space
- → complementary SMEFT tests

Energy Asymmetry

Scenario	$0 \le \theta_j < \frac{\pi}{4}$	$\begin{array}{l} \Delta A_E \ [10^{-2}] \\ \frac{\pi}{4} < \theta_j \le \frac{3\pi}{5} \end{array}$	$\frac{3\pi}{5} \le \theta_j \le \pi$
Data statistical uncertainty	1.60	1.40	1.40
$t\bar{t}$ modelling	0.08	0.87	0.34
$t\bar{t}$ response MC statistics	0.51	0.42	0.42
W+jets modelling and PDF	0.29	0.49	0.42
Single-top modelling	0.28	0.60	0.29
$t\bar{t}$ and single-top PDF	0.08	0.10	0.07
Multijet	0.53	0.54	0.51
Jet energy resolution	0.98	0.40	0.36
Other detector uncertainties	0.42	0.43	0.30
Total	2.10	2.00	1.80

Scenario	$\left \begin{array}{c} 0 \le \theta_j \le \frac{\pi}{4} \end{array} \right $	$A_E \pm \Delta A_E \begin{bmatrix} 10^- \\ \frac{\pi}{4} \le \theta_j \le \frac{3\pi}{5} \end{bmatrix}$	$\frac{3\pi}{5} \le \theta_j \le \pi$
Data	$ -3.2 \pm 2.1$	-4.3 ± 2.0	-1.3 ± 1.8
SM prediction (MADGRAPH5_AMC@NLO)	-1.3 ± 0.3	-3.7 ± 0.3	-0.6 ± 1.3
SM expectation	$ -1.3 \pm 2.1$	-3.7 ± 2.0	-0.6 ± 1.6

$C(T_{\rm e}V/\Lambda)^2$	A_E ($\Lambda^{-4})$	$A_E (\Lambda^{-2})$		
$C(1eV/\Lambda)$	$68\%~{ m CL}$	95% CL	$68\%~{ m CL}$	95% CL	
C_{Qq}^{11}	[-0.41, 0.47]	[-0.65, 0.67]	[-0.68, 4.06]	[-3.36, 6.16]	
C_{Qq}^{18}	[-0.87, 1.24]	[-1.72, 2.10]	[-1.26, 4.76]	[-3.24, 9.64]	
C_{tq}^1	[-0.43, 0.52]	$\left[-0.69, 0.75 ight]$	[-0.60, 5.76]	[-3.42, 9.36]	
C_{tq}^8	[-1.41, 0.84]	[-2.01, 1.43]	[-1.86, 1.70]	[-3.30, 3.98]	
C_{tu}^{1}	[-0.50, 0.56]	[-0.78, 0.81]	[-0.96, 5.82]	[-4.72, 8.88]	
C_{tu}^8	[-1.00, 1.01]	[-1.71, 1.56]	[-1.30, 2.52]	[-3.02, 4.66]	

Charge Asymmetry

Ge/

ŝ

ഇ 16000

a 14000∤

12000

10000

8000

6000

4000

2000

0.8^Ľ

50

Data / Pred

5

18000 ATLAS Preliminary

Pre-Fit

√s = 13 TeV, 139 fb⁻³

+ Data

It decay

h-fake v

Fake lepton

tīγ production

Prompt v

Uncertainty

e-fake y

300 350

m_T(W) [GeV]

400

Total uncertainty	0.030
Statistical uncertainty	0.024
MC statistical uncertainties	
$t\bar{t}\gamma$ production	0.004
Background processes	0.008
Modelling uncertainties	
$t\bar{t}\gamma$ production modelling	0.003
Background modelling	0.002
Prompt background normalisation	0.003
Experimental uncertainties	
Jet and <i>b</i> -tagging	0.010
Fake lepton background estimate	0.005
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.009
Fake photon background estimates	0.004
Photon	0.003
Other experimental	0.004

150

200 250

100

	$O_{\rm NN} < 0.6$	$O_{\rm NN} \ge 0.6$
$t\bar{t}\gamma$ prod (signal)	6660 ± 350	6910 ± 340
$t\bar{t}\gamma$ decay	14100 ± 3100	1900 ± 560
h-fake γ	3400 ± 1400	790 ± 360
e-fake γ	6420 ± 860	1480 ± 260
prompt γ	6400 ± 2000	1300 ± 400
lepton fake	410 ± 110	57 ± 35
Total	37400 ± 4500	12400 ± 1100
Data	38527	13763

Top polarisation

Top polarisation

Uncertainty source	$\Delta P_{x'}^t$	$\Delta P_{x'}^{\bar{t}}$	$\Delta P_{y'}^t$	$\Delta P_{y'}^{\bar{t}}$	$\Delta P_{z'}^t$	$\Delta P_{z'}^{\bar{t}}$
Modelling			-	-		
Modelling (<i>t</i> -channel)	± 0.037	± 0.051	±0.010	± 0.015	± 0.061	± 0.061
Modelling $(t\bar{t})$	± 0.016	± 0.021	± 0.004	±0.016	± 0.003	± 0.016
Modelling (other)	±0.013	± 0.031	±0.003	± 0.006	± 0.026	± 0.043
Experimental						
Jet energy scale	±0.045	±0.048	±0.005	±0.007	±0.033	±0.025
Jet energy resolution	±0.166	±0.185	±0.021	±0.040	±0.070	±0.130
Jet flavour tagging	± 0.004	±0.002	< 0.001	±0.001	± 0.007	±0.009
Other experimental uncertainties	± 0.015	± 0.029	± 0.002	± 0.007	± 0.014	± 0.026
Multijet estimation	± 0.008	±0.021	< 0.001	± 0.001	± 0.008	±0.013
Luminosity	± 0.001	± 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Simulation statistics	± 0.020	± 0.024	± 0.008	±0.015	± 0.017	±0.031
Total systematic uncertainty	±0.174	±0.199	±0.025	±0.048	±0.096	±0.153
Total statistical uncertainty	±0.017	± 0.025	±0.011	±0.017	± 0.022	± 0.034

EFT operator can contribute to production and/or decay vertex

3 operators that interfere with SM: $O_{\phi Q}$, O_{tW} and O_{qQ}

- four couplings: $C_{\phi Q}$, C_{tW} , C_{itW} and O_{qQ}
- $C_{tW}^* \neq C_{tW} \rightarrow CP$ Violation
- prediction @NLO available: arXiv:1807.03576

Interpretation of normalized $\cos\theta_{X/Y}$ focuses on C_{tW} and C_{itW}

- $O_{\phi Q}$ affects only normalisation
- $\cos\theta_{X/Y}$ not sensitive to O_{qQ}

Morphing reference: ATL-PHYS-PUB-2015-047

- Morphing works with any choice of templates
- Uncertainty does depend on this choice

	C _{tW}		C _{itW}		
	68% CL 95% CL		68% CL	95% CL	
All terms	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]	
Order $1/\Lambda^4$	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]	
Order $1/\Lambda^2$	[-0.2, 1.0]	[-0.7, 1.7]	[-0.5, -0.1]	[-0.8, 0.2]	

IBU vs. FBU vs. SVD vs. PLU

FBU differs from D'Agostini's iterative unfolding (IBU) despite both using Bayes' theorem.

Reference: arxiv.org/1201.4612

- In FBU the answer is not an estimator and its covariance matrix, but a posterior probability density defined in the space of possible spectra.
- FBU does not involve iterations, thus does not depend on a convergence criterion, nor on the first point of an iterative procedure, which in IBU is named "prior".
 - + If more than one answers are equally likely, as can happen when the reconstructed spectrum has fewer bins than the inferred one, then FBU reveals all of them, while IBU converges towards some of the possible solutions.
- Regularization is not done by interrupting iterations, but by choosing a prior which favours certain characteristics, such as smoothness.

+ Thus, FBU offers intuition and full control of the regularizing condition, which makes the answer easy to interpret. <u>FBU</u> differs significantly also from <u>SVD unfolding</u>.

- In FBU the migrations matrix is not distorted by singular value decomposition (SVD), therefore FBU assumes the intended migrations model.
- The answer of FBU is not an estimator plus covariance matrix, but a probability density function which does not have to be Gaussian, which is important especially in bins with small Poisson event counts.
- FBU does not involve matrix inversion and computation of eigenvalues, which makes it more stable numerically.
- SVD imposes curvature regularization, while FBU offers the freedom to use different regularization choices. This freedom becomes necessary when the correct answer actually has large curvature, or when the answer has only two bins, thus curvature is not even defined.

<u>PLU</u> is similar to <u>FBU</u> in terms of prior for regularisation, but it involves a Profile Likelihood fit too.