Data and MC

Data

Collected by ATLAS at LHC in pp collisions at \sqrt{s} =13 TeV, with total integrated luminosity of 139 fb⁻¹

Signal MC samples

- Leading Order (LO) Universal \succ Feynman rules Output (UFO) model with MadGraph + Pythia8
- 25 mass points from 5 to 75 GeV \geq

Background MC samples

- >95% background from SM single \succ resonant $Z \rightarrow 4\mu$ (s-channel)
- \geq ~4% background from SM tchannel ZZ^{*} production from $q\bar{q}$
- \succ $qq \rightarrow ZZ$: negligible under the Z peak. ~6% level in Z off-shell region

4μ event selection

- Numb. of identified muons ≥ 4
- $p_T^{\mu,i}$ (i=1,4) > 20, 15, 8, 3 GeV \triangleright
- \triangleright μ isolated with impact parameter significance $\frac{d_0}{\sigma_{d0}} < 3$
- Angular separation $\Delta R(\mu_i, \mu_j) > 0.2$ \succ
- 2 pairs of $\mu^+\mu^-$ are selected: Z_1 has \geq the smallest mass difference compared to Z mass; Z_2 is selected from remaining pair.
- \succ $m_{4\mu}$ inside mass window [80, 110] or [130, 180] GeV

Yields summary

Data - 1131

Total background - 1148 ± 70

- $qq \rightarrow ZZ^* 1065^{+70}_{-69}$
- $gg \rightarrow ZZ^*$ 15.6 \pm 2.5
- $ttV + VVV + H 6.2 \pm 2.9$

Searching for a New Z' Vector Boson in 4μ Events with the ATLAS Experiment

MICHIGAN

Zhe Yang (on behalf of the ATLAS Collaboration)

Physics Motivation

- A new gauge boson Z' is predicted by well-motivated gauged $L_{\mu} L_{\tau}$ models [1], which extends the Standard Model (SM) with an additional $U(1)_{L_{\mu}-L_{\tau}}$ symmetry to address the observed muon anomalous magnetic dipole moment (g - 2) [2-5] and the B meson decay anomalies [6-9]. These models also aim to probe outstanding questions related to the dark matter and neutrino mass.
- In the $L_{\mu} L_{\tau}$ model, the Z' couples to the 2nd and 3rd generation left-handed lepton doublets (μ , τ and neutrinos) and right-handed μ and τ singlets.
- At the LHC, the Z' could be produced in the final-state radiation of muon or tau leptons.
- Four-muon (4μ) final state is used to search for the new gauge boson Z' from radiative Drell-Yan production around Z pole energy with the ATLAS experiment.

Feynman Diagrams

SM background processes

 $m_{Z'} \leq 42~{\rm GeV}$

Parameterized deep neural network (pDNN)

- Parameterized deep neural network (pDNN) \geq is used to classify 4μ events to either signal or background categories at different Z' hypothesis mass points
 - distributions as the input features
- The model is optimized using the Bayesian \geq method to optimized the hyperparameters
- (g represents the coupling strength of the Z'to muons in the plots)

$m_{Z'} \ge 42 \text{ GeV}$

Drell-Yan process

fake - $61.1_{-8.3}^{+9.1}$ estimated from data

- \geq The smallest p_0 values @ 39.6 GeV, corresponding to 2.6 σ deviation (b-only model)
- The global deviation 0.52 σ \succ
- \succ No significant data excess

References

[1] X.-G. He, G. C. Joshi, H. Lew and R. R. Volkas, Phys. Rev. D 44 (7 1991) [2] Muon g-2, Phys. Rev. Lett. 126 (2021) [3] Muon g-2, EPJ Web of Conferences 212 (2019) [4] Muon g-2, PoS EPS-HEP2015 (2016) [5] Muon g-2, Phys. Rev. D 73 (7 2006) [6] LHCb, Nat. Phys. 18 (2022) 277 [7] LHCb, Phys. Rev. Lett. 111 (2013) [8] LHCb, Phys. Rev. Lett. 113 (2014) [9] LHCb, Phys. Rev. Lett. 125 (1 2020)

Upper limits

- Limits are extracted by fitting data to the Z_1 and Z_2 mass spectra, which are obtained with pDNN classifier
- Coupling strength g of the Z' to muons are excluded from 0.003 to 0.2, depending on the Z' mass \triangleright
- Excludes an interesting part of the $m_{Z'} g$ parameter space, which was allowed to explain the B decay \triangleright anomalies and not excluded by B_s mixing measurements and Neutrino Trident experiments

ATLAS-COM-CONF-2022-041

ICHEP 2022 JUL 6-13, 2022

