Search for a heavy resonance decaying into a Z/W boson and a Higgs boson in final states with leptons and b-jets with the ATLAS detector

Introduction

- Search for a heavy resonance decaying into a Z/W boson and a SM Higgs boson in the $\ell^+ \ell^- b\bar{b}$, $\ell^\pm v b\bar{b}$ and $v\bar{v}b\bar{b}$ final states
- Use full Run 2 ATLAS data corresponding to an integrated luminosity of 139 fb⁻¹
- Examine reconstructed invariant mass or transverse mass distributions of the Zh / Wh system
- No significant deviation from the SM has been observed
- Set 95% confidence level (CL) upper limits on the signal production cross section for a mass range of 220-5000 GeV
- Result interpreted in two Higgs doublet models (2HDM) or Heavy Vector Triplet models (HVT)

Signals

2HDM

- · Two complex scalar Higgs doublets
- Five Higgs bosons: two neutral CP-even bosons (h and H), two charged scalar bosons (H^+ and H^-) and a neutral CP-odd boson (A)

ICHEP poster session, Bologna

08 July 2022

Models specified by the Yukawa couplings of the Higgs doublets: type I, type II, lepton-specific and flipped

HVT

- · Simplified model with an additional SU(2) field
- Two new heavy vector bosons (W', Z') couple to SM particles
- Models specified by coupling strengths of the new field to SM fermions and gauge bosons: Type A and Type B

Analysis Strategy

- Search for localised excess in the reconstructed invariant or transverse mass distributions of the *Zh* or W*h* candidates
- Higgs boson candidates are reconstructed from either two small-radius jets (anti- k_T R=0.4) or one large-radius jet (anti- k_T R=1.0)
- Requiring at least one b-tagged small-radius jet or track jet associated with the large-radius jet
- Use 70% b-tagging efficiency working point

2HDM interpretation

- 2HDM parameters, α and β , describe the coupling of the Higgs doublets to the Standard Model particles (α is the mixing angle between two CP-even Higgs bosons, β is the ratio between vacuum expectation values)
- Exclusion limits set on the m_A -tan β space and the cos (β α)-tan β space

Backgrounds and Event Selections

Common selection Jet p_T , mass of the Higgs boson candidate

0 lepton channel

Missing transverse momentum, angular separation between jets and missing transverse energy

1,2 lepton channel Lepton p_T , missing

candidate

transverse energy, mass and p_T of the W/Z boson

HVT interpretation

Results

- Combine the $v\bar{v}b\bar{b} + \ell^+\ell^-b\bar{b}$ channels for ggA, bbA and Z' searches, and the $v\overline{v}b\overline{b} + \ell^{\pm}vb\overline{b}$ channels for W' search
- Results are compatible with the Standard Model prediction
- Largest excess has a local significance of around 2σ

Summary

- Search for a heavy resonance performed using ATLAS full Run 2 data corresponding to an integrated luminosity of 139 fb^{-1}
- No significant excess observed, and 95% confidence level (CL) upper limits set for the mass range 220-5000 GeV
- Expected limits on cross sections improved from about 50% for a resonance mass of 220 GeV to about 400% for a mass of 5 TeV with respect to the 36.1 fb⁻¹ results
- Results interpreted in 2HDM models and HVT models.

Tong Qiu (Queen Mary University of London), On behalf of the ATLAS Collaboration

