# **Prospects for the Nucleon Decay Search in JUNO**

Yuhang Guo<sup>1\*</sup>, Wanlei Guo<sup>1</sup>, Hang Hu<sup>1</sup> (On Behalf of JUNO Collaboration)

<sup>1</sup> Institute of High Energy Physics, Beijing, China \*guoyh@ihep.ac.cn

# **1. Introduction**



# Proton Decay (PD) is an apparent prediction of Grand Unification Theories (GUTs).

- So many predicted decay modes, among which  $p \rightarrow vK^+$  has large branching ratio in Supersymmetric GUTs.
- The Jiangmen Underground Neutrino Observatory (JUNO), which is a large Liquid Scintillator (LS) detector equipped with more than 43k PMTs. ■ With 20 kton exposure mass, JUNO is expected to be sensitive to searching for  $p \rightarrow \nu K^+$ .

# 2. Simulation

The dominant backgrounds are the Atmospheric neutrinos (AN)
A MC study has been done to analyze the JUNO's sensitivity to

and Cosmic Muons.

| 1MeV 10MeV 100MeV                            |                    |                    | 1GeV                        |                | _      |
|----------------------------------------------|--------------------|--------------------|-----------------------------|----------------|--------|
| IBD Proton Decay (PD)                        |                    |                    |                             |                |        |
| Atmospheric neutrinos (AN) ~33k in 10 years. |                    |                    |                             |                |        |
| Cosmic Muon                                  |                    |                    |                             |                |        |
|                                              | Kaon<br>Production | Pion<br>Production | Quasi-elastic<br>Scattering | Nucleon Recoil | Total  |
| Neutral<br>current                           | 0.30%              | 9.74%              |                             | 20.23%         | 30.27% |
| Charge<br>current                            | 0.81%              | 23.75%             | 45.16%                      |                | 69.73% |

p2vK, with the tool simulation software SNIPER, a Geant4 based MC software developed by JUNO collaboration.



# **3.** Analysis

■3 types of criteria proposed to find the rarely seen p2vK from the huge amount of BKG based on MC study.

**1. Primary Selection** 

- Visible Energy Cut
- Volume Cut



# 2. Delayed Signal Selection

Related criteria are set to tag a delayed signal:

- 1. Correlated  $\Delta T$
- 2. Correlated  $E_{dep}$

•

3. Correlated Position

a Michel electron MTag CTag a neutron capture



#### **3. Time Character Selection**

- Double pulse pile-up in Time spectrum is a feature of p2vK in LS.
- Reconstruction of the both signals can also help to distinguish.





- The hit time spectrum will be fitted with :
  - $\phi_Y(x) = \varepsilon_K \cdot f_K(x) + \varepsilon_Y \cdot f_Y(x \Delta T_Y) \qquad \phi_R(x) = \varepsilon_R \cdot f_R(x)$





#### The candidates will be selected roughly with the reconstructed information





## 4. Conclusion

■ JUNO is expected to reach p2vK sensitivity of  $8.34 \times 10^{33}$  years with 10 years exposure (90% C.L.) DOI: 10.1016/j.ppnp.2021.103927 The studies on signal selection and background estimation in this poster could lead to a better sensitivity and the analysis is to be finalized.

