Deep Sea Explorers

Enzo Oukacha ICHEP 2022

 APC^1

Jul 8th 2022

¹Laboratoire Astroparticule et Cosmologie

REINFORCE

- REINFORCE is a project which aims at minimizing the knowledge gap between Large Research Infrastructures and Society through Citizen Science.
- The main tools are the demonstrators which are platforms on which the citizens can do science-related activities.
- These demonstrators are all present on the website Zooniverse.

KM3NeT

- KM3NeT is a 3D array of PMTs² placed at the bottom of the mediterranean sea, used to capture the Cherenkov light.
- \bullet ORCA 3 will study neutrino properties such as the Neutrino Mass Hierarchy ($E\sim \textit{GeV}$)
- \bullet ARCA 4 will do neutrino and multi-messenger astronomy (E > TeV)

²Photomultiplier Tubes

³Oscillation Research with Cosmics in the Abyss

⁴Astronomy Research with Cosmics in the Abyss

KM3NeT

Figure: Illustration of a neutrino event

Deep Sea Explorers

- Main purpose is to be able to classify the bioluminescence events as well as the bioacoustic events at the bottom of the mediterranean sea and to have a better understanding of noises in KM3NeT data.
- Therefore 2 main activities :
 - Classification of the bioluminescence data to be able to distinguish the detection of Neutrinos from the light emitted by the bioluminescent marine organisms.
 - Classification of the ceteceans based on the sound they emit. (Hydrophones of KM3NeT)

Classification of species

Figure: Sperm whale (left) and Short finned pilot whale (right)

- Diving around 2000/3000m depth.
- Emitting very different signals.

Zooniverse

Figure: Example of an event to be classified (here a $click^2$ emitted from a Sperm whale)

²short sound wave

Why do we need the help of volunteers?

- The data that have been uploaded on Zooniverse are sounds that have been classified with less than 70% accuracy by the neural network.
- We need the help of the citizens to classify theses events in order to enhance the training of a neural network.
- Purpose : make a citizen-machine learning comparative study.

CNN model - UpDimV2

Layer name	Input size	Kernel	Strides	Out features
Conv-1D	N*4096*1	3	1	32
Conv-1D	N*4096*32	3	2	32
Skip	N*4096* 1	1	2	32
Conv-1D	N * 2048 * 32	3	2	64
Conv-1D	N*1024*64	3	2	128
Skip	N * 2048 * 32	1	4	128
Conv-2D	N * 1024 * 128 * 1	3*3	1*1	32
Conv-2D	N*1024*128*32	3*3	2*2	32
Skip	N*1024*128*1	1*1	2*2	32
Conv-2D	N* 512* 64* 32	3*3	2*2	64
Conv-2D	N* 256* 32* 64	3*3	2*2	128
Skip	N* 512* 64* 32	1*1	4*4	128

Figure: Architecture of the CNN model (1st part)²

²M.Ferrari, H.Glotin et al. (2020)

CNN model - UpDimV2

Conv-3D	N * 128 * 16 * 12	28 * 1 3*3*3	1*2*1	32
Conv-3D	IV * 120 * 10 * 12	20 * 1 3*3*3	1*2*1	32
Conv-3D	N* 128* 8*12	28 * 32 3*3*3	2*2*2	64
Skip	N* 128* 8*12	28 * 1 1*1*1	2*4*2	64
Conv-3D	N* 64* 4* 6	4 * 64 3*3*3	2*2*2	128
Conv-3D	N* 32* 2* 3	2 * 128 3*3*3	2*2*2	256
Skip	N* 64* 8* 6	4 * 64 1*1*1	4*4*4	256
Softmax	N* 16* 1* 1	6 * 256 16*1*1		
MaxPool	N* 16* 1* 1	6 * 256 16*1*1		
Flatten	N* 1* 1* 1	6 * 256		
Dense	N * 4096			1024
Dense	N*1024			512
Dense	N*512			7

Figure: Architecture of the CNN model (2nd part)²

²M.Ferrari, H.Glotin et al. (2020)

CNN model: UpDimV2

Figure: Architecture of an UpDim block²

²M.Ferrari, H.Glotin et al. (2020)

UpDimV2 : Data for the training

- Need to have a sample of data/labels (one hot encoded) with a high accuracy for the training (>90% of accuracy)
- Use of the data of the Challenge DOCC10⁵ organised by the University of Toulouse the CNRS and ENS.⁶
- Data for which the predictions were made with an accuracy of 95% (clustering method)

⁵Dyni Odontocete Click Classification

⁶https://challengedata.ens.fr/participants/challenges/32/

Data for the training

Figure: Example of data in the training set.

First results: Loss plot

Figure: Training and Validation loss over 15 epochs.

First results: Accuracy plot

Figure: Training and Validation accuracy over 15 epochs.

First results: Normalized confusion matrix

Figure: Normalized confusion matrix. GMA = Short finned pilot whale and PM = Sperm whale

Comparative study: Data for the test

- Data collected from the Zooniverse website.
- Selection of data/labels (predictions with an accuracy of at least 65 percent)

Data for the test: Audio data

Figure: Example of data in the test set.

Enzo Oukacha

Final results of the comparative study

- Train the CNN and then make predictions on the test set.
- Get the confusion matrix to compare with the classifications of the citizens.
- See if the data collected from the citizens can actually help us in enhancing the accuracy of the neural network.