
Invertor - Program to Compute Exact Inversion
of Large Matrices
R. Thiru Senthil 1,2

1The Institute of Mathematical Sciences, Taramani, Chennai 600113, India
2Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India

Contact
+91 (44) 22543371
rtsenthil@imsc.res.in
https://www.imsc.res.in/∼rtsenthil

Abstract
We have written a general purpose code for analytical inversion of large matrices in C language by treating

matrices in block forms. We have optimized the computation speed using in-place inversion, dynamic memory
handling and recursion techniques. This code is written to adopt with programs which requires the faster and exact
solution of system of linear equations in C and Fortran. We have applied it in our study of tau neutrino events at
India based Neutrino Observatory (INO). As example, with this program the time required for computing the exact
inversion of matrices of order 100, 1000 are 6ms and 5.24s respectively in Intel i7 6700 CPU, 8GB RAM machine.
We also present our alternate technique and results of computing inversion of ultra large matrices (of order > 104)
using parallel processing in clusters.

Introduction
The requirement to calculate inversion of matrices is present in various science and enginnering ap-
plications. A system of linearly independent equations is solved by computing inverse of matrix
constructed out of the coeffients of unknown variables. If the system is large, the calculation of ana-
lytical solution using matrix inversion method tends to be time consuming process and we shall use
various numerical techniques in order to compute the solution. The choice of technique to compute
matrix inversion is compromised for accuracy over time. In this work, we present the analytical com-
putation of inverse of large matrices by considering them in block forms. We have optimized the
computation time using recursion and inplace inversion during coding. It is written in C language.

Methodology
Let us have a matrix M in block form as [

A B
C D

]
We have blocks A and B as square matrices whereas blocks B and C are not necessarily in square
matrices. If the block A is non-singular, we can calculate the inverse of this block as A−1, then the
inverse of full matrix is given by,[

A−1 + A−1BS−1
A CA−1 −A−1BS−1

A
−S−1

A CA−1 S−1

]
where as SA = (D − CA−1B) is Schur complement of block A. It is necessary that S−1

A exists in
order to have the inverse of complete matrix.

The inverse could be calculated by following steps. We describe here computation and status of in-
verse matrix in each stage. In each calculation we replace the computed elements in the same memory
of the resultant inverted matrix. It avoids overuse of memory in calculation.
1. First we compute A−1. [

A−1 B
C D

]
2. We calculate SA = (D − CA−1B). This step required dynamic memory allocatin for SA.
3. We compute S−1

A and we shall store this result in place of D, then we can free the memory used
temporavarily to compute SA. [

A−1 B

C S−1
A

]
4. In the last step we can compute the remaining blocks as required using A−1, S−1

A and the blocks
of given matrix. [

A−1 + A−1BS−1
A CA−1 −A−1BS−1

A
−S−1

A CA−1 S−1

]
In this procedure, for computing inverse of large matrix we temporarily create memory during the

calculation of S−1
A . This can be avoided if we follow different approach with inplace inversion. This

will improve the computation speed significantly.

In Place Inversion Methodology
In this procedure, we shall start with the given matrix and compute the inverse in each stage at the
same memory location of the started matrix. The steps that we follow are:
1. We start with [

A B
C D

]
2. First we compute A−1 in the place of A. [

A−1 B
C D

]
3. We now compute A−1B by left multiplying −A−1 with B.[

A−1 A−1B
C D

]
4. Now, we compute the Schur complement of A using A−1, A−1B and C and replaces with D as,[

A−1 A−1B

C D − CA−1B

]
5. In next step we compute the inverse of Schur complement S−1

A = (D − CA−1B)−1.[
A−1 A−1B

C S−1
A

]

6. Next we calculate CA−1 by right multiplying A−1 with C.[
A−1 A−1B

CA−1 S−1
A

]
7. Now, we left multiply −S−1

A with CA−1.[
A−1 A−1B

S−1
A CA−1 S−1

A

]
8. We can now compute the inverted form at the location of A−1 using rest of the blocks as,[

A−1 + A−1BS−1
A CA−1 −A−1B

−S−1
A CA−1 S−1

]

9. In final step, we right multiply S−1
A with −A−1B.[

A−1 + A−1BS−1
A CA−1 −A−1BS−1

A
−S−1

A CA−1 S−1

]
Using the above procedure, we avoid the requirement of additional memory for computation. In short,
the original matrix is replaced by the inverted matrix after applying this procedure.

Inverting Large Matrices
A matrix of order 2 or 3 could directly be computed. When the matrix order exceeds 3, we block
them into the form given above and compute the inverse using the procedure described. In the case
of very large matrices, we can subblock A further and compute inverse by calling the same function
(Recursion). We further apply the same resursion technique to compute inverse of SA also. Since
arrays are treated as pointers in C, this is achievable with out storing additional memory.

Results
The results of optimized in place inversion code is listed in the table. We used Intel i7 6700 CPU,
8GB RAM machine in this analysis.

Order Time in seconds

100 0.006
1000 5.24

Table 1: Computation time for matrix inversion

A Discussion on Parallel Processing for Inversion
If we start with D−1, we can also calculate the the inverted matrix as,[

S−1
D −S−1

D BD−1

−D−1CS−1
D D−1 +D−1CS−1

D BD−1

]

where as Schur complement of block D is given as SD = A−BD−1C.
We could combine using A−1 and D−1 to start with, then the full inversion is given by,[

(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
This provides the possibility of performing the calculation using parallel processing. By simultane-
ously computing A−1 and D−1 of low order sub blocks we performed the calculations by designing
multiple alogorithms. So far, the computation time required with those procedure are slightly larger
than the inplace inversion technique. This is due to the requirement of additional multiplication and
inversions required during the sub processes. As an example for a matrix of order 1000, the process
completed in 15.62s in Nandadevi cluster having 40 cores. It is significantly higher comparing to the
standard in place inversion code which comptes inversion in 6.94s.

Conclusions
• We have written C based Invertor program to invert large matrices by treating the matrices in block

forms.
• We have optimized the computation time using dynamic memory handling and in place inversion

techniques with recursion.
• We performed the computation using parallel processing in various possible ways but the compu-

tation time is yet to be optimized.

Acknowledgements
RTS would like to thank Prof. D. Indumathi for detailed discussions and motivation throughout this
work. We acknowledge the high performance computing facilitity - Nandadevi cluster at the Institute
of Mathematical Sciences for this work.


