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MLaaS4HEP is an R&D project started in 2018 within CMS. During these years MLaaS4HEP was validated, tested and
improved adding new features. Recently we worked towards a cloud service that can be integrated in the INFN Cloud
portfolio of services. In this work we presented a working prototype of such service which allows HEP users to submit ML
training workflows and get predictions simply using HTTPS calls.
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Why Machine Learning and
ML as a Service in High Energy Physics

Machine Learning (ML) techniques in the High Energy Physics (HEP)
domain are ubiquitous, successfully used in many areas, and will play a
significant role also in Run3 and High-Luminosity LHC upgrade.

It is necessary to have a synergy between HEP and ML community and to
ease the usage of ML techniques in HEP analyses. Therefore, it would be
useful to provide physicists who are not experts in ML a service to easily
exploit the ML potentiality.

Existing ML as a Service (MLaaS) solutions are many: they offer many
services and cover different use cases but they are not directly usable in
HEP.

Existing HEP R&D solutions don’t cover the whole ML pipeline or they
are not "aaS" solutions or they are difficult to generalize to other use
cases.

We proposed a MLaaS for HEP (MLaaS4HEP) solution as a product of
R&D activities within the CMS experiment [1].

Standard analysis 
workflow

How the analysts can use the service

The MLaaS4HEP framework has a multi-language architecture
(Python and Go) and it is structured in three layers:

Ø Data Streaming Layer is responsible for local and remote
data access of HEP ROOT files (based on the uproot library)

Ø Data Training Layer is responsible for feeding HEP ROOT
data into the ML framework of user choice

Ø Data Inference Layer (TFaaS) provides access to pre-trained
TF models via HTTP protocol

The first two layers contributes to the MLaaS4HEP [2] training
workflow, while TFaaS [3] is encharged of the inference phase.

Let’s suppose that a CMS analyst performs an analysis workflow
and at a certain point he/she wants to train a ML model to make
predictions on some events. The analyst has the possibility to
contact the MLaaS4HEP service, providing information about
the ROOT data and the ML model/framework to use, to train
the ML model which is subsequently stored in a repository from
which the TFaaS service has access. Afterwards, the analyst
contact the TFaaS service specifying which of the pre-trained ML
models use to obtain predictions for the events.
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How the MLaaS4HEP training workflow works

Run the MLaaS4HEP training workflow

./workflow.py --files=files.txt --labels=labels.txt --model=model.py --params=params.json --preproc=preproc.json
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Definition of 
the ML model

MLaaS4HEP 
parameters

Definition of 
preprocessing operations 

from tensorflow import keras

def model(idim):
ml_model = keras.Sequential([

keras.layers.Dense(128, activation='relu’, input_shape=(idim,), 
name='inputs’),

keras.layers.Dropout(0.5),
keras.layers.Dense(64, activation='relu’),
keras.layers.Dropout(0.5),
keras.layers.Dense(1, activation='sigmoid')])

ml_model.compile(optimizer=keras.optimizers.Adam(lr=1e-3),
loss=keras.losses.BinaryCrossentropy(),
metrics=[keras.metrics.BinaryAccuracy(name='accuracy’),
keras.metrics.AUC(name='auc')])

return ml_model

{
"nevts": 30000,
"chunk_size": 10000,
"epochs": 5,
"batch_size": 100,
"branch": "boostedAk8/events",
"selected_branches":"",
"exclude_branches": "",
"redirector": 
"root://stormgf1.pi.infn.it",
}

<PATH>/ttH_signal.root
<PATH>/TTBar.root
<PATH>/QCD_HT1000to1500.root
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{"new_branch": {

"log_partonE": {
"def": "log(partonE)",
"type": "jagged",
"cut_1": ["log_partonE<6.31", "any"],
"cut_2": ["log_partonE>5.85", "all"],
"remove": "False",
"keys_to_remove": ["partonE"]},

"nJets_square": {
"def": "nJets**2",
"type": "flat",
"cut": "1<=nJets_square<=16",
"remove": "False",
"keys_to_remove": ["nJets"]}},

"flat_cut": {
"nLeptons": {
"cut": "0<=nLeptons<=2",
"remove": "False"}},

"jagged_cut": {
"partonPt": {
"cut": ["partonPt>200", "all"],
"remove": "False"}}}
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Validation and performance test of MLaaS4HEP

The preprocessing operations are 
applied both during the reading 

phase and during the preprocessing 
of the events

Working prototype at INFN Cloud

We chose a signal vs background discrimination problem in a 𝑡𝑡̅𝐻
analysis as a real physics use-case to:

1. validate the MLaaS4HEP results from the physics point of view
2. test the performance of MLaaS4HEP framework

We used a simple Neural Network in Keras obtaining an AUC score
comparable with the BDT-based analysis, performed within the TMVA
framework by a subgroup of the CMS HIG PAG.

To test the performance we used a dataset (without any physics cut)
with 28.5M events and a total size of about 10.1 GB. The tests were
performed using two different resources1 and the ROOT files were read
from local file-systems (SSD storages) and remotely from Grid sites.

Ø specs computing phase (chunk size = 100k events)
• Event throughput: 8.4k – 13.7k evts/s
• Total time using all the 28.5M events: 35 – 57 min

Ø chunks creation in the training phase (chunk size = 100k events)
• Event throughput: 1.1k – 1.2k evts/s
• Total time using all the 28.5M events: 6.5 – 7.5 hrs

1 macOS, 2.2 GHz Intel Core i7 dual-core, 8 GB of RAM and CentOS 7 Linux, 4 VCPU Intel Core Processor Haswell 2.4 GHz, 7.3 GB of RAM CERN Virtual Machine
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Creation of the MLaaS4HEP cloud service
The goal is to create a cloud service that could use cloud resources and could be added into
the INFN Cloud portfolio of services. To provide this we worked through a series of steps.

Ø We built a MLaaS4HEP server with some APIs using the (Python-based) Flask framework
Ø We integrated an OAuth2 Proxy server to manage users authentication/authorization
Ø We integrated an XRootD Proxy server to allow the usage of an X.509 proxy for the remote

access to ROOT data
Ø We connected the MLaaS4HEP server with TFaaS in a way that the ML models trained by the

MLaaS4HEP server are saved in a repository from which the TFaaS service can take them for
the inference phase

We implemented a working prototype [4] connecting the aforementioned services hosted by a
VM of the INFN Cloud. The MLaaS4HEP server APIs can be reached at the following
address https://90.147.174.27:4433 while TFaaS at https://90.147.174.27:8081.

Once the user obtains an access token from the authorization server, he/she can contact the
MLaaS4HEP server or TFaaS as in the following ways:

curl -L -k -H "Authorization: Bearer ${TOKEN_MLAAS}" -H "Content-Type:
application/json" -d @submit.json https://90.147.174.27:4433/submit

curl -L -k -H "Authorization: Bearer ${TOKEN_TFAAS}" -X POST -H "Content-type:
application/json" -d @predict_bkg.json https://90.147.174.27:8081/json
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