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Introduction
Particle Identification (ID): muon vs. electron

For  particle ID between muons and electron, we compare two hypotheses 

for a given event whether it is a muon or an electron event. For an event, 

we run a muon and an electron neural network models that produce the 

respective loss function −ln𝐿𝜇 𝑥 and −ln𝐿𝑒(𝑥) where 𝑥 represents the 

charge q, time t, reconstructed energy Erec and the neural network 

parameters. The difference in the loss function is calculated Δ𝐿𝑜𝑠𝑠 =
ln 𝐿𝜇 − ln 𝐿𝑒. If the event is electron (muon)-like, Δ𝐿𝑜𝑠𝑠 is negative 

(positive). Fig.8 shows the Δ𝐿𝑜𝑠𝑠 distributions with single- and 10-

Gaussian models using the charge-only loss function.

As clearly seen, the separation between muons and electrons is excellent 

in general except for a spike near Δ𝐿𝑜𝑠𝑠 = 0. To see this is due to the 

particles close to the detector boundary, in Fig.9 we show the mis-

identification probabilities of the true muons and electrons with the three 

cuts on Towall. Again using the events away from the detector boundary 

(Towall > 200 cm), the mis-identification probabilities decrease 

dramatically.

Conclusions and Future Prospect
• I have shown the promising first results from a new way of 

reconstructing events detected by a Super-Kamiokande type water 

Cherenkov detector based on a generative neural network. See Ref.3 

for further details.

• The next step is to try full reconstruction without fixing values for some 

inputs to the network. This is in progress.

• We are also looking into a possibility of distinguishing gammas from 

electrons. 

• It is obviously important to try to reconstruct multi-particle events.

• There are other neural network algorithms such as a variety of 

Generative Adversarial Networks (GANs) that may improve the 

performance in reconstruction.
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The network consists of five fully-connected (FC1-5) layers, three layers 

of a pair of a transposed (UPCONV) and a normal convolution (CONV) 

layer, and the last layer that produces charge and timing for each PMT 

with the desired dimensions for the barrel, top- and bottom-cap. Note 

that the depths/channels of the last layer depends on the parameters of 

functions to represent the charge and time distributions (see below). For 

more details, please refer to Ref. 3.

Loss Function

As the standard procedure, when a neural network is trained, the loss 

function is minimized to reduce the difference between the generated 

outputs and the training simulated events. We define the loss function in 

a similar fashion as the fiTQun’s log-likelihood function Eq.(1) as follows:

𝐿𝑜𝑠𝑠 = − 𝑙n 𝐿 = ෍

𝑖

− 𝑙n𝑃𝑢𝑛ℎ𝑖𝑡 𝑦𝑖 +෍

𝑖ℎ𝑖𝑡

− ln𝑃𝑞𝑡 𝑞𝑖ℎ𝑖𝑡 , 𝑡𝑖ℎ𝑖𝑡 (2)

where the index 𝑖 runs over all PMTs, and 𝑦𝑖 is a label set to 1 if the PMT 

is not hit or 0 otherwise. The index 𝑖ℎ𝑖𝑡 runs only over the PMTs that 

register a hit in the event, and 𝑃𝑞𝑡 𝑞𝑖ℎ𝑖𝑡 , 𝑡𝑖ℎ𝑖𝑡 is the PDF for observing 

charge 𝑞𝑖ℎ𝑖𝑡 and time 𝑡𝑖ℎ𝑖𝑡 . 𝑃𝑢𝑛ℎ𝑖𝑡(𝑦𝑖) is the unhit probability for which we 

use the binary-cross-entropy loss from PyTorch with a Sigmoid function. 

The loss function is the sum of the contributions from the barrel and two 

caps.

Models for 𝑃𝑞𝑡(𝑞, 𝑡)

We model the PDF 𝑃𝑞𝑡(𝑞, 𝑡) as a collection of Gaussian functions with 

and without the correlation between charge and time. We tried the 

number of Gaussian functions between 1 and 10 with and without 

correlation. In the case of no correlation, 

− 𝑙n𝑃𝑞𝑡 𝑞𝑖ℎ𝑖𝑡 , 𝑡𝑖𝑡ℎ = −σ𝑖ℎ𝑖𝑡
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where N is the number of Gaussians with 𝜎 and 𝜇 as the parameters for 

each Gaussian function, and 𝑛𝑗 is the normalization parameter for jth

Gaussian function. The parameter values are optimized by training.

Training the Network and Its Performance

Training of the network was done with 75% of ~1×106 electron and 

muon simulated events, while leaving 25% for the testing of the network 

performance. The simulated datasets are uniformly distributed in kinetic 

energy (1 – 6,500 MeV for electrons, 150 – 6,500 MeV for muons), in 

vertex positions, and in directions. The training process is fed the entire 

datasets 50 times (50 epochs). In each epoch a batch of 200 randomly 

chosen events is used at a time until the full datasets are exhausted.

Fig.3 shows how the loss function values improve as a function of the 

epoch with 1, 3, 5, and 10 Gaussians for the charge q and time t PDFs 

in cases of charge-only (left), and uncorrelated (middle) and correlated  

q and t (right). Notice that the value of loss function improves with the 

number of Gaussians.

The Cherenkov ring images of simulated Cherenkov electron and muon 

events in terms of hit probability are compared with respective 

predictions by the network are shown in Fig. 4. The predictions 

reproduce the simulated events well.

Figure 1. Reconstructing events in a Cherenkov detector is done by the maximum 

likelihood (ML) method (left), and modeling the ML function (right) is done

by training a generative neural network in the new proposed method.

Generative Neural 

Network 

Traditionally in high energy physics, we try to reconstruct the event for a

given event recorded by a detector and to obtain the properties of the

event such as the particle ID, direction, energy, and event vertex (Fig.1).

Note that in this poster I only talk about single-particle events detected by

a Super-Kamiokande (SK)-like water Cherenkov detector. To reconstruct

the properties of the particle detected, the current state-of-the-art non-

neural-network based method for the SK event reconstruction is called

fiTQun (Ref.1). It uses the maximum likelihood estimation algorithm.

FiTQun Likelihood Function

The log-likelihood function used by fiTQun is defined as:

−𝑙𝑛𝐿(𝑥) = − ෍
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𝑙𝑛 1 − 𝑃𝑖 𝑢𝑛ℎ𝑖𝑡 𝑥 + 𝑙𝑛𝑓𝑞 𝑞𝑖 𝑥 + 𝑙𝑛𝑓𝑡 𝑡𝑖 𝑥 (1)

where 𝑃𝑗(𝑢𝑛ℎ𝑖𝑡|𝑥) is the probability that the jth photomultiplier tube (PMT)

does not register a hit, 𝑓𝑞 𝑞𝑖 𝑥 is the probability density function (PDF) for

the observed charge 𝑞𝑖 in the ith hit PMT, and 𝑓𝑡(𝑡𝑖|𝑥) is the PDF for the

observed time of the hit. 𝑥 is the hypothesis on the origin of the particle

that generated the Cherenkov ring pattern and it includes the particle ID,

direction, energy and vertex position.

Event Reconstruction and Maximum likelihood Method

Event reconstruction is done by minimizing the -log-likelihood function

− 𝑙𝑛𝐿(𝑥) over possible hypotheses. The hypothesis 𝑥 that gives the

minimum -log-likelihood is taken as the reconstructed event.

Drawbacks of FiTQun

To make the likelihood function tractable, it is factorized into several low

dimensional components. For example, the contribution from Cherenkov

photons that hit PMTs directly and that from photons reflected on the

detector surface or scattered in the water are factorized. As the behaviors

of the reflected and scattered photons depend on many factors such as

details of the detector geometry, to have very useful simulated events the

required number of simulated events become unmanageably large.

Generative Neural Networks for Maximum Likelihood Reconstruction

Network Architecture

Fig.2 shows the architecture of the generative neural network we use to

model the likelihood function and we were inspired by Ref. 2. The inputs

to the neural network (NN) are the particle ID (electron/muon), the vertex

position, the direction and the energy. The outputs are charges and

timings registered in all the PMTs. This neural network works as a fast

event generator.

Figure 2. Architecture of the generative neural network used for this work

Figure 3. Improvement of the loss function with the number of epochs used: (right) q 

only, (middle) uncorrelated q and t, (right) correlated q and t. 

Figure 4. The hit probabilities of the simulated electron and muon events compared 

with the network predictions

Fig. 5 is an example of charge distribution with fitted multi-Gaussian 

function (1-10 Gaussians) for electron and muon of a PMT at the center 

of the ring marked with a red-dot in Fig.4.

Results

Likelihood Scan as a Function of Particle Energy

Figure 5. The charge distribution of electron and muon events compared with the 

predictions by single- or multiple-Gaussian functions

For this presentation, we reconstruct the particle energy for a given 

event by scanning the log-likelihood function with a set of energy points 

and finding the minimum, while fixing other inputs such as the vertex 

position, direction, and particle ID. To see how well the network 

reconstruct the particle energy, we define the energy residual as:

ΔE = Τ𝐸𝑟𝑒𝑐 − 𝐸𝑡𝑟𝑢𝑒 𝐸𝑡𝑟𝑢𝑒 where 𝐸𝑟𝑒𝑐 and 𝐸𝑡𝑟𝑢𝑒 are the reconstructed 

energy and the true energy, respectively. Fig.6 shows the energy 

residual distributions of muon and electron events using the charge-only 

loss function with 1,3,5 and 10 Gaussians.

When a particles is produced near the boundary of the detector, a part 

of energy carried by the particle escapes detection especially in the 

case of muon. To assess this effect, we introduce a parameter called 

Towall that is the distance to the nearest detector boundary in the 

direction of the particle.  We studied how the mean and the standard 

deviation of Δ𝐸 change with three ranges of Towall with up to 10-

Gaussian PDF of the PMT charge distribution. With the three ranges of 

Towall (0.0 – 200 cm, 200 – 500 cm, and 500 – 1700 cm), variations of 

the mean and standard deviation are shown in Fig.7 using 1-10 multi-

Gaussian models for the charge PDF in the charge-only case.

Figure 6. Δ𝐸 distributions with 1,3,5 and 10-Gaussian PDF for charge only distribution 

Figure 7. The means and standard deviations of the Δ𝐸 distributions with three cuts

on Towall using 1-10 multi-Gaussian models for the charge PDF

Figure 8. The distributions of Δ𝐿𝑜𝑠𝑠 with the single- and multi-Gaussian models using    

the charge-only loss function  

Figure 9. Particle mis-identification probabilities (rates) with 1-10-Gaussian PDFs for 

charge only distribution in the three Towall ranges (0 – 200 cm, 200 – 500 cm, 500 –

1700 cm).
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