

The Heavy-Flavor Production Fraction Reweighting Procedure in ATLAS

Ilia Kalaitzidou^d, Miha Muskinja^a, TomohiroYamazaki^a, Matthew Gignac^b, Valerio Dao^c, Cesar Renteria Gonzalez^a, Heather Gray^a, Bingxuan Liu^e, Gregory James Ottino^a, Marjorie Shapiro^a on behalf of the ATLAS Collaboration

Motivation

Flavor tagging is one of the key experimental techniques in ATLAS. The c- and b-tagging efficiencies vary among the different MC shower simulations, affecting the modeling uncertainties associated with flavor tagging. A dominant cause is the different heavy-flavor production fractions among the MC shower generators. A new analysis tool, the **HFProductionFractionTool**, is introduced, with a purpose to reweight the production fractions in MC to the common world-average values.

Tool description

Selection of truth heavy-flavor hadron → Specification of event weight

$$w = \prod_{HF \in V_{fid.}} \frac{f^{Data}(HF)}{f^{MC}(HF)} \leftarrow \text{World-average HF production fraction} \leftarrow \text{HF production fraction in MC}$$

In addition to the nominal event weight the tool provides five event weight variations which are summed in quadrature to derive the final uncertainty.

World-average HF production fractions & uncertainties

HF production fractions in MC

Event Weight and Systematic Unc.

Heavy-flavor production fractions

The HF production fractions in the simulated samples are calculated by counting the fraction of final state hadrons from c- and b-quarks

- Exclude c-hadrons from b-hadron decays
- Kinematic cuts: $|\eta(HF)| < 2.5 \& p_{T}(HF) > 5 GeV$

ATLAS Simulation Preliminary b-hadron production fractions Data (pdg.lbl.gov) Sherpa2.2.11 Powheg + Herwig7.2.1 Powheg + Herwig7.2.1 Powheg + Herwig7.0.4 Powheg + Herwig7.0.4

Validation

tt samples generated with different MC shower software

- The production fractions before the reweighting (dashed lines) show large difference between the MC shower generators
- Sherpa2.2.1 has the worst agreement, with a very large baryon fraction
- The reweighting is done independently of the jet selection, only using the content of the truth hadron collection in MC
- After the weight from the tool is applied any large disagreement between the samples is eliminated

Systematic uncertainties

- Eigenvector variations of the measurements, using their correlation matrices
- A set of alternative HF production fractions for each eigenvector variation (three for c-hadrons and two for b-hadrons- equal B^0 and B^\pm production fractions)

Results

After reweighting:

- Sherpa2.2.1 matches other samples within about 2%
- Still some differences between MC shower generators (due to difference in branching ratios and fragmentation functions)
- Less than 1% uncertainty (smaller for *b* than *c*-jets)

Usage of the tool:

- Directly by specialized analyses sensitive to heavyflavor production fractions
- Part of the central heavy-flavor tagging calibration

