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b-tagging is the process of identifying jets containing b-hadrons (b-jets), discriminating them from jets containing c-hadrons and no b-hadrons (c-jets), and from those
containing neither b nor c-hadrons (light-flavour jets).

How do we identify the b-jets? b-jet

b-hadrons have a significant mean lifetime, large mass, and large decay multiplicities. These features allow to lonath frhadron
identify the b-jets: Hard St secondary
» Tracks in b-jets are more likely to have large impact parameters

* Long-lived b-hadrons displaced decays lead to the presence of secondary vertices in b-jets \E P et
b-tagging in ATLAS is done by training classifiers based on machine learning algorithms to explore these features. light-flavour

In particular, the baseline Run-2 b-taggers are all based on Neural Networks (NN). jets

Baseline ATLAS b-tagging algorithms belong to the DL1 series, in which trained and manually
optimized algorithms (the so-called Low-Level Algorithms) produce features for high-level fully-
connected feed-forward NNs. State-of-the-art algorithm is GN1, a Graph Neural Network (GNN)
that treats jets as fully connected graphs in which tracks are the nodes. GNL1 is still being
developed and undergoing validations. —
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Algorithms to classify the jets. Low-Level Algorithms use tracks to focus on specific features of b- “""‘”
jets: Tack2 :L 100 relu units i
: 100 relu units i

+ IP2D and IP3D use the impact parameters of tracks to identify those most likely associated to
the decay products of b and ¢ hadrons. RNNIP is a Recurrent Neural Network (RNN) trained to

)

previous DIPS and RNNIP.
* SV1 and JetFitter use vertex-fitting techniques to reconstruct secondary vertices in jets.

identify the origin of tracks from a set of track and jet features. \ E
» DIPS, the most recent low-level algorithm, represents tracks in jets as sets of unordered data. It gy e = |
is based on a DeepSet architecture shown to surpass the RNN both in terms of training time and &% o IR e e |
performance. Recently, an improved version of the algorithm, named DIPS Loose, has been of ) ‘ g ékv
developed. It is trained on a dataset containing tracks selected with looser cuts with respect to e ; ;»}ﬁ
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GN1 is an algorithm with a monolithic structure. It directly operates on tracks to l_., x_ _.,._., rack rin
perform b-tagging. At the same time, it performs vertexing and track classification, -
which are defined as auxiliary tasks that guide the GNN toward an understanding of iy remesenaion Cemesenation
the underlaying physics, hence removing the need for low-level algorithms. rtex

Receiver Operating Characteristics (ROC) curves are a way to assess classifiers' performance. They display the
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fraction of b-jets correctly b-tagged vs the fraction of non b-jets correctly non b-tagged for any working point of a | rae ey smuton n;hﬁ_ﬂajofr e rejction . Reterencs DIPSfrc 007 ]
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classifier. The larger the area under the ROC curve, the better the performance.
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Background rejection
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