The boosted $X \rightarrow bb$ tagger calibration using $Z \rightarrow bb$ events collected with the ATLAS detector

Daariimaa Battulga¹ on behalf of the ATLAS Collaboration

¹Institut für Physik, Humboldt-Universität zu Berlin

Motivation

Calibration Method

Signal efficiency calibration uses

- $\star Z \rightarrow bb + \gamma$ (jets)
- \star in p_T bin range of 200 1000 GeV
- Working Points: 50%, 60%, 70%,
 - **★** Double-b-tagging efficiency per large-R jet

Data-to-simulation scale factor (SF) is defined by efficiency (ε)

Calibration Results

ATLAS Preliminary efficiency $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ - Large-*R* jet $p_{\tau} < 450 \text{ GeV}: Z(\rightarrow b\overline{b})\gamma$ 3.5 Large-*R* jet $p_{\tau} > 450$ GeV: $Z(\rightarrow b\overline{b}) + jets$ tagging 5.2 60% WP, *R*=1.0 LCTopo trimmed jets $\underline{q}q$ Stat. + syst. uncertainty 2 $\boldsymbol{\times}$ 1.5

The SF of $X \rightarrow bb$ 60% Main uncertainties: \blacksquare Z-boson modelling $Z + \gamma$ **D** Statistical Spurious signal Z + jets□ Fit Model □ Jet Mass Resolution

Performance Study of $X \to b\overline{b}$ Tagger in $G^*_{KK} \to HH \to b\overline{b}b\overline{b}$ Signal

Conclusions

First calibration of $X \to bb$ tagger using $Z \to bb$ events. The $X \to bb$ tagging efficiency is studied in boosted resonant $G_{KK}^* \to HH \to b\bar{b}b\bar{b}$.

The acceptance has increased 50 - 350% for two b-tagged large-R jets of Graviton masses at [1, 6] TeV compared to 100% in the multijet background when using the $X \to bb$ tagger.

daariimaa.battulga@cern.ch