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Abstract: The cosmic ray anti-proton spectra is a sensitive channel for the indirect search of dark matter. The main background for this search is the secondary anti-proton flux produced in
collisions between primary cosmic rays with the interstellar medium. In the last decade, thanks to high precision measurements by AMS-02 and PAMELA, a possible tension between the observed
antiproton flux and the cosmic ray diffusion models has been highlighted between 1 and 500 GeV in the antiproton kinetic energy.

The large uncertainties which afflict antiproton flux predictions do not allow us to confirm the presence of an exotic signal. In the 10+100 GeV range, the dominant uncertainties are the production
cross section ones: the pp, p-He and He-p channels are responsible for almost all the cosmic antiprotons. In 2017 the NA61/SHINE experiment at SPS collected new data for pp collisions which
were useful to study this discrepancy. In 2018 the SMOG experiment at LHCb made the very first p-He channel measurements. Additional p-He collisions data, with center-of-mass energies lower
than the LHC ones, are still needed to reduce the cross section uncertainties for astroparticle physics. For this purpose, the COMPASS++/AMBER experiment will help us with incoming data on pp
and p-He collisions. The state-of-the-art of the cosmic antiproton puzzle is presented, along with antiproton flux predictions using GALPROP and future perspective.

THE COSMIC ANTIPROTON FLUX SOURCE AND PROPAGATION MODELS
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