Investigating strangeness production in pp collisions as a function of charged-particle multiplicity and effective energy with ALICE

Francesca Ercolessi for the ALICE Collaboration

University and INFN Bologna

The **forward energy decreases with** increasing particle **multiplicity** produced at **midrapidity**

Single differential V0 classes

Fixed multiplicity at midrapidity+ different energy in the ZDC

□ **ZDC energy constrained** in a small range + different multiplicity

Strangeness production per charged particle:

- increases with midrapidity multiplicity (left)
- is anti-correlated with the ZDC energy (right)

Can we **disentangle** the dependence on effective energy and multiplicity?

Double-differential results

In events with the fixed multiplicity:

ALICE Collaboration, arxiv.org/2107.10757

- increase in E production per charged particle is observed for decreasing forward energy (ZDC)
- scaling trends with ZDC energy are compatible within uncertainties

Strangeness enhancement in pp collisions is **observed at fixed** final state **multiplicity**

In events with ZDC energy constrained in a small range:

- strangeness enhancement with multiplicity is reduced (left)
- scaling trends are compatible within uncertainties (right)

Strangeness enhancement in pp collisions is correlated with the effective energy

Summary

Strangeness enhancement in pp collisions:

- is observed at fixed midrapidity multiplicity
- shows a strong correlation with the effective energy, which reflects the initial stage of the collision

The **Pythia Monash** tune **fails to** reproduce the results, a **better agreement** is achieved when **Color Ropes** are included

francesca.ercolessi@cern.ch