

D-meson average production analysis as a function of multiplicity in pp collisions at $\sqrt{s} = 13$ TeV with ALICE at the LHC

Marco Giacalone for the ALICE collaboration

Physics motivations

Measurements of heavy-flavour production as a function of charged-particle multiplicity N_{ch} in proton-proton collisions:

- Provide an important test for perturbative QCD calculations
- Allow us to assess the role of multiparton interactions (MPI)

The effect of MPIs could be more relevant at high multiplicities than lower ones at LHC energies. Measurements of D mesons and J/ ψ in pp collisions at $\sqrt{s} = 7$ TeV and leptons from heavy quark hadron decays showed a faster than linear increase as a function of multiplicity in the transverse momentum intervals considered.

Detector setup

D-meson decays are reconstructed in the central barrel of the ALICE experiment at $|\eta| < 0.9$. The detectors used to perform the analysis are:

- Inner Tracking System (ITS)
- Time Of Flight (TOF)
- Time Projection Chamber (TPC)

where ITS and TPC are used to track charged particles, while TPC and TOF are employed for particle identification (PID). Minimum Bias data collected in 2016-17-18 and high multiplicity 2018 triggered data were considered for our analysis.

Analysis strategy

Multiplicity is determined via the measurement of the number of tracklets (N_{trk}) reconstructed in the two layers of the Silicon Pixel Detector (SPD) of the ITS detector. D mesons are first selected by applying particle-identification (PID) and topological selections. The D-meson yields are then extracted through the fit of the invariant mass of the daughter particles.

Results

The D-meson results in pp collisions at $\sqrt{s} = 13$ TeV are shown as the weighted average of D^0 , D^+ and D^* self-normalised yields (Y_{corr}^{mult}), defined as the production of charmed hadrons in a specified multiplicity interval. $Y_{\text{corr}}^{\text{mult}}$ is normalized to the multiplicity integrated yield, where the yield is corrected by the trigger efficiency and the detector acceptance:

$$Y_{\text{corr}}^{\text{mult}} = \frac{Y^{\text{mult}}}{(\epsilon^{\text{mult}} \times N_{\text{event}}^{\text{mult}})/\epsilon_{\text{mult}}^{\text{trg}}} / \frac{Y^{\text{mult int}}}{(\epsilon^{\text{mult int}} \times N_{\text{event}}^{\text{mult int}})/\epsilon_{\text{mult int}}^{\text{trg}}}$$

The results are expressed as a function of multiplicity normalised by the average integrated multiplicity and the trend of Y_{corr}^{mult} shows a more rapid increase at higher p_T intervals.* The D-meson measurements in pp at $\sqrt{s} = 13$ TeV agree with results obtained for other charmed particles at low p_T^{\star} and with preliminary results at $\sqrt{s} = 7$ TeV. Predictions based on EPOS3 with and without hydrodynamic component provide a better description of the

ALI-PREL-488861

Average prompt D⁰, D⁺, D*+ mesons $2 < p_{\perp} < 4 \text{ GeV/} c |y| < 0.5$ $p_{+}b \rightarrow e, 3 < p_{-} < 6 \text{ GeV/} c |y| < 0.7$ $dN_{ch}/d\eta/\langle dN_{ch}/d\eta\rangle$

Results comparison with other

charmed particles at low p_T

experimental data than the ones based on the Colour Glass Condensate (CGC) with the 3-Pomeron* mechanism at low multiplicity, but none of the considered models describes perfectly the data trend.

of normalised multiplicity in p_T intervals

 $dN_{ch}/d\eta/\langle dN_{ch}/d\eta\rangle$

---- x = y

Results comparison with

D-mesons at $\sqrt{s} = 7$ **TeV**