

Identical-particle (pion and kaon) femtoscopy in Pb–Pb collisions at 5.02 TeV with Therminator 2 modeled with (3+1)D viscous hydrodynamics

<u>Pritam Chakraborty</u>¹, Ashutosh Kumar Pandey ², and Sadhana Dash ¹ ¹ Indian Institute of Technology Bombay, India, ² University of Tsukuba, Japan

Introduction

 Femtoscopy is a technique, used to probe the space-time geometry of the system created in heavy-ion collisions using two-particle correlation function

$$C\left(\mathbf{k}^{*}\right) = \frac{\int S\left(\mathbf{r}^{*}, \mathbf{k}^{*}\right) |\Psi\left(\mathbf{r}^{*}, \mathbf{k}^{*}\right)|^{2}}{\int S\left(\mathbf{r}^{*}, \mathbf{k}^{*}\right)}$$

Methodology

Pair Interaction Bosons / Fermions

$$\Psi_{K.\pi} = 1 + \cos(2\mathbf{k}^*\mathbf{r}^*)$$

$$\Psi_p = 1 - \frac{1}{2}cos(2\mathbf{k}^*\mathbf{r}^*)$$

Source Function

$$S(\mathbf{r}) \approx Nexp \left(-\frac{r_{out}^2}{4R_{out}^2} - \frac{r_{side}^2}{4R_{side}^2} - \frac{r_{long}^2}{4R_{long}^2} \right)$$

Correlation Function

3D
$$C(\mathbf{q}) = 1 + \lambda exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2)$$

1D $C(q_{inv}) = 1 + \lambda exp(-R_{inv}^2 q_{inv}^2)$

Analysis Details

- This study focuses on the femtoscopic study of identical pions, kaons and protons in Pb-Pb events simulated using (3+1)D viscous hydrodynamics, coupled with THERMINATOR 2 at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$
- The hadronic rescattering has not been considered in this model.
- The source-sizes in 3 dimensions $(R_{out}, R_{side} \text{ and } R_{long})$ and 1 dimension (R_{inv}) are estimated in as the function of centrality (expressed as $<dN_{ch}/d\eta>^{1/3}$) and k_{T} (and m_{T}) of the pair

Results I

- Radii for pions in all 3 directions decrease with increasing $\mathbf{m}_{_{\! T}}$ in all centralities, the trends are fitted with power-law of $\mathbf{m}_{_{\! T}}$
- R in long direction falls with increasing $m_{\scriptscriptstyle T}$ more steeply compared to out and side direction
- Radii for pions increase with multiplicity in all $k_{\scriptscriptstyle T}$ bins, the trends are fitted with linear-function of $< dN_{ch}/d\eta >^{1/3}$

Results III

- A common m_T scaling is approximately followed in out and side direction and slightly violated in long direction
- The slopes of 1D radii for pions, kaons and protons as the function of $m_{\scriptscriptstyle T}$ are different.
- But a common m_T scaling is observed for different particles after scaling the radii with Lorentz boost: $f = \sqrt{((\sqrt{\gamma_T} + 2)/3)}$

Results II

- Similar to pion femtoscopy, radii for kaons in all 3 directions also decrease with increasing $m_{\scriptscriptstyle T}$ in all centralities and the trends are fitted with power-law of $m_{\scriptscriptstyle T}$
- R in long direction falls with increasing $m_{\scriptscriptstyle T}$ more steeply compared to out and side direction
- Radii for kaons increase with multiplicity in all k_T bins, the trends are fitted with linear-function of $<dN_{ch}/d\eta>^{1/3}$

Summary

- The radii decrease from most central to peripheral events ans also with increasing m_{τ} .
- For both pions and kaons, the slope of $<dN_{ch}/d\eta>^{1/3}$ scaling of the radii is almost similar in all directions
- The m_T-scaling in out and side directions are less steeper than long direction, corresponding to the larger flow velocity
- Violation of $m_{\scriptscriptstyle T}$ scaling corresponds to the hadronic re-scattering phase, present in the system
- A common effective scaling of 1D radii for all particles is observed after scaling the obtained radii with Lorentz factor

Reference

- 1) P. Chakraborty et. al., Eur. Phys. J. A 57 (2021) 338.
- 2) A. Kisiel et. al., Phys. Rev. C 90, 064914 (2014)
- 3) P. Bozek, Phys. Rev. C 85, 034901 (2012)
- 4) P. Chakraborty [ALICE Collaboration], Quark Matter 2022

ICHEP 2022 Date: 08/07/2022