

# Search for new physics in rare heavy flavor decays at CMS



Istituto Nazionale di Fisica Nucleare

## **Caterina Aruta<sup>1</sup>** on behalf of the CMS Collaboration

<sup>1</sup> University and INFN Bari

**ICHEP 2022**: International Conference on High Energy Physics, 6-13 July 2022, Bologna

#### Introduction

In the Standard Model(SM) there is **NO symmetry** that enforces the conservation of the lepton flavor.

- the observation of neutrino oscillations is an evidence of the lepton flavor violation (LFV) in *neutral* lepton sector
- Charged LFV decays are possible in SM through neutrino oscillations:

 $\mathcal{B}(\tau \rightarrow 3\mu) \sim 10^{-54}$  too rare to be observed

BSM theories predict:  $\mathcal{B}(\tau \to 3\mu) \sim 10^{-8} - 10^{-9}$  at reach with the next-to-come data

### State of the art and channels used for this search



#### Analysis strategy – HF channel



#### Trigger

- 2 muons with  $p_T > 3$  GeV + track with  $p_T > 1.2$  GeV
- invariant mass of triplet in [1.62 2.00] GeV
- distance of  $3\mu$  from beam spot >2 $\sigma$
- 1. Selection of events with D and B mesons decaying into  $\tau$ 

  - - and/or kaons reconstructed as muons



- $\succ$  Two main channels for  $\tau$  production at LHC:
  - Heavy Flavor (HF) channel:  $\tau$  from D, B mesons
  - W channel:  $\tau$  from W bosons

| $pp \rightarrow c \ \overline{c} + \dots$    |                                                                          |
|----------------------------------------------|--------------------------------------------------------------------------|
| $D \to \tau \nu$                             | $4.0	imes 10^{12}~(95\%~D_s,5\%~D^{\pm})$                                |
| $pp \rightarrow b \ \bar{b} +$               |                                                                          |
| $B \rightarrow \tau \nu +$                   | $1.5 \times 10^{12} (44\% B^{\pm}, 45\% B^0, 11\% B_s^0, 0\% B_c^{\pm})$ |
| $B \to D(\tau \nu) + \dots$                  | $6.3 	imes 10^{11} \ (98\% \ D_s, 2\% \ D^{\pm})$                        |
| $pp \rightarrow W + \rightarrow \tau \nu +$  | $6.7 \times 10^{8}$                                                      |
| $pp \rightarrow Z + \rightarrow \tau \tau +$ | $1.3 	imes 10^8 (60 < m(	au 	au) < 120 \; GeV)$                          |
|                                              |                                                                          |

The  $\tau \rightarrow 3\mu$  decay has **never** been observed so far

- The best experimental upper limit was set by **Belle**  $\mathcal{B}(\tau \to 3\mu) < 2.1 \cdot 10^{-8}$  at 90% C.L. [1] At LHC:
  - LHCb:  $\mathcal{B}(\tau \to 3\mu) < 4.6 \cdot 10^{-8}$  at 90% C.L. [2] HF channel
  - ATLAS:  $\mathcal{B}(\tau \to 3\mu) < 3.8 \cdot 10^{-7}$  at 90% C.L. [3] W channel

#### Signal extraction and conclusions

- > Maximum likelihood fit of the 3 muons inv. mass in the 6+2 categories
  - signal MC fit with Gaussian + Crystal Ball functions
  - **background** fit with an **exponential** function



Systematics considered not correlated among the two channels

Analysis with 2017 and 2018 data in both channels is being finalized

|                                          | Source of uncertainty                                                                                   | Uncertair       | nty (%) | Yield (%)       |                  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------|---------|-----------------|------------------|
|                                          | D <sub>s</sub> <sup>+</sup> normalization                                                               | 10              | -       | 10              |                  |
| annel                                    | $\mathcal{B}(\mathrm{D}^+_\mathrm{s}\! ightarrow\!\tau^+ u)$                                            | 4               |         | 3               |                  |
|                                          | $\mathcal{B}(\mathbf{D}_{\mathbf{s}}^{+} \rightarrow \phi \pi^{+} \rightarrow \mu^{+} \mu^{-} \pi^{+})$ | 8               |         | 8               |                  |
|                                          | $\mathcal{B}(B \rightarrow D_s^+ + X)$                                                                  | 16              |         | 5               |                  |
|                                          | $\mathcal{B}(\mathbf{B} \rightarrow \tau + X)$                                                          | 11              |         | 3               |                  |
|                                          | B/D ratio $f$                                                                                           | 11              | 11 3 S  | Systematics are |                  |
| Number of events from L1 trimuon trigger |                                                                                                         | 12              |         | 3               | Systematics all  |
| <u> </u>                                 | Acceptance ratio $A_{3\mu} / A_{\mu\mu\pi}$<br>Muon reconstruction efficiency                           |                 |         | 1               | used as nuisance |
| L.                                       |                                                                                                         |                 |         | 1               | parameters in    |
|                                          | BDT requirement efficiency                                                                              |                 |         | 5               | the fit          |
|                                          | Total                                                                                                   |                 |         | 16              |                  |
|                                          |                                                                                                         | Uncertainty (%) |         | )               |                  |
|                                          | Source                                                                                                  | Barrel          | Endcap  | <b>)</b>        |                  |
| Φ                                        | Signal efficiency                                                                                       | 7.9             | 32      |                 |                  |
|                                          | Limited size of simulated samples                                                                       | 4.3             | 6.2     |                 |                  |
|                                          | Integrated luminosity                                                                                   | 2.5             | 2.5     |                 |                  |
| Ě                                        | $pp \rightarrow W$ cross section                                                                        | 2.9             | 2.9     |                 |                  |
| U                                        | $\mathcal{B}(W \to \mu \nu)$                                                                            | 0.2             | 0.2     |                 |                  |
| >                                        | $\mathcal{B}(W \rightarrow \tau \nu)$                                                                   | 0.2             | 0.2     |                 |                  |
|                                          | Total                                                                                                   | 9.8             | 33      |                 |                  |
|                                          |                                                                                                         |                 |         |                 |                  |

**Systematics** 

#### References

[1] Belle Collaboration, Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau- Pairs, Phys. Lett B 687 (2010) 139, doi:10.1016/j.physletb.2010.03.037, arXiv:1001.3221.

[2] LHCb Collaboration, Search for the lepton flavour violating decay  $\tau \rightarrow \mu^+ \mu^- \mu^+$ , JHEP 02 (2015) 121, doi:10.1007/JHEP02(2015)121, arXiv:1409.8548.

[3] ATLAS Collaboration, Probing lepton flavour violation via neutrinoless  $\tau \rightarrow 3\mu$  decays with the ATLAS detector, arXiv:1601.03567.

[4] CMS Collaboration, Search for the lepton flavor violating decay  $\tau \rightarrow 3\mu$  in proton-proton *collisions at ∫s* = *13 TeV*, JHEP 01 (2021) 163, https://doi.org/10.1007/JHEP01(2021)163.

