## Neptune

The Rome Group: V. Bocci, S. Capuani, D. Carlotti, A. Ciardiello, A. Cruciani, R. Faccini, L. Ficcadenti, E. Furfaro, S. Giagu, F. Iacoangeli, G. Macioce, C. Mancini Terracciano, A. Messina, L. Milazzo, D. Rotili, C. Voena, F. Vulcano



# The Neptune project

- Goal: enhancement of proton therapy effectiveness using nuclear reactions
- Technique: administration of borated and fluorinated compounds, that accumulate in tumor, to patients before irradiation



 $p + {}^{19}F \longrightarrow {}^{16}O + alpha (up to 13 MeV)$ 



Scientific Reports 8, Article number: 1141 (2018) Download Citation 🕹



Clonogenic Survival Curve @ MID SOBP

# The Neptune collaboration

- Activities:
  - modelling of nuclear reactions
  - microdosimetry
  - radiobiology
  - imaging and quantification
- Rome group: imaging and quantification

### **CNR-ISC**

S. Capuani

### **INFN sezione Roma**

V. Bocci, A.Cruciani, F. Iacoangeli, C. Voena ISS

R. Canese, G. Macioce, L. Milazzo, F. Vulcano

Sapienza (Dipartimento di Fisica, Dipartimento di scienze di base

applicate per l'ingegneria, Dipartimento di Farmacia) A Ciardiello R Faccini I Ficcadenti S Giagu C Mancini Te

- A. Ciardiello, R. Faccini, L. Ficcadenti, S. Giagu, C. Mancini Terracciano
- A. Messina, D. Rotili
- Other INFN departments: LNL, LNS, MI, NA, PV, Roma3, TIFPA





## Neptune status & results

### Modelling of nuclear reactions

- improved simulations are not able to explain the radiobiological effect so far

=> the contribution due to the alpha produced in the nuclear reaction is not sufficient

### Microdosimetry

- experimental campaigns have been performed with 3 different detectors to evaluate the dose at cellular dimension scale
- alpha particle observed with the correct energy (but some discrepancy vs simulation in the yield)

### Radiobiology

- Radiobiological effect observed with different beam energies (60 MeV and 150 MeV), different cellular lines and different target molecules (BPA)
- Bystander effect observed for the first time
- Also observed at monocromatic energy direct on cells at the correct energy (no contribution from neutron on <sup>10</sup>B possible)

# Goals of WP2 (imaging)

- Evaluate bio-distributions of borated & fluorinated tracers using <sup>19</sup>F-MRI
- <sup>19</sup>F-MRI performances limited by low SNR ratio
- Possible hardware improvements to <sup>19</sup>F-MRI
  - new antenna (low noise)
  - software defined radio technology for signal digitization
  - new pre-amp & cooling
- Possible sofware improvements to <sup>19</sup>F-MRI
  use of deep learning to denoise and analyse images





9T spectrometer





# <sup>19</sup>F-MRI vs <sup>1</sup>H-MRI

- Conventional clinical MRI = <sup>1</sup>H-MRI
  - detection of signals from mobile protons of water or lipids
  - high spatial resolution and excellent soft tissue contrast
- <sup>19</sup>F has extremely favorable magnetic properties:
  - 100% natural abundance, spin <sup>1</sup>/<sub>2</sub>
  - gyromagnetic ratio very close to <sup>1</sup>H (40.08 vs 42.58 MHz/T)
  - only trace amounts in human body
    => can specifically detect administered
    <sup>19</sup>F-containing compounds without
    background signal

<sup>1</sup>H-MRI



### <sup>1</sup>H-MRI + <sup>19</sup>F-MRI



P. Porcari, S. Capuani, E. D'Amore *et al.* 2008 *Phys. Med.* Biol.

## Hardware improvements to <sup>19</sup>F-MRI

## New Antenna

### L. Ficcadenti

- Goal: better SNR ratio
- Antenna designed with CST simulations
- Housing realised with non magnetic materials



- Prototypes of the new antenna have been realized (1-2-3 loops)
- EM characterization done
- Next tests: First tests on the Brucker 0.35T spectrometer



| File View Channel Sweep Calibration Irace Scale Marker System Window Help |                                                              |        |                         |             |            |  |      |      |         |        |          |
|---------------------------------------------------------------------------|--------------------------------------------------------------|--------|-------------------------|-------------|------------|--|------|------|---------|--------|----------|
| Marker: 1                                                                 | Marker: 1 of 3 Marker 1 16.979687500 MHz 🔂 Marker 1 Marker 2 |        |                         |             |            |  | Mark | er 3 | Off     |        |          |
| Z                                                                         | Tr1                                                          | 80.00  | Tr1 <mark>U Z=50</mark> | )*(1+S11)/( | 1-S11)     |  |      | > 1: | 16.9796 | 88 MHz | 50.906 U |
| 30.00                                                                     | Real                                                         | 70.00  |                         |             |            |  |      |      |         |        |          |
|                                                                           |                                                              | 00.00  |                         |             |            |  |      |      |         |        |          |
|                                                                           |                                                              | 50.00  |                         |             |            |  | 1    |      |         |        |          |
|                                                                           |                                                              | 50.00  |                         | <u></u>     |            |  | ľ    |      |         |        |          |
|                                                                           |                                                              | 40.00  |                         |             |            |  |      |      |         |        |          |
|                                                                           |                                                              |        |                         |             |            |  |      |      |         |        |          |
|                                                                           |                                                              | 30.00  |                         |             | - <b>*</b> |  |      |      |         |        |          |
|                                                                           |                                                              | 20.00  |                         |             |            |  | -    |      |         | *      |          |
|                                                                           |                                                              | 10.00  |                         |             |            |  |      |      |         |        |          |
|                                                                           |                                                              | 10.00  |                         |             |            |  |      |      |         |        |          |
|                                                                           |                                                              | 0.00   |                         |             |            |  |      |      |         |        |          |
|                                                                           |                                                              | -10 00 |                         |             |            |  |      |      |         |        |          |

## Software Defined Radio (SDR)

- Goal: use SDR to process NMR signal before demodulation (this was not found possible on the low field Brucker scanner)
- SDR system bought and installed
- We finalized the SDR setup with GNU-radio and gr-MRI software
- Some data were taken from the above scanner (echo signals)
- Base signal receiving, transmission and manipulation implemented in GNU radio
- Next: use new antenna to acquire signals before demodulation





V. Bocci, D. Carlotti E. Furfaro, F. lacoangeli

# Choice of fluorinated molecule

## Choice of fluorinated molecule

- 4 different fluorinated molecules were taken into consideration A.Ciardiello and studied in MR-Spectroscopy
   S.Capuani
   A.Ciardiello
   D. Rotili
   ISS
- FDG
  5F-phenylanalina
  F-BPA
  F-BPA
   F-BPA
   F<sub>12</sub>B<sub>12</sub>
   F<sub>12</sub>B<sub>12</sub>
   FDG
   For the second stress
   For the second stress





## **Internalization Measurements**

- F-BPA internalization fraction in PANC-1 in agreement with 3 different techniques:
  - 1) neutron autoradiography (Pavia)
  - 2) liquid chromatrography with mass spectroscopy (Caserta)
  - 3) <sup>19</sup>F Magnetic Resonance Spectroscopy (Roma)

| <b>Table 1</b> <sup>11</sup> B concentration obtained by quantitative neutron autoradiography |                   |   |                                  |                                 |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------|---|----------------------------------|---------------------------------|--|--|--|--|
|                                                                                               | Experiment Sample |   | <sup>11</sup> B in ppm (mean±SD) | Internalized fraction (mean±SD) |  |  |  |  |
| ۱                                                                                             | 1                 | 1 | 63 ± 2                           | $0.52 \pm 0.03$                 |  |  |  |  |
| )                                                                                             | 1                 | 2 | 66 ± 2                           | $0.55 \pm 0.03$                 |  |  |  |  |
|                                                                                               | 1                 | 3 | 68 ± 2                           | $0.56 \pm 0.03$                 |  |  |  |  |
|                                                                                               | 2                 | 1 | 56 ± 2                           | $0.47 \pm 0.04$                 |  |  |  |  |
|                                                                                               | 2                 | 2 | 54 ± 2                           | $0.45 \pm 0.04$                 |  |  |  |  |
|                                                                                               | 2                 | 3 | 55 ± 2                           | 0.46 ± 0.04                     |  |  |  |  |

3) f= 0.5 ± 0.1



### 2) f= 0.524±0.008

1



### Internalization measurements

 Paper with in-vitro internalization measurements in PANC-1 under revision by Physica Medica

Multimodal evaluation of <sup>19</sup>F-BPA internalization for BNCT and PBFT potential applications in pancreatic cancer cells

#### Abstract

**Purpose**: One of the major obstacles to the application of therapies such as Boron Neutron Capture Therapy (BNCT) and Proton Boron fusion therapy (PBFT) concerns the measurement and monitoring of BPA concentration in cancer cells. The objective of the present study was to evaluate the in-vitro internalization of 2-fluorinated-4-boronophenylalanine (<sup>19</sup>F-BPA) in the PANC-1 cell line for the potential application of BNCT and/or PBFT in pancreatic cancer. <sup>19</sup>F-BPA carrier has the advantage that its bio-distribution may be in principle monitored in vivo using <sup>19</sup>F- Magnetic Resonance (MR).

**Methods and Materials**: The <sup>19</sup>F-BPA internalization in PANC-1 cells was evaluated using three independent techniques at <sup>11</sup>B concentration equal to 120 ppm: neutron autoradiography, which quantifies boron, liquid chromatography hyphenated to tandem mass spectrometry and UV-DAD which quantifies <sup>19</sup>F-BPA molecule, and <sup>19</sup>F-MR Spectroscopy, which detects fluorine nuclei.

**Results**: Our in vitro studies suggested that <sup>19</sup>F-BPA is well internalized by PANC-1 cells. The three methods provided consistent results of about 50% internalization fraction at 120 ppm. Small variations (less than 15%) in internalization fraction mean value are mainly dependent on the proliferation state of the cells.

**Conclusions**: The ability of <sup>19</sup>F MR Spectroscopy to study <sup>19</sup>F-BPA internalization was validated by well-established independent techniques. The multimodal approach we used suggests <sup>19</sup>F-BPA as promising BNCT/PBFT carrier for the treatment of pancreatic cancer.

## Animal model

- 3 NOD scid mice
- PANC-1 cells orthotopically injected in the pancreas:
  - mouse1 and mouse2 (mouseCRT = control)
- After 3 weeks 200µL of F-BPA in fructose solution administered throught tail vein = 200mg/Kg in line with reported treatments in BNCT
- after 45-50 minutes mice sacrificed

Sample in RED have been studied with MRS, others sent to Pavia for neutron-autoradiography

| Sample                           | Mouse CRT | Mouse 1 | Mouse 2 |
|----------------------------------|-----------|---------|---------|
| Blood ( $\mu L$ )                | 650       | 550     | 530     |
| Liver (g)                        | 1.45      | 1.06    | 1.36    |
| Spleen ( <i>mg</i> )             | 52        | 18      | 38      |
| Kidney ( <i>mg</i> )             | 393       | 364     | 464     |
| Pancreas ( <i>mg</i> )           | 130       | 88      | 149     |
| Fat ( <i>mg</i> )                | 162       | 104     | 187     |
| Skin ( <i>mg</i> )               | 78        | 128     | 186     |
| Lungs $(mg)$                     | 180       | 132     | 185     |
| Heart ( <i>mg</i> )              | 156       | 143     | 132     |
| Stomach ( <i>mg</i> )            | 290       | 248     | 365     |
| Genitourinary sys. ( <i>mg</i> ) | 219       | 266     | 323     |



PANC-1 cell in mouse4 pancreas at immunohisotochemistry

Courtesy of A. Catizzone

- L. Milazzo
- D. Rotili
- F. Vulcano

## MRS Calibration

### S. Capuani A. Ciardiello



Calibration curve



|    | uMol FBPA | Area ratio | SNR rif | SNR F-BPA |
|----|-----------|------------|---------|-----------|
| S1 | 1.30      | 0.84±0.03  | 115.2   | 47.2      |
| S2 | 0.65      | 0.43±0.03  | 123.1   | 17.2      |
| S3 | 0.13      | 0.09±0.03  | 138.4   | 4.0       |
| S4 | 0.06      | 0.05±0.03  | 109.3   | 3.4       |

### Results

S. Capuani A. Ciardiello

- The only samples where we find F-BPA signals are blood in mouse2, genitourinary mouse2, Kidney mouseCRT (at the limit of our sensitivity)
- Neutron autoradiography in pancreas mouse1 finds very little Boron (1ppm <sup>10</sup>B => 5ppm <sup>11</sup>B)
- Checks underway (spectrometer turned off in March=> now back in operation





I. Postuma S . Bortolussi & Pavia group

### Results: mouse4

I. Postuma S . Bortolussi & Pavia group

50

- We analyzed another mouse doubling the second dose => 400mg/Kg
- We observe ~50ppm of <sup>11</sup>B

| Organ      | <sup>10</sup> B | Err | <sup>11</sup> B | Err |
|------------|-----------------|-----|-----------------|-----|
|            | ppm             | ppm | ppm             | ppm |
| Pancreas 1 | 13.8            | 0.5 | 55              | 2   |
| Pancreas 2 | 11.7            | 0.5 | 47              | 2   |
| Pancreas 3 | 12.3            | 0.5 | 49              | 2   |
| Pancreas 4 | 12.7            | 0.5 | 51              | 2   |
| Fegato 1   | 9.6             | 0.5 | 38              | 2   |
| Fegato 2   | 10.5            | 0.5 | 42              | 2   |





## **Future Measurements**

- High-field spectrometers back to operation in Fermi building
- Understand reason of low uptake in mouse pancreas
- We want to perform new in-vitro and ex-vivo measurement with improvements in the protocol for a better quantification:
  - reduce resonance line broadening
    - => apply better shimming and field locking to the spectromenter to reduce field disomogeneities
  - => improve sample preparation i.e."extract" to reduce impact of polar macro-molecules (proteins)
  - use an internal standard (reference molecule mixed with sample)
  - PFTB-DOPA:
    - => see if enhances F-BPA uptake in PANC-1

perfluoro-tert-butoxy 3,4-dihydroxy-Lphenylalanine PFTP-DOPA



Image analysis: deep learning based denoiser

## Denoiser in k space

- Noise in images is Rician distributed, not Gaussian
- We developed a denoiser in k- space
  - noise is gaussian
  - drawback: not always easily acces
- Residual learning scheme
  - Learn noise not signal:
  - Less prone create artifacts
- Test on public "Fast-MRI" datasets, 40000 images
  - <sup>1</sup>H-MRI multicoil dataset with access to k-space
  - high resolution images (ground truth)+ add noise
  - We find improvements applying the denoiser to these images (better PNSR)
  - Need to check on <sup>19</sup>F-MRI images







## **Summary and Perspectives**

- Developed a new antenna and an SDR-based system to improve SNR ratio in <sup>19</sup>F-imaging
  - will perform tests on low field scanner to check actual performances
- Delected F-BPA as F-B tracer and studied its internalization in PANC-1 (case study) => 50% internalization
- Performed first tests for quantification F-BPA in ex-vivo mice models at therapeutic doses (MRS)
  - will repeat in-vitro and ex-vivo tests with improved quantification technique
  - study PFTP-DOPA as F-BPA uptake enhancer
- Develop deep learning based denoiser in k-space for MRI images
  - tested on low SNR <sup>1</sup>H-images
  - need to test on real <sup>19</sup>F images => will try to accumulate a sufficient number of images