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QT & dynamical reduction

Why the quantum properties, most notably, cuperposition of different ctafec at once, do not carry over to
larger objects?

The mechanism at the basic of the transition from Quantum to Clacsical behavior is not embedded in the
original QT

Superpogition principle ic a concequence of the linearity of the Schroedinger equation, which has to break

down at a certain scale.

Phenomenological dynamical models of w. f. collapse (Diss, Ghirardi, Rimini, Weber, Pearle, Adler, Penrose,
Karofhazi, Lukacs, Milburn, Bagsi ...): progressive reduction of the cuperposition, proportional to the increase

of the mass of the system under consideration.
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Dynamical reduction, the idea

modify the Schroedinger dynamics in one capable to deccribe the collapse.
1) Non linear ;
2) Stochactic ;
3) Change the dynamics at the level of the ket states .
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Axioms of QM:

1) every physical system is associated to a Hilbet space, observables are self-adjoint
operators, possible measurement outcomes are:

O Unr' = On |On j’

2) time evolution is governed by the Schordinger equation

, ih ‘1/ O(t)) = Hp(t))
first order in f = deterministic linear =
W)y = Ut to)|d(to)) superposition principle

3) probability of getting a measurement outcome on at time ¢ :

Plo,] = |{out(t)?

4) wavepacket reduction principle (WPR):

|¥(t)) betore measurement — 0, ) alter measurement

genuinely probabilistic, stochastic non-linear



Doe¢ dynamical reduction emerge from cpace-time vncertainty?

Decoherence means dectruction of inferference -> diminiches coherent dicpercion
large dispersion of an obcervable - Quantum ; emall dispersion - Classical
Decoherence should induce clascicality in quantom systeme

Decoherence of various observables can be correlated or anticorrelated

e.g. decoherence of local energy indvces decoherence of position of massive objects

But Nature does not tell vs which observable i the primary, to indvce decoherence on the others and,

hence, c/ascica/ity



Global time uncertainty and decoherence
Dioci, (. (2005), Braz. ]. Phys. 35, 260, Divci, (., and B. (ukacs (1987), Annalen der Physik 44, 488, Disci, (. (1982), Physics
Letterc A 120, 377, A. Bacsi et al,Rev. Mod. Phys. 85,471
Initial ctate of a quantum system is a superposition of two eigenstates of tofal Hamiftonian

V) =c1|Q1) +2|92)

time evolution

(w(t)) = crexp(—ih ' Eqt)|@1) +caexp(ili ' Eat)|@2)

(et us add an uncertainty to the time t—t+0t

and aseume that is distribvted Gavssian, with zero mean, and dispercion which i proportional fo the mean
time, M[(81)’] =T then the density matrix evolves ae:

p(t) = M{ly(1))(w(r)[] =
le1?|@1) (@1] + |c2*[@2) (@2] +
{cicrexp(ih "' AEt)M [exp(ih ™' AESt)] |@2) (@1] +

W& ¥



Global time uncertainty and decoherence

Initial ctate of a quantum system is a superposition of two eigenstates of tofal Hamiftonian

V) =c1|Q1) +2|92)

time evolution

[W(t)) = crexp(—ih™ Ext)|g1) +caexp(ih Ext)| @2)

If we add an uncertainty to the time t —t+0t

(et’c assume that is dictributed Gaussian, with zero mean, and dispercion which i¢ proportional fo the mean
time, M[(81)’] =T then the density matrix evolves ag:

() = M{Jw(0)) (w(r)]] = M [exp(ih-'AES)] = /0
= [e1*@1)(@1] +[e2l*|@2) (92| + B ]
+ {C Crexpth—ALENM [exp(ih— 102 (1] + s R 1
T . — \_ T (AE)? )




Global time uncertainty and decoherence

The time evolvtion for the density mafrix

plt+7)=exp —:g!—t p(t)exp “]‘;T |
Degccribed by the von Neumann equation d
2P = —in"'[H,p]
dt 3
turng to dp |
v 2
— = ~ih[H,p] - 5th™"[H, [H,p]]

6. J. Milburn Prye. Rev. A 44 5401 (1991)



(ocal time un certainty and decoherence

To generalize the concept for a focal time  t. — t + Oty

one defines the correlation  M[dt;8t.] = Tyt

/

Galiteo invariant spatial correfation function

IF the total Hamilfonian is decomposed in the cum of the local ones

dp

7 = —ih~ ][H p] — 2Z‘,Trr [Hy, [Hy ,p]]

The master equation supprecses cuperpositions of eigenstates of local energy



Reminder .. proper time interval

1 0 0 0
0 -1 0 0
In special relativity the Minkowski metric is =19 o0 -1 o
0 O 0 -1
the coordinates of the arbitrary (orentz frame are (20, 2!, 22, 2%) = (ct, z, v, 2)

the infinitesimal time-like interval is ds? = Pdt* — da® — dy? — d2* = N de" de”

due to invariance of The intferval, if we consider the coordinates of an inctantaneous rest frame

ds® = Pdr? — dx? — dy? —dz2 = cdr?



Reminder .. proper time interval

The proper time inferval ic then the integral on the world-line

ds 1
I — —_— — — /“L v
AT / dr /—C AT / . \/ N dx" dz

In general relativity the analogous exprescion for the generic metric fensor yields

1
Ar= [ dr= [ =./gu da* da”
T /PT Lc\/gu £ Zz

and when constant coordinates are chosen

1
A'r=/d'r=/ —\/gﬁdwo
P pc




local time uncertainty and qravity

2¢
In the /Vewtonian limit goo =1 + —

Here then comee the crucial point ... it is ascumed that the gravifational potentiol should not be quantized

BUT that QM requirec an abeolute indeterminacy of the gravitational field.

LE. the gravitational pofential i¢c a c-number ctochastic variable, whose mean value is to be identified with

the classical Newtonian potential.

Then (ocal time flvctuation is relate to a fluctvation of the local gravitational potential

S/dtgoo(rt /drcbrt



.. ¢0 correlations of locaf uncertainties of Newtonian gravity
can fead to correlation of local time vacerfainties.

Can the gravitational field be measured with unlimited precision?

Dioci and (ukacs [ Ann. Phys. 449, 488 (1987)] apply the arguments of [ N. Bohr and (. Rocenteld, K. Dan.
Vidensk. Selsk., Mat.-Fys. Medd. 12, 1 (1933)]: A¢(r,t) = —4rGp(r, t) g(r,t) = —V¢

The apparatus, obeying QM, ic characterized by parameters m, R, T. In reafictic measurements only a

time-space averaged gravitational field is meaningful

g(r,t) = g(r/,t)d*r'dt with |[r—1|<R, |[t—-1|<T/2

VT .
The target is a point-like particle (of mase m) at rest at time t=0, immerced in the field 9. Detector measvres

momentum changes. In the time T the momentum gain is p=mgT
. h
op="/R -~ 0@~ mRT




Can the gravitational field be measured with unlimited precision?

It usefecs fo increase R and T, cince this would decrease the error on average field, not on the inctantanesvs
local field of the Newtonian theory. m can be increased, till its own field does not pertorb g, i.e. till:
h ’ Gm
5g-m ST 5g
mRT R

o(g) ~
Given the optimal macs choice then:
5 R\ /2 ) 5o\ /2
Weopt ™ (ﬁ) o(g) ~ (VT)
IF the limitation is univercal then the actval gravitational field ie:  8(r:t) = gn(r,t) +gs(r,1)

colution of Poiscon Eq.

ctochastic fluctuation



Uncorrelated gravitational field flvctuations

It usefecs fo increace R and T, cince this would decreace the error on average field, not on the inctantaneovs
local freld of the Newtonian theory. m can be increased, till its own field does not pertorb g, i.e. till-
h Gm

Given the optimal macs choice then:

| AR 1/2 y hG 1/2
InOpt e ﬁ O(g) ~ VT

IF the limitation is univercal then the actval gravitational field is:  g(r,t) = gn(r,t) + gs(r,t)

<gsg>=0 ; < go>=——

The cquared dispersion of the averaged q¢ ic inversely proporfional fo the space-time cell volume -> hence g¢ ic

uncorrelated in fime and cpace

< gs(r,t)gs(r/,t') >= hGo(r—1')é(t —t')



Gravitational potential as a stochastic variable

In terms of the potential, this can be reqarded as a ctochastic variable, with momenta:

< @(r,t) >= on(r,t)

< o(r,t) o(r',t") > — < @(r,t) > < o(x',t') > o(t—1t)

v

The covariance function for the gravitational potential ic not dependent on the parameters of the gedanken

apparatus (m, T, R), which may cvggect univercalify of the pofential intrinsic flvctuation.

Going back to the searched correlation of the local time fluctvation ~ M[dt:0ty/| = Tyt

t Gh
—8/ dt'g ]/ ~—c‘2/ di'®(r,t') — Ty =const X A
0 Ir—r|



Master eqaatiou

- — the local time correlation

Tp = CONSt X c
r—r'| ,
ic extremely small

- g— .
cubstitvted in the master equation dE —ih ][H Pl — gh p Z’Crr’ [Hr, [Hy,p]]
= o

yielde
P _ _ i H,p)

dt
- St [ [ 21 0.15@)oel




Master equation

Denote the configuration coordinates (clascical and spin) of the dynamical system by X. The corvesponding
mass density at the point r ic  f(r|X)

Given the coordinate eigenstate (x> we have  flr| X)o(X' —X)=(X' 1A(r) | XD
[ra(X

So if one introduces the damping time:
Zfi / /d31 d*r' x

[(I\)— IS (] X) = £(e'] X7)]

|l —l’l

the macter equation becomes

(XA X' = (—i/h) (X| [Ho, p()] 1 X"

—[7a(X, X)) 71X X)



Enerqy decoherence

CXIBY XS = (—irh) (X [ Aoy B0 1 X [ra(X, X') Zh//d‘r &' x
—— (X)) — FEIXDNFEIX) = FIX)
— (X, X)) CXIBO XY . S

IF the difference between the mase distributions of two ctatee [X> and [X> in superposition becomes big
the corresponding damping time becomes short
the corresponding off-diagonal terms of the density operator vanish

this QM violating phenomenon is ENERGY DECOHERENCE

in Diosi approach.
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Other theories of space-time
uncertainty indvced decoherence ..

an incomplete list



Other theories of space-time
uncertaintly indvced decoherence

- Milburn assumes that Planck-time is the smallect time,

- Adler derivee quantum theory in the special limit of a hypothetical fundamental dynamics,

they chare the same master Eq.

- Penrose focuses on the conceptual uncertainty of location in space-time,

Penrose and Diosi model chare the same ‘decay time”

The theories have different mathematical apparatuses, interprefations, metaphysics, e.t.c., but have common
divisors. “The fact that they are similar but not identical cuggests that the involvement of gravity in
wave-vector reduction is strongly indicated, but the exact mathematical freatment remains to be found.” A.
Bacsi (veferred to Gravity-related collapse)



The model of Penrose

Consider a quantum system which consists of a linear superposition of two well-defined ctationary ctatfes

having the came energy € ) = ala) + b|B)

IF gravitation is ignored, ac is done in standard quantum theory, the superpocition ic also ctationary, with the
came enerqgy € , M _ E.|y)

ot
BUT when gravitation is introduced in the play, there will be a nearly classical spacetime associated with the
ctate |a) and a Killing vector associated with it which represents the time displacement of stationarity, and
the same for |B).The two Killing vectors can be identified with each other only if the two space-times can be
identified point by point. BUT general covariance forbids that, cince the matter distributions ascociated with

the fwo states are different, in the presence of a background gravitational field.



On the other hand, unitary evolvtion ;Z;l}cﬁ, umatilee;lgoréﬁfsﬁfap e Ermes the exictence of a
Sehdloedinger operator which applies to the superposition in the same way that it applies fo the individval

ctafec.

Ite action on the superpocition ic the cuperposition of ife action on individual states.

|

Conflict between the demands of QM and of General Relativity.

Imagine to make an approximate point-wise identification between the fwo spacetimes -> clight error in the
identification of the Schlloedinger operators for the two cpace-times -> clight uncertainty in the enerqy of
the superpogition. In the Newtonian approximation of the order of the gravitational celf-enerqy of the mase

distribvtion in the two cuperposed ctafes.
Lifetime: T/EG  (the same as for Diosi model)

beyond which time the cuperposition will decay.



Are D-P modelc parameter free?

Unfortunately not!
€.9. consider a rigid, homogeneous sphere of radive R and mass m. Then the configuration X is the c.m.
coordinate x, and the dvmping time: fra(X, X') / / il
Zfi
[(l\) f(@IX) = f(|X")]

|l x l’l
The self-interaction ic divergent for a point-like particle! -> the w.f. reduction should be instantaneous ->

absurd

Penrose - which are the basic stable states to which the superposition decays? They are the stationary

colutions of the Shroedinger-Newton equation: 5 (;_'; _— :l_) T2y
47T

In thic case the Sh. dynamics ic affected by the particle’s own gravitational field! Moreover the dynamics
ceems to setfup deferminictically.
Where is the stochasticity which drivec to the Born rule? IF the evolution is deterministic & non-linear

cuperlominar propagation shovld appear.



Are D-P modelc parameter free?

Unfortunately not!

€.9. consider a rigid, homogeneous sphere of radive R and mass m. Then the configuration X is the c.m.

. A » D -
coordinate x, and the dvmping time ra(,x) = KU (jx — x']) — U(0)]"
The self-interaction ic divergent for a point-like particle! -> the w.f. reduction should be instantaneous ->
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Penrose - which are the basic stable states to which the superposition decays? They are the stationary
colutions of the S hkoediuger—/\/ewtau equation: i o h? 720

B9t~ 2m
In thic case the Sh. dynamics ic affected by the particle’s own gravitational field! Moreover the dynamics
ceems to setfup deferminictically.
Where is the stochasticity which drivec to the Born rule? IF the evolution is deterministic & non-linear

cuperlominar propagation shovld appear.



Are D-P modelc parameter free?

Un(’ort«naz‘e/y not!

€.9. consider a rigid, homogeneous sphere of radive R and mass m. Then the configuration X is the c.m.

. A » D -
coordinate x, and the dvmping time ra(,x) = KU (jx — x']) — U(0)]"
The self-interaction ic divergent for a point-like particle! -> the w.f. reduction should be instantaneous ->

absurd

Penrose - which are the basic stable states to which the superposition decays? They are the stationary

colutions of the ghkoedinger—/Vewtau equation: ; h(;—l; g ol )h_') v T
A T
V2@ = 4nGm|¥|?

In thic case the Sh. dynamics ic affected by the particle’s own gravitational field! Moreover the dynamics
ceems to setfup deferminictically.
Where is the stochasticity which drivec to the Born rule? IF the evolution is deterministic & non-linear

cuperlominar propagation shovld appear.



Are D-P modelc parameter free?

Penrose - which are the basic stable states to which the superposition decays? They are the stationary
colutions of the Shroedinger-Newton equation.

Then the mase dencity of the particle is  ju(1) = mlb(r, 1)

We recently cet an experimental lower bound R > 0.54 * 107 m (90% c.l) on the cize of the particle’s

mass density which exclvdes the proposal of Penroce. i

In our experimenta/ citvation the propocal of Penrose ggi 5 8
(mean square dicplacement of a nucleus in the lattice "g g 35
of the target material) correcponds fo 0.05 © 107 m. ““I%L”

& P 4

| ] 1 | 1
107'® 107" 107" 1072 107" 10710 107°

Nature Physice 17, 24-78 (2021) . @

»

R, (m)


https://www.nature.com/nphys?proof=t

Are D-P modelc parameter free?

Diosi has a different proposal, he infroduces a minimom length R which limits the spatial resolution of the

mass density, a chort-length cutoff to regularize the mass density.
€6 becomes a function of R the larger R the longer the collapee time.

Dioci'c proposal ic still at stake.



Recently the need for the introduction of ‘colored” - i.e. non-whife correlotion in time - collapse models was

rised

A. Vinante, H. Ulbricht, AVS Quantom Sei. 3, 045602 (2021); https://doi.org/10.1116/5.0023450
M. Carlesco, A. Bacsi, (. Ferialdi, The Eurgpean Physical Journal D, 72, 157 (2018)

M. Toro s, 6. Gasbarri, and A. Bassi, Phys. (ett. A 381, 3921 (2017)

S (. Adler and A. Bagsi, ]. Phys. A 40, 15083 (2007).

S (. Adler and A. Bassi, ]. Phys. A 41, 395308 (2008).

A. Bacsi and (. Ferialdi, Phys. Rev. A 80, 012116 (2009).

(. Ferialdi and A. Bassi, Phys. Rev. A 86, 022108 (2012).

S (. Adler, A. Bassi, and S. Donadi, ]. Phys. A 46, 245304 (2013).

M. Bilardello, S Donadi, A. inante, and A. Bacsi, Physica A 462, 764 (2016)


https://doi.org/10.1116/5.0073450
https://link.springer.com/journal/10053

Fig. 4 Mapping of the A — r¢ CSL parameters: the proposed theoret-
ical values (GRW [6], Adler [24,25]) are shown as black points. The
region excluded by theoretical requirements is represented in gray, and
itis obtained by imposing that a graphene disk with the radius of 10 pum
(about the smallest possible size detectable by human eye) collapses in
less than 0.01 s (about the time resolution of human eye) [31]. Contrary
to the bounds set by experiments, the theoretical bound has a subjec-
tive component, since it depends on which systems are considered as
“macroscopic”. For example, it was previously suggested that the col-
lapse should be strong enough to guarantee that a carbon sphere with the
diameter of 4000 A should collapse in less than 0.01 s, in which case the
theoretical bound is given by the dash-dotted black line [36]. A much
weaker theoretical bound was proposed by Feldmann and Tumulka, by
requiring the ink molecules corresponding to a digit in a printout to col-
lapse in less than 0.5 s (red line in the bottom left part of the exclusion
plot, the rest of the bound is not visible as it involves much smaller
values of A than those plotted here) [37]. The right part of the parameter
space is excluded by the bounds coming from the study of gravitational
waves detectors: Auriga (red), Ligo (Blue) and Lisa-Pathfinder (Green)
[30]. On the left part of the parameter space there is the bound from the
study of the expansion of a Bose-Einstein condensate (red) [28] and
the most recent from the study of radiation emission from Germanium
: (purple) [22]. This bound is improved by a factor 13 by this analysis
: performed here, with a confidence level of 0.95, and it is shown in
L orange
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CSL

averaged density matrix evolution can be derived from a standard
Schroedinger equation with a random Hamiltonian. Such equation does not
lead to the state vector reduction, because it is linear, but reproduce the
same noise averaged density matrix evolution (photon emission rate ..)

Hror = H =17 Y2 [ N 0] 00v5) &

N(y,t) = /g(.v—x')&(X) &'z

and &) = dW(x)/d is a white noise field (in the simplest case), with
correlation function

E[§ (x)&s(y)] = 6@ —s)d(x—y)
So N is a Gaussian noise field, with zero mean, and correlation

function: gy, vy, 91 =56 - )Fx— y), PO = = _4;rc)3e—f/4r€-.



The Hamoltonian density:

Hror = Hp + Hr + HinT-

L b B N
Ho= 5 VU - VY +VI'Y — Ry Ny 'y,

1 _— .
i (g
HR 2 (80 - 0)

h 2
Hint = iy A -V + —AZy 'y
m 2m



The Hamoltonian density:

Hror = Hp + Hr + HinT-

2
h- m

Hp = EVW VY +Vy'y — h-W%NW\//-

1 y. o B
= E" S
HR 2 (80 L + l,l())

Y

VA VY + —A%y Ty
2m

_he
HiNT =1—
m

perturbation terms

the calculation is performed at first orderin _/yande
So the first-order transition amplitude for a charged particle to emit
a photon, as a consequence of the interaction with the noise field is calculated.



If the correlation function in time of the collapsing noise is a delta, the
expected rate of radiation, as a consequence of the interaction of the
non-relativistic particle with the noise filed (spontaneous radiation) is:

dI’ Lhe?

= .
dp  2m2eoc3mgrip



Emission rate in the non-white noise case

If a general correlation function in time is considered for the collapsing
noise:
E[N(x,t)N(y,s)] = f(t —s)F(x —y)

the photon emission rate changes as:

dI’ | S s dl’
i = ~[f(0) + f(pc)] x —
dp |NON-WHITE 2 dp |wurte

Second term: the probability of emitting a photon with momentum
p is proportional to the weight of the Fourier component of the noise
corresponding to the frequency wp = pc.



The first term is independent on the photon momentum

dr - . dr
dr s oo
dp |NoN-wHITE 2[f’ LR dp |wurre
such term is un-physical. It arises because perturbation theory is
formally not valid in the large time limit, since the effect of the noise
accumulates continuously in time. Such terms disappears when adding

higher terms in the perturbative expansion, or the perturbative
calculation is “cured” by e.g. confining the noise.



Time correlation functions for the stochastic noise considered in

literature: )
f(t . S) = ?ce_Qc“—s]

Q'Z

whose Fourier transform is ST

or the Gaussian case:
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