PRELIMINARY RESULTS FROM THE VIP-2 EXPERIMENT

<u>Fabrizio Napolitano</u> on behalf of the VIP-2 Collaboration

napolitano.fabrizio@lnf.infn.it

Symposium "Fundamental Physics with Exotic Atoms and Radiation Detectors"

Period	Files	Current
May 2019	07/05/2019->14/05/2019	0A
May-June 2019	14/05/2019->12/06/2019	150A
June-July 2019	12/06/2019->10/07/2019	0A
July 2019	10/07/2019->29/07/2019	180A
August 2019	31/07/2019->04/09/2019	0A
September 2019	20/09/2019->01/10/2019	180A
October-November 2019	01/10/2019->05/11/2019	0A
November-December 2019	05/11/2019->19/12/2019	180A
December January 2020	19/12/2019->21/01/2020	0A
January February March 2020	21/01/2020->18/03/2020	180A
March May 2020	18/03/2020->04/05/2020	0A
May 2020	05/05/2020->07/07/2020	180A
July September 2020	09/07/2020->03/09/2020	0A
September 2020	03/09/2020->16/09/2020	180A
September October 2020	18/09/2020->06/10/2020	180A
October December 2020	06/10/2020->16/12/2020	Moduled
December January 2021	17/12/2020->08/01/2021	0A
January March 2021	08/01/2021->11/03/2021	180A
March May 2021	12/03/2021->11/05/2021	0A

2

ALL AVAILABLE VIP2 DATA

4

Analysis Strategy

8 params

$\int = polynomial(1) + Gaussian Ni + Gaussian Cu$

6

Analysis Strategy

Analysis Strategy

Analysis Strategy

 $\mathbf{f}^{wc}(\boldsymbol{\theta}) = yield_{Ni} * Ni(\theta_{1,2}) + yield_{Cu} * Cu(\theta_{3,4}) + yield_{pol1} * pol_1(\theta_5) + yield_{PEPV} * PEPV(\theta_4)$

 $\mathbf{f}^{woc}(\boldsymbol{\theta}) = (yield_{Ni} * Ni(\theta_{1,2}) + yield_{Cu} * Cu(\theta_{3,4}) + yield_{pol1} * pol_1(\theta_5))$

Likelihood

Poissonian terms

 $\mathcal{L} = \text{Poiss}(Data^{wc} | \mathbf{f}^{wc}(\boldsymbol{\theta})) \times \text{Poiss}(Data^{woc} | \mathbf{f}^{woc}(\boldsymbol{\theta}) \times \text{SCALE}) \times$

× Gaus(SCALE – t^{wc}/t^{woc} , 1e - 3) × Gaus($\theta_1 - \mu_{Ni}$, 2eV) × Gaus($\theta_3 - \mu_{Cu}$, 2eV) Constraints

10

Analysis Strategy

Likelihood

$\mathcal{L} = \text{Poiss}(Data^{wc} | \mathbf{f}^{wc}(\boldsymbol{\theta})) \times \text{Poiss}(Data^{woc} | \mathbf{f}^{woc}(\boldsymbol{\theta}) \times \text{SCALE}) \times$

× Gaus(SCALE – t^{wc}/t^{woc} , 1e - 3) × Gaus($\theta_1 - \mu_{Ni}$, 2eV) × Gaus($\theta_3 - \mu_{Cu}$, 2eV)

CLs Analysis

Bayesian Analysis

Analysis Strategy: CLs Method

Asimov Dataset

Asimov useful also to understand sensitivity of the experiment

An Asimov dataset is generated for a particular set of model parameters such that the maximum likelihood best-fit value of all those parameters are equal to their generated values

MLE parameters

Expected limits

Expected 90% Upper Limit on Signal: 136

Expected+Observed limits

Observed 90% Upper Limit on Signal: 97

Expected+Observed limits

Observed 90% Upper Limit on Signal: 97

Expected+Observed limits

Observed 90% Upper Limit on Signal: 97

Marginalized Probability density $p(\theta_i | \mathcal{D}, M) = \int p(\theta | \mathcal{D}, M) \prod_{i \neq i} d\theta_{j'}$

Adaptive Metropolis-Hastings MCMC

https://chi-feng.github.io/mcmc-demo/app.html? algorithm=RandomWalkMH&target=banana

Adaptive Metropolis-Hastings MCMC

https://chi-feng.github.io/mcmc-demo/app.html? algorithm=RandomWalkMH&target=banana

Adaptive Metropolis-Hastings MCMC

https://chi-feng.github.io/mcmc-demo/app.html? algorithm=RandomWalkMH&target=banana

Bayesian Analysis Method

Likelihood

 $\mathcal{L} = \text{Poiss}(Data^{wc} | \mathbf{f}^{wc}(\boldsymbol{\theta})) \times \text{Poiss}(Data^{woc} | \mathbf{f}^{woc}(\boldsymbol{\theta}) \times \text{SCALE}) \times$

Scorporate Constraints from the Likelihood In bayesian framework they are interpreted as Priors

Energy [eV]

RooStat Bayesian - Bonus

RooStat provides a crosscheck with another independent framework

VIP-2 Limits as of Now

Upper limit $\beta^2/2$ vs time

VIP-2 Limits as of Now

Upper limit $\beta^2/2$ vs time

VIP-2 Before shielding: proceeding publication

40 days (@ 100 A) and 61 days (@ 0 A) of data taking before setup finalization

Divided dataset: SDD10 not working in part of the dataset & different shielding conditions

VIP-2 Before shielding: proceeding publication

shielding
counts ^{wc2} = 1071
counts ^{woc2} = 1673
t ^{wc2} = 3442984
$t^{woc2} = 5248077$

33

 $L = \text{Poiss}(N^{1,wc}|S^1 + B^1) \times \text{Poiss}(N^{1,woc}|B^1 \times SCALE^1) \times \text{Poiss}(N^{2,wc}|S^2 + B^2) \times \text{Poiss}(N^{2,woc}|B^2 \times SCALE^2)$ $\times \text{Gauss}(SCALE^1, t^{1,wc}/t^{1,woc}, 0.001) \times \text{Gauss}(SCALE^2, t^{2,wc}/t^{2,woc}, 0.001)$

where $S^{1,2}=F^{1,2}\beta^2/2\epsilon^{1,2}$

and F is a factor which depends only on the $t^{1,2,wc}$

VIP-2 Before shielding: proceeding publication

 $\beta^2/2$ from close encounters: 3.4-43 $\beta^2/2$ from scattering: 4.3e-31

Conclusions

- Statistical Model for VIP-2 analysis ready
- Two-facet approach for the data analysis using well established tools: ROOT and BAT
 - Modified frequentist CLs -> more conservative β²/2 from scattering: 4.32e-31
 - Substitution $\beta^2/2$ from scattering: 4.14e-31
 - Bayesian method repeated with independent method -> RooStat & yields very similar results
- > Publication using partial shielding on the way

Many thanks for the attention!

Questions?

VIP-2 Limits as of Now

