
XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics 1

Interaction with
the Geant4

Kernel-I
Davide Chiappara

University of Padova (UNIPD)
Istituto Nazionale di Fisica Nucleare (INFN)

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

At initialization At execution

G4VUserDetectorConstruction

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction

2

G4VUserPhysicsList is the base class for a "mandatory user

class" (see Section 2.1), in which all physics processes and all particles

required in a simulation must be registered. The user must create a class

derived from G4VUserPhysicsList and implement the pure

virtual method ConstructProcess().

G4VUserPhysicsList

G4VUserActionInitialization

Global: only one instance exists in
memory, shared by all threads.

Local: an instance of each action class
exists for each thread.
(*) Two RunAction's allowed: one for master and
one for threads

User classes(...continued)

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• Run, Event, Track, ...
• Optional user action classes
• Command-based scoring
• Accumulables
• Analysis tools

3

Contents

Part I: Run,
Track, Event, ...

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• The following keywords are often used in
Geant4
• Run, Event, Track, Step
• Processes: At Rest, Along Step, Post Step
• Cut (or production threshold)

5

Geant4 terminology: an overview

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• One Run consists of

• Event #1 (track #1, track #2,)
• Event #2 (track #1, track #2,)
•
• Event #N (track #1, track #2,)

Run
Event 0

Event 1

Event 2

Event 3

track 1 track 3track 2 track 4

track 1 track 3track 2

track 1

track 1 track 3track 2 track 4

6

Run, Event and Track

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• As an analogy with a real experiment, a run of Geant4 starts
with ‘Beam On’

• Within a run, the user cannot change
• The detector setup
• The physics setting (processes, models)

• A run is a collection of events with the same detector and
physics conditions

• The G4(MT)RunManager class manages the processing of
each run, represented by:
• G4Run class
• G4UserRunAction for an optional user hook

7

In Geant4, Run is the largest unit of simulation. A run consists of a sequence of

events. Within a run, the detector geometry, the set up of sensitive detectors, and

the physics processes used in the simulation should be kept un- changed. A run is

represented by a G4Run class object. A run starts with BeamOn() method of

G4RunManager. G4Run represents a run. It has a run identification number,

which should be set by the user, and the number of events simulated during the

run. Please note that the run identification number is not used by the Geant4

kernel, and thus can be arbitrarily assigned at the user's convenience.

The Run (G4Run)

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• An Event is the basic unit of simulation

• At the beginning of event, primary tracks are generated and
they are pushed into a stack

• Tracks are popped up from the stack one-by-one and
‘tracked’

• Secondary tracks are also pushed into the stack
• When the stack gets empty, the processing of the event is

completed

• G4Event class represents an event. At the end of a successful
event it has:

• List of primary vertices and particles (as input)
• Hits and Trajectory collections (as outputs)

8

The Event (G4Event)

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• The Track is a snapshot of a particle and it is represented by
the G4Track class

• It keeps ‘current’ information of the particle (i.e. energy,
momentum, position, polarization, ..)

• It is updated after every step
• The track object is deleted when:

• It goes outside the world volume
• It disappears in an interaction (decay, inelastic scattering)
• It is slowed down to zero kinetic energy and there are no

'AtRest' processes
• It is manually killed by the user

• No track object persists at the end of the event

• G4TrackingManager class manages the tracking
• G4UserTrackingAction is the optional User hook

9

The Track (G4Track)

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• After each step the track can change its state
• The status can be (red can only be set by the User)

10

G4Track status

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• G4Step represents a step in the particle propagation
• A G4Step object stores transient information of the

step
• In the tracking algorithm, G4Step is updated each
time a process is invoked (e.g. multiple scattering)

• You can extract information from a step after the step
is completed, e.g.

• in ProcessHits() method of your sensitive detector
(later)

• in UserSteppingAction() of your step action class
(later)

11

The Step (G4Step)

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• The G4Step has the information about the two
points (pre-step and post-step) and the ‘delta’
information of a particle (energy loss on the step,
.....)

• Each point knows the volume (and the material)
• In case a step is limited by a volume boundary, the

end point physically stands on the boundary and it
logically belongs to the next volume

12

The Step in Geant4

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• A G4Step object contains

• The two endpoints (pre and post step) so one has access
to the volumes containing these endpoints

• Changes in particle properties between the points
• Difference of particle energy, momentum,
• Energy deposition on step, step length, time-of-flight, …

• A pointer to the associated G4Track object

• Volume hierarchy information
• G4Step provides many Get... methods to access these

information or objects
• G4StepPoint* GetPreStepPoint(),

13

G4Step object

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• To check, if a step ends on a boundary, one may compare if
the physical volume of pre and post-step points are equal

• One can also use the step status
• Step Status provides information about the process that

restricted the step length

• It is attached to the step points: the pre has the status of
the previous step, the post of the current step

• If the status of POST is fGeometryBoundary, the step
ends on a volume boundary (does not apply to world
volume)

• To check if a step starts on a volume boundary you can
also use the step status of the PRE-step point

14

The Geometry Boundary

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics 15

Step Concept and Boundaries

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

G4StepPoint* preStepPoint = step -> GetPreStepPoint();
G4StepPoint* postStepPoint = step -> GetPostStepPoint();

// Use the GetStepStatus() method of G4StepPoint to get the status of the
// current step (contained in post-step point) or the previous step
// (contained in pre-step point):
if(preStepPoint -> GetStepStatus() == fGeomBoundary) {
 G4cout << "Step starts on geometry boundary" << G4endl;
}
if(postStepPoint -> GetStepStatus() == fGeomBoundary) {
 G4cout << "Step ends on geometry boundary" << G4endl;
}

// You can retrieve the material of the next volume through the
// post-step point:
G4Material* nextMaterial = step->GetPostStepPoint()->GetMaterial();

16

Example: boundaries

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

•Run: is a collection of events with the same detector and
physics conditions;

•Event: is a collection of primary and secondary particles
in a stack

•Track: is a snapshot of a particle
•Step: represents a step in the particle propagation

•Processes: …
•Cut: …
•Worker / Master threads: …

17

Geant4 terminology: an overview

Part II: Optional
user action classes

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• Five base classes with virtual methods the user may override
to step during the execution of the application

• G4UserRunAction
• G4UserEventAction
• G4UserTrackingAction
• G4UserStackingAction
• G4UserSteppingAction

• Default implementation (not purely virtual): Do nothing ☺
• Therefore, override only the methods you need.

19

Optional User Action classes

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics 20

This class has three virtual methods which are invoked by G4RunManager for each run:

GenerateRun() ==> G4Run* GenerateRun()
This method is invoked at the beginning of BeamOn. Because the user can inherit the
class G4Run and create his/her own concrete class to store some information about the
run, the GenerateRun() method is the place to instantiate such an object

BeginOfRunAction() ==> void BeginOfRunAction(const G4Run*)
This method is invoked before entering the event loop. This method is invoked after the
calculation of the physics tables.

EndOfRunAction() ==> void EndOfRunAction(const G4Run*)
This method is invoked at the very end of the run processing. It is typically used for a
simple analysis of the processed run.

G4UserRunAction

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics 21

This class has two virtual methods which are invoked by G4EventManager for each
event:

beginOfEventAction() ==> void BeginOfEventAction(const G4Event*)
This method is invoked before converting the primary particles to G4Track
objects. A typical use of this method would be to initialize and/or book histograms
for a particular event.

endOfEventAction() ==> void EndOfEventAction(const G4Event*)
This method is invoked at the very end of event processing. It is typically used for a
simple analysis of the processed event.

G4UserEventAction

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

This class has three virtual methods, ClassifyNewTrack, NewStage and PrepareNewEvent which
the user may override in order to control the various track stacking mechanisms.

ClassifyNewTrack() ==>
G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*)

is invoked by G4StackManager whenever a new G4Track object
is "pushed" onto a stack by G4EventManager.

G4ClassificationOfNewTrack has four possible values:
fUrgent - track is placed in the urgent stack (default)
fWaiting - track is placed in the waiting stack, and will not be simulated until the urgent stack is empty
fPostpone - track is postponed to the next event
fKill - the track is deleted immediately and not stored in any stack.

These assignments may be made based on the origin of the track which is obtained as follows:
G4int parent_ID = aTrack->get_parentID();
where
parent_ID = 0 indicates a primary particle
parent_ID > 0 indicates a secondary particle
parent_ID < 0 indicates postponed particle from previous event.

22

G4UserStackingAction

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics 23

NewStage() ==> void NewStage()
is invoked when the urgent stack is empty and the waiting stack contains
at least one G4Track object.

PrepareNewEvent() ==> void PrepareNewEvent()
is invoked at the beginning of each event. At this point no primary
particles have been converted to tracks, so the urgent and waiting stacks
are empty.

G4UserStackingAction

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics 24

UserSteppingAction() ==> void UserSteppingAction(const g4Step*)

→Get information about particles←
kill tracks under specific circumstances

G4UserSteppingAction

Part III:
Command-based

scoring

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• Define a scoring mesh
/score/create/boxMesh <mesh_name>

• Define mesh parameters
/score/mesh/boxsize <dx> <dy> <dz>
/score/mesh/nbin <nx> <ny> <nz>

• Define primitive scorers
/score/quantity/energyDeposit <scorer_name>
/score/quantity/cellFlux <scorer_name>
currently 20 scorers are available

UI commands for scoring → no C++ required, apart from accessing
G4ScoringManager

• Define filters and close
/score/filter/particle <filter_name> <particle_list>
/score/filter/kineticEnergy <filter_name> <Emin> <Emax> <unit>
 currently 5 filters are available
/score/close

• Output
/score/drawProjection <mesh_name> <scorer_name>
/score/dump, /score/list

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Detector/commandScore.html

int main() {
 ...
 G4ScoringManager::GetScoringManager();
 ...
}

26

Command-based Scoring

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Detector/commandScore.html

27

Detached session:
Geant4 analysis

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• Templated class can be used to facilitate merging of
the values accumulated on workers to the master thread

• Accumulable during Run
• Value merge at the end (explicit)
• Scalar variables only (otherwise, expert)

• Alternative to ntuples/histograms (later)
• Managed by G4AccumulableManager

<=10.2: Previously named G4Parameter!

29

templated class can be used instead of built-in types in order to facilitate merging of the values accumulated on workers to the

master thread. The G4Parameter<T> object has, besides its value of the templated type T, also a name, the initial value, which

the value is set to in Reset() function and a merge mode, specifying the operation which is performed in Merge() function.

The merge mode is defined in G4MergeMode class enumeration. The default parameter merge operation is addition.

G4Accumulable<T>

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• A basic analysis interface is available in Geant4 for
histograms (1D and 2D) and ntuples

• Unified interface to support different output formats
• ROOT, CSV, XML, and HDF5
• Code is the same, just change one line to switch from

one to another

• Everything is done using G4AnalysisManager
• UI commands available

30

The new analysis category based on g4tools was added in the Geant4 9.5 release with the aim to provide the users a “light” analysis tool

available directly with Geant4 installation without a need to link their Geant4 application with an external analysis package. It consists of

the analysis manager classes and it includes also the g4tools package.

g4tools provides code to write and read histograms and ntuples in several formats: ROOT, XML AIDA format, CSV (comma-separated

values format) and HBOOK. It is a part of inlib and exlib libraries, that include also other facilities like fitting and plotting.

The analysis classes provide a uniform, user-friendly interface to g4tools and hide the differences according to a selected output technology

from the user. They take care of a higher-level management of the g4tools objects (files, histograms and ntuples), handle allocation and

removal of the objects in memory and provide the access methods to them via indexes. They are fully integrated in the Geant4 framework:

they follow Geant4 coding style and also implement the built-in Geant4 user interface commands that can be used by users to define or

configure their analysis objects.

Geant4 Analysis

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

Selection of output format is performed by
setting the proper file extension in
RunAction::BeginOfRunAction()
 // Get analysis manager
 auto analysisManager = G4AnalysisManager::Instance();

 // Open an output file
 //
 G4String fileName = "B4.root";
 // Other supported output types:
 // G4String fileName = "B4.csv";
 // G4String fileName = "B4.hdf5";
 // G4String fileName = "B4.xml";
 analysisManager->OpenFile(fileName);
 G4cout << "Using " << analysisManager->GetType() << G4endl;

31

The analysis manager classes provide uniform interfaces to the g4tools package and

hide the differences between use of g4tools classes for the supported output formats

(ROOT, AIDA XML, CSV and HBOOK).

An analysis manager class is available for each supported output format:

• G4CsvAnalysisManger

• G4RootAnalysisManger

• G4XmlAnalysisManger

• ExG4HbookAnalysisManger

For a simplicity of use, each analysis maneger provides the complete access to all

interfaced functions though it is implemented via a more complex design.

Geant4 analysis

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics 32

Histograms

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

void MyRunAction::BeginOfRunAction(const G4Run* run)
{
 // Get analysis manager
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->SetVerboseLevel(1);
 man->SetFirstHistoId(1);

 // Creating histograms
 man->CreateH1("h", "Title", 100, 0., 800*MeV);
 man->CreateH1("hh", "Title", 100, 0., 10*MeV);

 // Open an output file
 man->OpenFile("myoutput.root");
}

Open output file

ID=1

ID=2

Start numbering of
histograms from ID=1

33

To use Geant4 analysis, an instance of the analysis manager must be created. The

analysis manager object is created with the first call to

G4AnalysisManager::Instance(), the next calls to this function will just

provide the pointer to this analysis manager object. The client code is responsible

for deleting the created object what is in our example done in the run action

destructor.

Open file and book histograms

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
 auto man = G4AnalysisManager::Instance();
 man->FillH1(1, fEnergyAbs);
 man->FillH1(2, fEnergyGap);
}

MyRunAction::~MyRunAction()
{
 auto man = G4AnalysisManager::Instance();
 man->Write();
}

MyRunAction::EndOfRunAction(const G4Run* aRun)
{
 ...
 auto man = G4AnalysisManager::Instance();
 man->CloseFile();
}

ID=1

ID=2

34

Fill histograms and write the file

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

ParticleID Energy x y

0 99.5161753 -0.739157031 -0.014213165
1 98.0020355 1.852812521 1.128640204
2 100.0734469 0.863203688 -0.277949199
3 99.3508677 -2.063452685 -0.898594988
4 101.2505954 1.030581054 0.736468229
5 98.9849841 -1.464509417 -1.065372115
6 101.1547644 1.121931704 -0.203319254
7 100.8876748 0.012068917 -1.283410959
8 100.3013861 1.852532119 -0.520615895
9 100.6295882 1.084122362 0.556967258
10 100.4887681 -1.021971662 1.317380892
11 101.6716567 0.614222096 -0.483530242
12 99.1083093 -0.776034456 0.203524549
13 97.3595776 0.814378204 -0.690615126
14 100.7264612 -0.408732803 -1.278746667

35

Ntuples

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• g4tools support ntuples

• any number of ntuples

• any number of columns

• supported types: int/float/double

• For more complex tasks (other functionality of
ROOT TTrees) have to link ROOT directly

36

Ntuples Support

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

void MyRunAction::BeginOfRunAction(const G4Run* run)
{
 // Get analysis manager
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man-> SetFirstNtupleId(1);

 // Creating ntuples
 man->CreateNtuple("name", "Title");
 man->CreateNtupleDColumn("Eabs");
 man->CreateNtupleDColumn("Egap");
 man->FinishNtuple();

 man->CreateNtuple("name2","title2");
 man->CreateNtupleIColumn("ID");
 man->FinishNtuple();
}

ID=1

Start numbering of
ntuples from ID=1

ID=2

37

Book Ntuples

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• File handling and general clean-up as shown for
histograms

void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->FillNtupleDColumn(1, 0, fEnergyAbs);
 man->FillNtupleDColumn(1, 1, fEnergyGap);
 man->AddNtupleRow(1);

 man->FillNtupleIColumn(2, 0, fID);
 man->AddNtupleRow(2);

}

ID=1,
columns 0, 1

ID=2,
column 0

38

Fill Ntuples

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics

• Concepts of run, event, step, track, particle
• User action classes
• Data output – g4tools

39

Conclusion

XIX Seminar on Software for Nuclear, Subnuclear and Applied Physics 40

Exercise 4a.1: Kill a particle
Exercise 4a.2: Calculate total
track length

Exercise 4b.2: Create a scoring mesh

Exercise 4b.1: Enable the scoring
manager

Exercise 4b.3: Visualize the mesh

Exercise 4b.4: Dump results

Task4

