
Geant4 physics
Luciano Pandola

INFN – Laboratori Nazionali del Sud

A lot of material by G.A.P. Cirrone and J. Pipek

Geant4 Course, XIX Seminar on Software for Nuclear,
Subnuclear and Applied Physics,

Alghero, June 6th- 10th, 2022

Mandatory (and optional) user
classes

At initialization At execution

G4VUserDetectorConstruction

G4VUserActionInitialization

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction
G4VUserPhysicsList

main()
function

Mandatory (and optional) user
classes

At initialization At execution
G4VUserDetectorConstruction

G4VUserActionInitialization

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction
G4VUserPhysicsList

main()
function

Outlook

 Physics in Geant4 – motivation
 Particles & processes
 Physics lists
 Production cuts
 Electromagnetic/hadronic physics

“Shouldn’t there be just one
universal and complete physics

description?”

No.

Physics – the challenge
 Huge amount of different processes for various

purposes (only a handful relevant)
 Competing descriptions of the same physics

phenomena (necessary to choose)
 fundamentally different approaches
 balance between speed and precision
 different parameterizations

 Hypothetical processes & exotic physics

Solution: Atomistic approach with modular physics lists

Part I: Particles and Processes

Particles: basic concepts
 There are three levels of class to describe particles in

Geant4:
 G4ParticleDefinition

 Particle static properties: name, mass, spin, PDG number,
etc.

 G4DynamicParticle
 Particle dynamic state: energy, momentum, polarization,

etc.
 G4Track

 Information for tracking in a detector simulation: position,
step, current volume, track ID, parent ID, etc.

Particles in Geant4

 Particle Data Group (PDG) particles
 Optical photons (different from gammas!)
 Special particles: geantino and charged geantino

 Only transported in the geometry (no interactions)
 Charged geantino also feels the EM fields

 Short-lived particles (τ < 10-14 s) are not
transported by Geant4 (decay applied)

 Light ions (as deuterons, tritons, alphas)
 Heavier ions represented by a single class: G4Ions

Particle name Class name Name (in GPS...) PDG

electron G4Electron e- 11

positron G4Positron e+ -11

muon +/- G4MuonPlus
G4MuonMinus

mu+
mu-

-13
13

tauon +/- G4TauPlus
G4TauMinus

tau+
tau-

-15
15

electron (anti)neutrino G4NeutrinoE
G4AntiNeutrinoE

nu_e
anti_nu_e

12
-12

muon (anti)neutrino G4NeutrinoMu
G4AntiNeutrinoMu

nu_mu
anti_nu_mu

14
-14

tau (anti)neutrino G4NeutrinoTau
G4AntiNeutrinoTau

nu_tau
anti_nu_tau

16
-16

photon (γ, X) G4Gamma gamma 22

photon (optical) G4OpticalPhoton opticalphoton (0)

geantino G4Geantino geantino (0)

charged geantino G4ChargedGeantino chargedgeantino (0)

Processes

 Responsibilities:
 decide when and where an interaction occurs

 GetPhysicalInteractionLength...() limit the step
 this requires a cross section
 for the transportation process, the distance to the

nearest object
 generate the final state of the interaction

 changes momentum, generates secondaries, etc.
 method: DoIt...()
 this requires a model of the physics

How do particles interact with materials?

Geant4 transportation in one
slide

1. a particle is shot and “transported”
2. all processes associated to the particle propose a geometrical step length

(depends on process cross-section)
3. the process proposing the shortest step “wins” and the particle is moved to

destination (if shorter than “Safety”)
4. all processes along the step are executed (e.g. ionization)
5. post step phase of the process that limited the step is executed

 New tracks are “pushed” to the stack
 Dynamic properties are updated

6. if Ekin=0 all at rest processes are executed; if particle is stable the track is
killed

Else
7. new step starts and sequence repeats...

+++++++++++

Part II: Tracking and cuts

Geant4 way of tracking
 Force step at

geometry boundaries
 All AlongStep

processes co-work,
the PostStep
compete (= only one
selected)

 Call AtRest actions for
particles at rest

 Secondaries saved at the top of the stack:
tracking order follows ‘last in first out’ rule:
T1 T3 T5 T7 T4 T6 T2

Tracking verbosity

**

* G4Track Information: Particle = gamma, Track ID = 1, Parent ID = 0

**

Step# X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng NextVolume ProcName

0 47.4 -53 -150 6 0 0 0 Envelope initStep

1 47.4 -53 -58 0.844 0 92 92 Envelope compt

2 -46 15.9 5.55 0.47 0 132 224 Envelope compt

3 -100 6.37 -3.62 0.47 0 55.6 280 World
Transportation

4 -120 2.84 -7.02 0.47 0 20.6 301 OutOfWorld
Transportation

**
* G4Track Information: Particle = e-, Track ID = 3, Parent ID = 1

**

Step# X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng NextVolume ProcName

0 -46 15.9 5.55 0.375 0 0 0 Envelope initStep

1 -46.1 16.4 5.98 0.0482 0.327 1.16 1.16 Envelope eIoni

2 -46.1 16.3 5.98 0 0.0482 0.0408 1.2 Envelope eIoni

Primary γ

Compton e-

UI command: /tracking/verbose 1

Geant4 production cuts
 Geant4 does not have tracking cuts

 All tracks are followed down to zero energy
 ..or until they leave the world volume or are destroyed in interactions

 Could be implemented manually by the user
 Geant4 uses only a production cut "range production

threshold"
 i.e. cuts deciding whether a secondary particle to be produced or not

 AlongStep vs. PostStep
 Applies only to: γ from bremsstrahlung, e- from ionization and low-energy

protons from hadronic elastic scattering
 This threshold is a distance, not an energy

 Particles unable to travel at least the range cut value are not produced
 One production threshold is uniformly set

 Sets the "spatial accuracy" of the simulation
 Production threshold is internally converted to the energy threshold,

depending on particle type and material

Production cut
 Key ingredient of the mixed MC: threshold

the best compromise

need to go low enough to
get the physics you're

interested in

can't go too low because some
processes have infrared divergence
causing huge CPU time

Cuts – UI commands

Universal cut (whole world, all particles)
/run/setCut 10 mm

Override low-energy limit
/cuts/setLowEdge 100 eV

Set cut for a specific particle (whole world)
/run/setCutForAGivenParticle gamma 0.1 mm

Set cut for a region (all particles)
/run/setCutForARegion myRegion 0.01 mm

Print a summary of particles/regions/cuts
/run/dumpCouples

Part III: Physics lists & Co.

A physics list: what it is, what
it does

 One instance per application
 registered to run manager in main()
 inheriting from G4VUserPhysicsList

 Responsibilities
 all particle types (electron, proton, gamma, ...)

 all processes (photoeffect, bremsstrahlung, ...)

 all process parameters (...)
 production cuts (e.g. 1 mm for electrons, ...)

 All physics lists must derive from this class
 And then be registered to the G4(MT)RunManager
 Mandatory class in Geant4

 User must implement the following (purely virtual) methods:
 ConstructParticle(), ConstructProcess()

 Optional Virtual method:
 SetCuts() (used to be purely virtual up to 10.2)

G4VUserPhysicsList

class MyPhysicsList: public G4VUserPhysicsList {
public:
MyPhysicsList();
~MyPhysicsList();
void ConstructParticle();
void ConstructProcess();
void SetCuts();
}

Three ways to get a physics
list

 Manual: Write your own class, to specify all
particles & processes that may occur in the
simulation (very flexible, but difficult)

 Physics constructors: Combine your physics
from pre-defined sets of particles and processes.
Still you define your own class – modular physics
list (easier)

 Reference physics lists: Take one of the pre-
defined physics lists. You don't create any class
(easy)

Derived class from
G4VUserPhysicsList

 Implement 3 methods:

Advantage: most flexible
Disadvantages:

 most verbose
 most difficult to get right

Way 1

class MyPhysicsList : public G4VUserPhysicsList {
public:

// ...
void ConstructParticle(); // pure virtual
void ConstructProcess(); // pure virtual
void SetCuts();
// ...

}

G4VUserPhysicsList:
implementation

 ConstructParticle()
 choose the particles you need in your

simulation, define all of them here
 ConstructProcess()

 for each particle, assign all the physics
processes relevant to your simulation

 SetCuts()
 set the range cuts for secondary production for

processes with infrared divergence

G4VModularPhysicsList

Way 2

 Similar structure as G4VUserPhysicsList (same
methods to override – though not necessary):

Differences to “manual” way:
 Particles and processes typically handled by physics

constructors (still customizable)
 Transportation automatically included

class MyPhysicsList : public G4VModularPhysicsList {
public:

MyPhysicsList(); // define physics constructors
void ConstructParticle(); // optional
void ConstructProcess(); // optional
void SetCuts(); // optional

}

Physics constructors (1)
 "Building blocks" of a modular physics list
 Inherit from G4VPhysicsConstructor
 Defines ConstructParticle() and
ConstructProcess()
 to be fully imported in modular list (behaving in

the same way)
 GetPhysicsType()

 enables switching physics of the same type, if
possible (see next slide)

Physics constructors (2)
 Huge set of pre-defined ones

 EM: Standard, Livermore, Penelope
 Hadronic inelastic: QGSP_BIC, FTFP_Bert, ...
 Hadronic elastic: G4HadronElasticPhysics, ...
 ... (decay, optical physics, EM extras, ...)

 You can implement your own (of course) by
inheriting from the G4VPhysicsConstructor
class

Code: $G4INSTALL/source/physics_lists/constructors

How to use physics
constructors

Add physics constructor in the class
constructor:

This already works and no further method
overriding is necessary

MyModularList::MyModularList() {

// Hadronic physics

RegisterPhysics(new G4HadronElasticPhysics());

RegisterPhysics(new G4HadronPhysicsFTFP_BERT_TRV());

// EM physics

RegisterPhysics(new G4EmStandardPhysics());

}

Replace physics constructors
You can add or remove the physics constructors
after the list instance is created:
 e.g. in response to UI command
 only before initialization
 physics of the same type can be replaced

void MyModularList::SelectAlternativePhysics() {

AddPhysics(new G4OpticalPhysics);

RemovePhysics(fDecayPhysics);

ReplacePhysics(new G4EmLivermorePhysics);

}

Reference physics lists
Way 3

 Pre-defined ("plug-and-play") physics lists
 already containing a complete set of particles

& processes (that work together)
 targeted at specific area of interest (HEP,

medical physics, ...)
 constructed as modular physics lists, built on

top of physics constructors
 customizable (by calling appropriate methods

before initialization)

Using a reference physics list
 Super-easy: in the main() function, just

register an instance of the physics list to the
G4(MT)RunManager:

#include "QGSP_BERT.hh"

int main() {
// Run manager
auto* runManager = G4RunManagerFactory::CreateRunManager();
// ...
G4VUserPhysicsList* physics = new QGSP_BERT();
// Here, you can customize the “physics” object
runManager->SetUserInitialization(physics);
// ...

}

The complete lists of
Reference Physics List
$G4INSTALL/source/physics_lists/lists

Where to find
information?

https://geant4.web.cern.ch/support

Summary – three kinds of
physics lists for Geant4

 Old-style flat physics list
 You code what you want, particle by particle and process

by process
 Very much flexible, but not really encouraged

 User-custom modular physics list
 Blocks (constructors) provided by Geant4
 Can register user-custom constructors
 Usually the optimal compromise between flexibility and

user-friendliness
 Ready-for-the-use Geant4 physics list

 Plug and play (directly registered in the main!)
 Can still register extra constructors

Part IV: Physics processes
and models

Philosophy
 Provide a general model framework that allows the

implementation of complementary/alternative models
to describe the same process (e.g. Compton scattering)
 A given model could work better in a certain energy range

 Decouple modeling of cross sections and of final state
generation

 Provide processes containing
 Many possible models and cross sections

 Default cross sections for each model

Models under continuous development

Electromagnetic physics

Inventory (and specs) of the
models for γ-rays

1 MeV γ in Al

Similar situation for e±

 Many models
available for each
process
 Plus one full set of

polarized models
 Differ for energy

range, precision and
CPU speed
 Final state

generators
 Different mixtures

available the Geant4
EM constructors

EM concept
 The same physics processes (e.g. Compton scattering) can be

described by different models, that can be alternative or
complementary in a given energy range

 For instance: Compton scattering can be described by
 G4KleinNishinaCompton
 G4LivermoreComptonModel (specialized low-energy, based on the

Livermore database)
 G4PenelopeComptonModel (specialized low-energy, based on the

Penelope analytical model)
 G4LivermorePolarizedComptonModel (specialized low-energy,

Livermore database with polarization)
 G4PolarizedComptonModel (Klein-Nishina with polarization)
 G4LowEPComptonModel (full relativistic 3D simulation)

 Different models can be combined, so that the appropriate one is
used in each given energy range (performance optimization)

When/why to use Low Energy
Models

 Use Low-Energy models (Livermore or Penelope), as
an alternative to Standard models, when you:
 need precise treatment of EM showers and interactions at

low-energy (keV scale)
 are interested in atomic effects, as fluorescence x-rays,

Doppler broadening, etc.
 can afford a more CPU-intensive simulation
 want to cross-check an other simulation (e.g. with a

different model)
 Do not use when you are interested in EM physics >

MeV
 same results as Standard EM models, performance

penalty

EM Physics Constructors for
Geant4 10.4 - ready-for-the-use

G4EmStandardPhysics – default
G4EmStandardPhysics_option1 – HEP fast but not precise
G4EmStandardPhysics_option2 – Experimental
G4EmStandardPhysics_option3 – medical, space
G4EmStandardPhysics_option4 – optimal mixture for precision
G4EmLivermorePhysics
G4EmLivermorePolarizedPhysics
G4EmPenelopePhysics
G4EmLowEPPhysics
G4EmDNAPhysics_option…
…
 Advantage of using of these classes – they are tested on

regular basis and are used for regular validation

Combined Physics
Standard > 1 GeV

LowEnergy < 1 GeV

Hadronic physics
(a very quick overview)

Hadronic Physics

 Data-driven models
 Parametrised models
 Theory-driven models

Hadronic physics challenge
 Three energy regimes
 < 100 MeV
 resonance and cascade region (100 MeV - 10

GeV)
 > 20 GeV (QCD strings)

 Within each regime there are several models
 Many of these are phenomenological

 Two families of builders for the high-energy part (p, n,
π and K)
 QGS, or list based on a model that use the Quark Gluon

String model for high energy hadronic interactions
 FTF, based on the FTF (FRITIOF like string model)

 Three families for the cascade energy range
 BIC, binary cascade
 BERT, Bertini cascade
 INCLXX, Liege Intranuclear cascade model

 "High precision" (HP) option, below 20 MeV
 Database tracking for n, p, d, t, 3He and α
 Data from ENDFVII.r1 or TENDL-2014
 CPU-thirsty

Reference physics lists for
Hadronic interactions

Hadronic physics - Geant4 Course

Hadronic model inventory
http://geant4.cern.ch/support/proc_mod_catalog/models

ParticleHP

Hands-on session
 Task3

 Task3a: Particles and processes
 Task3b: Physics lists
 Task3c: Production cuts

 http://geant4.lns.infn.it/alghero2022/task3

Backup

1) ConstructParticle()
void MyPhysicsList::ConstructParticle()
{

G4Electron::ElectronDefinition();

G4Proton::ProtonDefinition();

G4Neutron::NeutronDefinition();

G4Gamma::GammaDefinition();

....

}

Due to the large number of particles
can be necessary to instantiate, this
method sometimes can be not so

comfortable

It is possible to define all the
particles belonging to a

Geant4 category:
• G4LeptonConstructor
• G4MesonContructor
• G4BaryonConstructor
• G4BosonConstructor
• G4ShortlivedConstructor
• G4IonConstructor

void MyPhysicsList::ConstructParticle()
{

// Construct all baryons

G4BaryonConstructor bConstructor;

bConstructor.ConstructParticle();

// Construct all leptons

G4LeptonConstructor lConstructor;

lConstructor.ConstructParticle();

}

2) ConstructProcess()

1. For each particle, get its process manager.

2. Construct all processes and register them.

3. Don’t forget transportation.
AddTransportation();

G4ProcessManager *elManager = G4Electron::ElectronDefinition()

->GetProcessManager();

elManager->AddProcess(new G4eMultipleScattering, -1, 1, 1);
elManager->AddProcess(new G4eIonisation, -1, 2, 2);
elManager->AddProcess(new G4eBremsstrahlung, -1, -1, 3);
elManager->AddDiscreteProcess(new G4StepLimiter);

3) SetCuts()

 Define all production cuts for gamma,
electrons and positrons
 Recently also for protons

 Notice: this is a production cut, not a
tracking cut

Quick overview of validation

EM validation - 1
 Tens of papers and studies available

 Geant4 Collaboration + User Community
 Results can depend on the specific observable/reference

 Data selection and assessment critical

ICCMSE2014, Athens, Apr xx 2014 53

1307.0933

Penelope
XCOM

NIM B 316 (2013) 1

Livermore
XCOM

EM validation – 2

ICCMSE2014, Athens, Apr xx 2014 54

Ross et al., Med. Phys. 35, (2008) 4121

Electron scattering

http://cern.ch/vnivanch/verification/verification/electromagnetic/

 In general satisfactory agreement
 Validation/verification repository available on web

EM validation -
3

e- showers, longitudinal profiles

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

Depth [mm]

b
ta

y
u

ts

12C ions 62 MeV/n

Hadronic validation

 A website is available to collect relevant information for
validation of Geant4 hadronic models (plots, tables,
references to data and to models, etc.)
http://geant4.cern.ch/results/validation_plots.htm

http://g4validation.fnal.gov:8080/G4ValidationWebApp/

 Several physics lists and several use-cases have been
considered (e.g. thick target, stopped particles, low-
energy)

 Includes final states and cross sections

Some verification: secondary
energy spectrum

Bertini and Binary
cascade models:

neutron production vs.
angle from 1.5 GeV

protons on Lead

Nuclear fragmentation

Binary cascade model:
double differential
cross-section for

neutrons produced
by 256 MeV protons

impinging on different
targets

Neutron production by protons

Customizing a
G4ModularPhysicsList

 You can override the CreateParticle(),
CreateProcess(), and SetCuts()
methods:

void MyModularList::ConstructProcess() {

// Call the default implementation, otherwise you break the behaviour

G4VModularPhysicsList::ConstructProcess();

// Add your customization

G4ProcessManager *elManager = G4Electron::Definition()->GetProcessManager();

elManager->AddDiscreteProcess(new MyElectronProcess);

}

Don’t

forget!

Alternative: Reference by
name

 If you want to get reference physics lists by
name (e.g. from environment variable), you
can use the G4PhysListFactory class:

#include "G4PhysListFactory.hh"
int main() {

// Run manager
G4RunManager* runManager = new G4RunManager();
// E.g. get the list name from environment varible
G4String listName{ getenv("PHYSICS_LIST") };
auto factory = new G4PhysListFactory();
auto physics = factory->GetReferencePhysList(listName);
runManager->SetUserInitialization(physics);
// ...

}

Hands-on session
 Task3c

 http://geant4.lngs.infn.it/munich2018/
task3

EM concept - 2

 A physical interaction or process is described by a process
class
 Naming scheme : « G4ProcessName »
 Eg. : « G4Compton » for photon Compton scattering

 A physical process can be simulated according to several
models, each model being described by a model class
 The usual naming scheme is: « G4ModelNameProcessNameModel »
 Eg. : « G4LivermoreComptonModel » for the Livermore Compton

model
 Models can be alternative and/or complementary on certain energy

ranges
 Refer to the Geant4 manual for the full list of available models

Cross sections

 Default cross section sets are provided for each type of
hadronic process:
 Fission, capture, elastic, inelastic

 Can be overridden or completely replaced
 Different types of cross section sets:

 Some contain only a few numbers to parameterize cross section
 Some represent large databases (data driven models)

 Cross section management
 GetCrossSection() sees last set loaded for energy range

Cuts per region: C++ code
void MyPhysicsList::SetCuts() {

// default production thresholds for the world volume
SetCutsWithDefault();

// Same cuts for all particle types
G4Region* region = G4RegionStore::GetInstance()->GetRegion("myRegion1");
G4ProductionCuts* cuts = new G4ProductionCuts;
cuts->SetProductionCut(0.01*mm); // same cuts for gamma, e-
region->SetProductionCuts(cuts);

// individual production thresholds for different particles
region = G4RegionStore::GetInstance()->GetRegion("myRegion2");
cuts = new G4ProductionCuts;
cuts->SetProductionCut(1 * mm, "gamma");
cuts->SetProductionCut(0.1 * mm, "e-");
region->SetProductionCuts(cuts);
// ... or (simpler)
SetCuts(0.01 * mm, "gamma", "absorber");

}

G4ParticleDefinition* neutron=
G4Neutron::NeutronDefinition();

G4ProcessManager* protonProcessManager =
proton->GetProcessManager();

// Elastic scattering
G4HadronElasticProcess* neutronElasticProcess =
new G4HadronElasticProcess();

G4NeutronHPElastic* neutronElasticModel =
new G4NeutronHlastic();
neutronElasticModel->SetMaxEnergy(20.*MeV);
neutronElasticProcess->
RegisterMe(neutronElasticModel);

neutronProcessManager->
AddDiscreteProcess(protonElasticProcess);

Code Example (1/2)

retrieve the
process

manager for
neutron

create the
process for

elastic scattering

get the HP model for
elastic scattering

register the model to the
process

attach the process to
neutron

// Inelastic scattering
G4ProtonInelasticProcess* protonInelasticProcess
= new G4ProtonInelasticProcess();

G4BinaryCascade* protonInelasticModel1
= new G4BinaryCascade();
protonInelasticModel1->SetMaxEnergy(4*GeV);
protonInelasticProcess->

RegisterMe(protonInelasticModel1);

G4TheoFSGenerator* protonInelasticModel2 =
new G4TheoFSGenerator("FTFB");

protonInelasticModel2->SetHighEnergyGenerator(
new G4FTFModel);
protonInelasticModel2->SetMinEnergy(4.0*GeV);
protonInelasticProcess

->RegisterMe(protonInelasticModel2);

Code example (2/2)
creates the
process for

inelastic
scattering

gets the Binary
model up to 4 GeV

registers model to the
process

gets the FTF
model from 4

GeV

registers model to the
process

M
od

el
 1

M
od

el
 2

Example: PhysicsList, γ-rays

G4ProcessManager* pmanager =
G4Gamma::GetProcessManager();

pmanager->AddDiscreteProcess(new G4PhotoElectricEffect);
pmanager->AddDiscreteProcess(new G4ComptonScattering);
pmanager->AddDiscreteProcess(new G4GammaConversion);
pmanager->AddDiscreteProcess(new G4RayleighScattering);

Only PostStep

• Use AddDiscreteProcess because γ-rays processes
have only PostStep actions
• For each process, the default model is used among all the
available ones (e.g. G4KleinNishinaCompton for
G4ComptonScattering)

How to extract Physics ?
 Possible to retrieve physics quantities via G4EmCalculator

or directly from the physics models
 Physics List should be initialized

 Example for retrieving the total cross section (cm-1) of a
process with name procName: for particle partName and
material matName

G4EmCalculator emCalculator;
G4Material* material =
G4NistManager::Instance()->FindOrBuildMaterial(“matName);

G4double massSigma = emCalculator.ComputeCrossSectionPerVolume
(energy,particle,procName,material);

G4cout << G4BestUnit(massSigma, "Surface/Volume") << G4endl;

A good example:
$G4INSTALL/examples/extended/electromagnetic/
TestEm14

Alternative cross sections
 To be used for specific applications, or for a given particle in a

given energy range, for instance:
 Low energy neutrons

 elastic, inelastic, fission and capture (< 20 MeV)
 Neutron and proton inelastic cross sections

 20 MeV < E < 20 GeV
 Ion-nucleus reaction cross sections (several models)

 Good for E/A < 1 GeV
 Isotope production data

 E < 100 MeV
 Photo-nuclear cross sections

Information on the available cross sections at
http://geant4.cern.ch/support/proc_mod_catalog/cross_sections/

Definition of a particle

G4Gamma

G4GenericIon
G4Proton

G4Neutron
G4AlphaG4Electron

G4PionPlus
...G4KaonZeroLong

G4Eta
G4PionMinusG4MuonPlus

G4MuonMinus
G4NeutrinoMu

G4NeutrinoE

G4NeutrinoTau
G4JPsi

G4PionZero
G4AntiNeutrinoE

G4Lambda

Geant4 provides G4ParticleDefinition daughter classes to represent
a large number of elementary particles and nuclei, organized in six
major categories: leptons, mesons, baryons, bosons, short-

lived and ions

User must define all particles which are used in the application: not
only primary particles but also all other particles which may appear

as secondaries generated by the used physics processes

Particle name Class name Name (in GPS...) PDG

(anti)proton G4Proton
G4AntiProton

proton
anti_proton

2212
-2212

(anti)neutron G4Neutron
G4AntiNeutron

neutron
anti_neutron

2112
-2112

(anti)lambda G4Lambda
G4AntiLambda

lambda
anti_lambda

3122
-3122

pion G4PionMinus
G4PionPlus
G4PionZero

pi-
pi+
pi0

-211
211
111

kaon G4KaonMinus
G4KaonPlus
G4KaonZero
G4KaonZeroLong
G4KaonZeroShort

kaon-
kaon+
kaon0
kaon0L
kaon0S

-321
321
311
130
310

(anti)alpha G4Alpha
G4AntiAlpha

alpha
anti_alpha

1000020040
-1000020040

(anti)deuteron G4Deteuron
G4AntiDeuteron

deuteron
anti_deuteron

1000010020
-1000010020

Heavier ions G4GenericIon ion 100ZZZAAAI*

*ZZZ=proton number, AAA=nucleon number, I=excitation level

From particles to processes
G4Track

G4ParticleDefinition

G4DynamicParticle

G4ProcessManager

• Propagated by the tracking
• Snapshot of the particle state

Momentum, pre-assigned decay…

The particle type: G4Electron, ...

Container for all...

…relevant processes

Process_2

Process_1

Process_3

ha
nd

le
d

by

ke
rn

el
Co

nf
ig

ur
ed

 b
y

th
e

Us
er

In
 th

e
“p

hy
sic

s
lis

t”

The G4VProcess
 Physics processes are derived from the G4VProcess base class
 Abstract class defining the common interface of all processes in

Geant4, used by all physics processes

AlongStep

PostStep

+
- + +

+
+

-
-

- -

 Three kinds of "actions":
 AtRest actions

 Decays, e+ annihilation
 AlongStep actions

 To describe continuous (inter)actions,
occurring along the path of the particle,
i.e. "soft" interactions

 PostStep actions
 To describe the point-like (inter)actions,

like decay in flight, hadronic interactions,
i.e. "hard" interactions

A process can implement a combination of them (decay = AtRest + PostStep)

Geant4 transportation in one
slide

1. a particle is shot and “transported”
2. all processes associated to the particle propose a geometrical step length

(depends on process cross-section)
3. the process proposing the shortest step “wins” and the particle is moved to

destination (if shorter than “Safety”)
4. all processes along the step are executed (e.g. ionization)
5. post step phase of the process that limited the step is executed

 New tracks are “pushed” to the stack
 Dynamic properties are updated

6. if Ekin=0 all at rest processes are executed; if particle is stable the track is
killed

Else
7. new step starts and sequence repeats...

+++++++++++

Geant4 transportation in one
slide – P.S.

 Processes return a “true path length”. The
multiple scattering “virtually folds up” this true
path length into a shorter ”geometrical” path
length

 Transportation process can limit the step to
geometrical boundaries

	Geant4 physics
	Mandatory (and optional) user classes
	Mandatory (and optional) user classes
	Outlook
	“Shouldn’t there be just one universal and complete physics description?”
	Physics – the challenge
	Part I: Particles and Processes
	Particles: basic concepts
	Particles in Geant4
	Diapositiva numero 10
	Processes
	Geant4 transportation in one slide
	Part II: Tracking and cuts
	Geant4 way of tracking
	Tracking verbosity
	Geant4 production cuts
	Production cut	
	Cuts – UI commands
	Part III: Physics lists & Co.
	A physics list: what it is, what it does
	G4VUserPhysicsList
	Three ways to get a physics list
	Derived class from G4VUserPhysicsList
	G4VUserPhysicsList: implementation
	G4VModularPhysicsList
	Physics constructors (1)
	Physics constructors (2)
	How to use physics constructors
	Replace physics constructors
	Reference physics lists
	Using a reference physics list
	The complete lists of Reference Physics List
	Where to find information?
	Summary – three kinds of physics lists for Geant4
	Part IV: Physics processes and models
	Philosophy
	Electromagnetic physics
	Inventory (and specs) of the models for γ-rays
	EM concept
	When/why to use Low Energy Models
	EM Physics Constructors for Geant4 10.4 - ready-for-the-use
	Hadronic physics
	Hadronic Physics
	Hadronic physics challenge
	Reference physics lists for Hadronic interactions
	Hadronic model inventory
	Hands-on session
	Backup
	1) ConstructParticle()
	2) ConstructProcess()
	3) SetCuts()
	Quick overview of validation
	EM validation - 1
	EM validation – 2
	EM validation - 3
	Hadronic validation
	Some verification: secondary energy spectrum
	Diapositiva numero 58
	Diapositiva numero 59
	Customizing a G4ModularPhysicsList
	Alternative: Reference by name
	Hands-on session
	EM concept - 2
	Cross sections
	Cuts per region: C++ code
	Code Example (1/2)
	Code example (2/2)
	Example: PhysicsList, g-rays
	How to extract Physics ?
	Alternative cross sections
	Definition of a particle
	Diapositiva numero 72
	From particles to processes
	The G4VProcess
	Geant4 transportation in one slide
	Geant4 transportation in one slide – P.S.

