
This course



Structure and logistics - 1
 This course is organized in a mixture of theoretical

lectures and practical hands-on sessions
 The hands-on sessions require real C++ coding to 

build up a simplified Geant4 application
 Staged approach in tasks
 http://geant4.lns.infn.it/alghero2022/
introduction

 A pre-installed virtual machine is provided for the 
hands-on sessions
 Includes Geant4 11.0.p01 on a Linux environment
 You should already have it downloaded and tested

 Please let us know ASAP if you have problems with the VM



Structure and logistics - 2
 You can try to install Geant4 on your (Linux/Mac) 

laptop, if you wish
 The course is not meant to show that, though

 All lectures (pdf) will be uploaded on-the-fly on the 
course indico page
 https://agenda.infn.it/e/AlgheroSeminar2022

 Please feel free to ask any question, either during
the lectures , during the exercises or during the breaks

 Solutions of the exercises will be uploaded after the 
end of each exercise session
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What Monte Carlo (MC) 
techniques are for?

 Numerical solution of a (complex) macroscopic
problem, by simulating the microscopic
interactions among the components

 Uses random sampling, until convergence is
achieved
 Name after Monte Carlo's casino

 Applications not only in physics and science, but
also finances, traffic flow, social studies
 And not only problems that are intrisically

probabilistic (e.g. numerical integration)



MC in science
 In physics, elementary laws are (typically) 

known  MC is used to predict the outcome of 
a (complex) experiment
 Exact calculation from the basic laws is unpractical
 Optimize an experimental setup, support data 

analysis
 In this course: Monte Carlo for particle tracking 

(interaction of radiation with matter)
 Usually the Monte Carlo wins over the exact

(mathematical) solution for complex problems



A bit of history

 Very concept of Monte Carlo  
comes in the XVIII century
(Buffon, 1777, and then Laplace, 
1786)
 Monte Carlo estimate of π

 Concept of MC is much older
than real computers
 one can also implement the 

algorithms manually, with dice 
(= Random Number Generator)



A bit of history

 Boost in the '50 (Ulam and Von 
Neumann) for the development
of thermonuclear weapons

 Von Neumann invented the 
name "Monte Carlo" and settled
a number of basic theorems

 First (proto)computers available
at that time
 MC mainly CPU load, minimal

I/O



A bit of history



The simplest MC application: 
numerical estimate of π

 Shoot N couples (x,y) 
randomly in [0,1]

 Count n: how many
couples satisfy (x2+y2≤1)

[0,1]

[0,1]

 n/N = π/4 (ratio of areas)
 Convergence as 1/ √N



Most common application in 
particle physics: particle tracking

 Problem: track a γ-ray in a 
semi-infinite detector and 
determine the energy
spectrum deposited
 Still, a model case

 All physics is known from 
textbook (Compton 
scattering, photoelectric
effect, etc.)

 Yet, the analytical calculation
is a nightmare (while still
possible)

γ-ray



Most common application in 
particle physics: particle tracking

 Problem v2: track a γ-ray in a 
finite detector (e.g. a NaI)
 Real-life (simplified) case

 Analytical computation nearly 
impossible
 Monte Carlo clearly wins

 Now make the detector more 
complicate, as in modern physics

γ-ray





What is 
 Toolkit for the Monte Carlo simulation of the interaction of 

particles with matter
 physics processes (EM, hadronic, optical) cover a 

comprehensive set of particles, materials and over a wide 
energy range

 offers a complete set of support functionalities (tracking, 
geometry)

 Distributed software production and management: developed 
by an international Collaboration
 Established in 1998
 Approximately 100 members, from Europe, America and Asia

 Written in C++ language
 Takes advantage from the Object Oriented software technology

 Open source http://geant4.org

S. Agostinelli et al., Nucl. Instr. Meth. A 506 (2003) 250
J. Allison et al., IEEE Trans. Nucl. Scie. 53 (2006) 270
J. Allison et al., Nucl. Instr. Meth. A 835 (2016) 186



 Code and documentation available in the main 
web page

 Regular tutorial courses held worldwide

https://geant4.org



versions and releases
 First release (Geant4 1.0) in December 1998

 ∼Two releases per year since then
 Major releases (x.y) or minor releases (x.y) or beta 

releases
 Patches regularly issued

 Last version: Geant4 11.0
 Released December 10th, 2021 
 Now patch 11.0.p02 (May 26th, 2022)
 The VM used for this course has Geant4 11.0.p01

 Requires C++11 since 10.2 (gcc > 4.8.x)
 Native C+11 features in-place (= compilation with old

compilers fails)



Basic concept of Geant4



Toolkit and User Application 
 Geant4 is a toolkit (= a collection of tools)

 i.e. you cannot “run” it out of the box
 You must write an application, which uses Geant4 tools

 Consequences:
 There are no such concepts as “Geant4 defaults”
 You must provide the necessary information to configure your 

simulation
 You must deliberately choose which Geant4 tools to use

 Guidance: many examples are provided



Basic concepts

 What you MUST do:
 Describe your experimental set-up
 Provide the primary particles input to your simulation
 Decide which particles and physics models you want to use 

out of those available in Geant4 and the precision of your 
simulation (cuts to produce and track secondary particles)

 You may also want
 To interact with Geant4 kernel to control your simulation
 To visualise your simulation configuration or results
 To produce histograms, tuples etc. to be further analysed



Main Geant4 capabilities
 Transportation of a particle ‘step-by-step’ taking into 

account all possible interactions with materials and fields
 The transport ends if the particle

 is slowed down to zero kinetic energy (and it doesn't have 
any interaction at rest)

 disappears in some interaction
 reaches the end of the simulation volume

 Geant4 allows the User to access the transportation 
process and retrieve the results (USER ACTIONS)
 at the beginning and end of the transport 
 at the end of each step in transportation
 if a particle reaches a sensitive detector
 Others…



Multi-thread mode
 Geant4 10.0 (released Dec, 2013) supports multi-

thread approach for multi-core machines
 Simulation is automatically split on an event-by-

event basis
 different events are processed by different cores

 Can fully profit of all cores available on modern 
machines  substantial speed-up of simulations

 Unique copy (master) of geometry and physics
 All cores have them as read-only (saves memory)

 Backwards compatible with the sequential mode
 The MT programming requires some care: need to 

avoid conflicts between threads
 Some modification and porting required



Concept for multi-thread …
Master

Workers

Geometry Physics RunAction

READONLY

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction



… vs. parallelisation

Geometry

Physics

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Geometry

Physics

Geometry

Physics

Nodes

 Each node
hosts a 
complete
simulation

 Many copies
of geometry
and physics
tables

 More memory-
thristy



Interaction with the Geant4 
kernel - 1

 Geant4 design provides tools for a user 
application
 To tell the kernel about your simulation configuration 
 To interact with Geant4 kernel itself

 Geant4 tools for user interaction are base 
classes
 You create your own concrete class derived from 

the base classes  interface to the Geant4 kernel
 Geant4 kernel handles your own derived classes 

transparently through their base class interface 
(polymorphism)



Interaction with the Geant4 
kernel - 2

 Abstract base classes for user interaction 
(classes starting with G4V)
 User derived concrete classes are mandatory
 User to implement the purely virtual methods

 Concrete base classes (with virtual dummy 
default methods) for user interaction
 User derived classes are optional 

Two types of Geant4 base classes:



User Classes
Initialisation classes
Invoked at the initialization

 G4VUserDetectorConstruction
 G4VUserPhysicsList

Action classes
Invoked during the execution loop

 G4VUserActionInitialization
 G4VUserPrimaryGeneratorAction
 G4UserRunAction (*)
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

Global: only one instance of 
them exists in memory, shared 
by all  threads (readonly). 
Managed only by the master
thread. Local: an instance of each action 

class exists for each thread.
(*) Two RunAction's allowed: one for 
master and one for threads



The mandatory user classes

Mandatory classes 
in ANY Geant4 User 

Application

G4VUserDetectorConstruction
describe the experimental set-up
G4VUserPhysicsList
select the physics you want to activate
G4VUserActionInitialization
takes care of the user initializations

G4VUserPrimaryGeneratorAction

Will be described in detail in the next lectures
(Tue-Wed)



Optional user classes 
 Five concrete base classes whose virtual member functions

the user may override to gain control of the simulation at 
various stages
 G4UserRunAction
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

 Each member function of the base classes has a dummy 
implementation (not purely virtual)
 Empty implementation: does nothing
 Override only the methods that you need

 User action classes must be registered to the Run Manager via 
the  G4VUserActionInizialization

e.g. actions to be done 
at the beginning and 
end of each event



The mandatory user classes



The geometry

 User class which describes the geometry must 
inherit from G4VUserDetectorConstruction
and registered in the Run Manager

 Virtual base class: the purely virtual method must 
be implemented
 G4VPhysicalVolume* Construct() = 0;

 Must return the pointer to the world volume: all other 
volumes are contained in it

 Optionally, implement the virtual method 
 void ConstructSDandField();

 Defines sensitive volumes and EM fields



Select physics processes

 Geant4 doesn’t have any default particles or processes
 Derive your own concrete class from the 
G4VUserPhysicsList abstract base class
 define all necessary particles
 define all necessary processes and assign them to proper 

particles
 define γ/δ production thresholds (in terms of range)

 Pure virtual methods of G4VUserPhysicsList

must be implemented by the user 
in his/her concrete derived class

ConstructParticles()
ConstructProcesses()
SetCuts()



Action Initialization
 User class must inherit from 
G4VUserActionInitialization and registered 
in the Run Manager

 Implement the purely virtual method
 void Build() = 0;
 Invoked in sequential mode and in MT mode by all 

workers
 Must instantiate at least the primary generator

 Optional virtual method
 void BuildForMaster();
 Invoked by the master in MT mode. Applies only to 

Run Action (all other user actions are thread-local)



Primary generator
 User class must inherit from 
G4VUserPrimaryGeneratorAction
 Registered to the Run Manager via the 

ActionInizialitation (MT mode)
 Register directly to the RunManager in seq-mode

 Implement the purely virtual method
 void GeneratePrimaries(G4Event*)=0;
 Called by the RunManager during the event loop, to 

generate the primary vertices/particles
 Uses internally a concrete instance of 
G4VPrimaryGenerator (e.g. G4ParticleGun) to 
do the job



The main() program



The main() program - 1
 Geant4 does not provide the main()

 Geant4 is a toolkit!
 The main() is part of the user application

 In his/her main(), the user must
 construct G4RunManager (or his/her own derived class)
 notify the G4RunManager mandatory user classes derived 

from
 G4VUserDetectorConstruction
 G4VUserPhysicsList
 G4VUserActionInitialization (takes care of Primary)

 The G4RunManagerFactory will pick the Sequential/MT 
version of the G4RunManager



The main() program - 2

 The user may define in his/her main()
 optional user action classes
 VisManager, (G)UI session

 The user also has to take care of retrieving and 
saving the relevant information from the simulation 
(Geant4 will not do that by default)

 Don’t forget to delete the G4RunManager at the end



An example of main()
{

…
// Create the run manager (let the RunManagerFactory decide if MT, sequential or other).     
//The flags from G4RunManagerType are: Default (default), Serial, MT, Tasking, TBB

auto* runManager =
G4RunManagerFactory::CreateRunManager(G4RunManagerType::Default);  

// Set mandatory user initialization classes
MyDetectorConstruction* detector = new MyDetectorConstruction;
runManager->SetUserInitialization(detector);
MyPhysicsList* physicsList = new MyPhysicsList;
runManager->SetUserInitialization(myPhysicsList);
// Set mandatory user action classes
runManager->SetUserAction(new MyActionInitialization);
// Set optional user action classes
runManager->SetUserAction(new MyEventAction());
runManager->SetUserAction(new MyRunAction(););

…
}



Documentation
 A few manuals available in the Geant4 webpage

 Application developer manual
 Physics manual

 Other tools available
 LXR code repository
 User forum
 Bugzilla
 GitHub code repo

http://geant4.org

https://github.com/Geant4



Examples
 Ready-for-the-use Geant4 applications

(examples) are distributed with Geant4
 Very good starting point for new users

 Three suites of examples:
 "basic": oriented to novice users and covering the 

most typical use-cases of a Geant4 application with 
keeping simplicity and ease of use.

 "extended": covers many specific use cases for 
actual detector simulation.

 "advanced": where real-life complete applications 
for different simulation studies are provided 



Examples
 A webpage with doxygen documentation is 

available for the basic/extended examples

http://cern.ch/geant4/UserDocumentation/Doxygen/examples_doc/html



Who/why is using Geant4?



Experiments and MC
 In my knowledge, all experiments have a (more 

or less detailed) full-scale Monte Carlo simulation
 Design phase

 Evaluation of background 
 Optimization of setup to maximize scientific yield

 Minimize background, maximize signal efficiency
 Running/analysis phase

 Support of data analysis (e.g. provide efficiency for 
signal, background, coincidences, tagging, …).
 Often, Monte Carlo is the only way to convert relative 

rates (events/day) in absolute yields



Why Geant4 is a common 
choice in the market

 Open source and object oriented/C++
 No black box
 Freely available on all platforms
 Can be easily extended and customized by using the 

existing interfaces
 New processes, new primary generators, interface to ROOT 

analysis, …
 Can handle complex geometries
 Regular development, updates, bug fixes and 

validation
 Good physics, customizable per use-cases
 End-to-end simulation (all particles, including optical

photons)



LHC @ CERN
 All four big LHC 

experiments have a 
Geant4 simulation
 M of volumes
 Physics at the TeV scale

ATLAS

CMS

 Benchmark with 
test-beam data 

 Key role for the 
Higgs searches



Space applications
 Satellites (γ astrophysics, planetary sciences)
 Funding from ESA

AGILE

GLASTTypical telescope:
Tracker
Calorimeter
Anticoincidence



Nuclear spectroscopy

47
SCEPTAR

TIGRESS



 Treatment planning for 
hadrontherapy and proton-
therapy systems
 Goal: deliver dose to the tumor 

while sparing the healthy tissues
 Alternative to less-precise (and 

commercial) TP software
 Medical imaging 
 Radiation fields from medical 

accelerators and devices
 medical_linac
 gamma-knife
 brachytherapy

Proton-therapy beam line

GEANT4 simulation

Medical applications



Dosimetry with Geant4

Space science Radiotherapy Effects on electronics 
components



Geant4-based frameworks in 
the medical physics

TOPAS

PTSim

GATE



Backup



Sequential vs. MT
 Since Geant4 10.7, the G4RunManagerFactory makes 

the choice of the appropriate run manager in the main():
 G4RunManager for sequential
 G4MTRunManager for multi-thread
 User code is exactly the same

 User can set the choice, via G4RunManagerType
// Create the run manager (let the RunManagerFactory 
// decide if MT, sequential or other).     
// The flags from G4RunManagerType are: Default (default), 
// Serial, MT, Tasking, TBB

auto* runManager =  
G4RunManagerFactory::CreateRunManager(

G4RunManagerType::Default); 



When are MC useful wrt to the 
math exact solution?

 Usually the 
Monte Carlo 
wins over the 
exact 
(mathematical) 
solution for 
complex 
problems



Interplay between theory, 
simulation and experiments



How to cook up the laws of 
physics into a tracking 
algorithm

(Bird's eye view)



Particle tracking
 Distance s between two subsequent interactions

distributed as  

s  μ is a property of the medium 
(homogeneous) and of the physics

 μ is proportional to the total cross 
section and depends on the density of 
the material

 All competing processes contribute with their own μi
 Each process takes place with probability μi/μ  i.e. 

proportionally to the partial cross sections



Particle tracking
 μ is proportional to the total cross section 

and depends  on the density of the material

s
 All competing processes

contribute with their own μi
 Each process takes place with 

probability μi/μ  i.e. 
proportionally to the partial cross 
sections



Particle tracking: basic recipe
 Divide the trajectory of the particle in "steps"

 Straight free-flight tracks between consecutive physics
interactions

 Steps can also be limited by geometry boundaries
 Decide the step length s, by sampling according to 

p(s)= μe-μs, with the proper μ (material+physics) 
 Decide which interaction takes place at the end of the 

step, according to μi/μ
 Produce the final state according to the physics of the 

interaction (d2σ/dΩdE)
 Update direction of the primary particle
 Store somewhere the possible secondary particles, to be 

tracked later on



Particle tracking: basic recipe

 Follow all secondaries, until absorbed or leave volume
 Notice: μ depends on energy (cross sections do!)

s1

γ, E

s2

γ, E1

e-, E2

s3

γ, E3

e-, E4 e-, E5



Well, not so easy
 This basic recipe works fine for γ-rays and other

neutral particles (e.g. neutrons)
 Not so well for e±: the cross section (ionization & 

bremsstrahlung) is very high, so the steps between
two consecutive interactions are very small
 CPU intensive: viable for low energies and thin material

 Even worse: in each interaction only a small fraction
of energy is lost, and the angular displacement is
small
 A lot of time is spent to simulate interactions having

small effect
 The interactions of γ are "catastrophics": large change

in energy/direction



Solution: the mixed Monte 
Carlo

 Simulate explicitly (i.e. force step) interactions only
if energy loss (or change of direction) is above
threshold W0
 Detailed simulation
 "hard" interaction (like γ interactions)

 The effect of all sub-threshold interactions is
described statistically (= cumulatively)
 Condensed simulation
 "soft" interactions

 Hard interactions occur much less frequently than
soft interactions
 Fully detailed simulation restored for W0=0



The mixed Monte Carlo
 Has some technical tricks: 

 since energy is lost along the step due to soft 
interactions, the sampled step s cannot be too long 
(s < smax)

 Parameter μh between hard collisions

 Has μh << μ because the differential cross section is
strogly peaked at low W (= soft secondaries)

 Much longer step length



The mixed Monte Carlo
 Stopping power due to soft collisions (dE/dx)

 Average energy lost along the step: <w>=sSs
 Must be <w> << E

 Fluctuations around the average value <w>
have to be taken into account
 Appropriate random sampling of w with mean

value <w> and variance (straggling)



Extended recipe
1. Decide the step length s, by sampling according to 

p(s)= μhe-μ
h
s, with the proper μh

2. Calculate the cumulative effect of the soft
interactions along the step: sample the energy
loss w, with <w>=sSs, and the displacement

3. Update energy and direction of the primary
particle at the end of the step E  E-w

4. Decide which interaction takes place at the end of 
the step, according to μi,h/μh

5. Produce the final state according to the physics
of the interaction (d2σ/dΩdE)



Particle tracking: mixed recipe

 Follow all secondaries, until absorbed or leave
volume

s1 (E)

e-, E

e-, E-w

<w> = Sss1

e-, E1

s2

e-, E2

<w> = Sss2

e-, E1-w e-, E3

γ, E4

s3



Geometry
 Geometry also enters into the tracking

 A step can never cross a geometry boundary
 Always stop the step when there is a boundary, 

then re-start in the new medium
 Navigation in the geometry can be CPU-intensive

 One must know to which volume each point (x,y,z) 
belongs to, and how far (and in which direction) is 
the closest boundary

 Trajectories can be affected also by EM fields, for 
charged particles



…luckily enough, somebody 
else already implemented the 
tracking algorithms for us 
(and much more)



General recipe for novice 
users

 Design your application… requires some preliminar 
thinking (what is it supposed to do?)

 Create your derived mandatory user classes
 MyDetectorConstruction
 MyPhysicsList
 MyActionInitialization (must register MyPrimaryGenerator)

 Create optionally your derived user action classes
 MyUserRunAction, MyUserEventAction, …

 Create your main()
 Instantiate G4RunManager or your own derived MyRunManager
 Notify the RunManager of your mandatory and optional user classes 
 Optionally initialize your favourite User Interface and Visualization

 That’s all!

Experienced users may do much 
more, but the conceptual 
process is still the same…
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