

Low Emittance Muon Accelerator LEMMA

Andrea Ciarma

Dottorato di Ricerca in Fisica degli Acceleratori - XXXIV Ciclo

Thesis Advisors: Prof. Luigi Palumbo Dr. Manuela Boscolo Co-Advisor: Dr. Mario Antonelli

Muon Colliders

Muon based facilities have unique potential in HEP for next-gen multi-TeV colliders.

As $m_{\mu} \sim 200 m_e$ the energy emitted via Synchrotron radiation is $2 \cdot 10^9$ times smaller w.r.t. the electron and therefore **circular machines** can be used accelerate at very high energies.

$$\begin{split} 8.85\times 10^{-5} E^4 [GeV]/\rho[m] & \text{for}\\ U_0[GeV] = 4.85\times 10^{-14} E^4 [GeV]/\rho[m] & \\ 6.03\times 10^{-18} E^4 [GeV]/\rho[m] & \text{for}\\ \end{split}$$

for electrons for muons for protons

Lepton probe (elemental particle) can reach a given value of cross section at much smaller \sqrt{s} w.r.t. hadronic probes, even considering for the latter an enhancement due to strong channels

Challenges of designing a Muon Collider

- Imited time from production to collision due to muon lifetime
- Quality of the beam: highly populated and low emittance muon beams $L \propto N_{\mu}^2/\epsilon$
- current limits due to neutrino radiation hazard

Neutrino Radiation Hazard

Constitute an **unshieldable radiation source** travelling through the Earth and producing a shower of ionising secondaries. In order to keep the effective dose for the population below safety values, limitation on the **muon production rate** must be applied.

e.g. - Effective dose limit resulting from CERN activities for people outside the laboratory: $200\mu Sv/yr$

Options to **mitigate the dose** due to a muon collider are currently under study (e.g. variable orbit over time) and might relax this limits.

Muon Current Limits due to ν radiation

$$R_{\mu}^{limit}[\mu/yr] = \frac{1}{2} \cdot R_{\nu}^{limit}[\nu/yr] = 200\mu Sv/yr \frac{2\pi D\frac{D}{\gamma}}{4 \cdot 10^{2log_{10}E_{\nu}-15}} \times \frac{3.1 \cdot 10^{7}s}{10^{7}s} \quad \text{solar year}$$

 $\rightarrow N_{\mu}^{limit}[\mu/bunch] = R_{\mu}^{limit}(E_{\mu}, D)[\mu/s] / r_{rep}[bunch/s]$

$$L^{limit} = \frac{N_{\mu}^{limit^2}(E_{\mu}, D, r_{rep}) n_b f_{rev}}{4\pi\beta^{IP}\epsilon_N/\gamma}$$

Safety considerations on the neutrino radiation pose limits on the muon current, which in turns set the **maximum luminosity achievable** and therefore the expected number of events

The typical cross-section for EW processes in the multi-TeV

$$\sigma = \left(\frac{10TeV}{\sqrt{s_{\mu}}}\right)^2 \cdot 1fb \quad \Longrightarrow \quad N_{events} = \int L^{limit} \sigma \, dt$$

Physics reach:

- Direct discovery of BSM particles: ~100 events
- High precision measurements of SM processes (indirect new physics): ~10⁴ events

Muon Current Limits due to ν radiation

Considering a 16T collider located 100m below the ground level, with 5Hz repetition rate and $\beta^* = 1mm$ the expected number of events / maximum luminosity achievable is given assuming that the muon population is equal to the limit

Possible options for the muon source

large number of muons $(10^{13} - 10^{14} \mu/s \text{ MAP goal})$

▶ large emittance \rightarrow very efficient 6D cooling required (yet to be tested)

 $e^+e^- \rightarrow \mu^+\mu^-$

 $p + X \rightarrow \pi, K \rightarrow \mu$

low production emittance \rightarrow NO cooling, plasma acceleration.

▶ low cross-section $(1\mu barn) \rightarrow$ accumulation system required

Low EMittance Muon Accelerator - LEMMA

LEMMA investigates the possibility of a **positron-driven** muon collider in the Multi-TeV range. Muon pairs are produced via **annihilation** of a positron beam on atomic electrons of a target.

- Low production emittance
- \checkmark Muons produced with high boost due to asymmetric collision
- imes Low production cross-section ($\sim 1 \mu b$)

A dedicated muon **production** and **accumulation system** is one of the most important features of the LEMMA design.

Two rings are necessary in order to accumulate the muons over several iterations of positron bunches impinging on the target.

Muons are **recirculated** and arrive back to the target together with a new positron bunch, so that the new muons get produced in the **same phase space** of the accumulated bunch.

Multi-pass scheme

Single-pass scheme

Target insertion embedded in the positron ring

Same e^+ bunch used for several prod. cycles, so $O(0.01X_0)$ target must be used to mitigate e^+ beam degradation (Multiple scattering and bremsstrahlung).

Currently in stand-by as no efficient recombination system was found to compensate the lower number of muons per bunch after accumulation Target and accumulators outside the e^+ ring

Each e^+ bunch passes once through the target, so $O(0.1 \sim 1X_0)$ targets can be used increasing the number of produced muons at the cost of stronger requirements on the positron source.

In this scheme it is also possible to use **extraction lines for recombination** to further enhance the muon production

Because luminosity is proportional to N^2_μ the single-pass scheme has been taken in consideration for the studies on LEMMA

 $L = \frac{N^2 n_b f_{rev}}{4\pi \sqrt{\epsilon_x \epsilon_y \beta_x^{IP} \beta_y^{IP}}}$

Start-to-end Simulations of the Production and Accumulation process

I have developed a dedicated simulation tool named **MUFASA** (MUon FAst Simulation Algorithm) to perform studies on the **muon beam dynamics** during the accumulation process.

This tool interfaces a C++ based MonteCarlo generator which includes the most relevant processes of **muon and electron interaction with matter**, with the particle tracking code MADX-PTC for the **6D particle tracking**.

This tool allows to perform start-to-end simulations to study the dynamics of the stored beam passing hundreds of times through the target during the accumulation process.

- Optimisation of the accumulator ring lattice
- Target material and thickness
- Positron beam energy

This note contains the description of the code and the
results of its Benchmark against Geant4INFN-20-07/LNF
10 Giugno 2020

MUFASA: MUon FAst Simulation Algorithm

Andrea Ciarma[†] INFN, Laboratori Nazionali di Frascati, I-00044 Frascati, Italy [†]Email: andrea.ciarma@lnf.infn.it

Muon Accumulator Ring Optics

Realistic lattice features: compactness and high energy acceptance

Dedicated **optimisation studies** of the lattice have been performed to correct for chromaticity and high order momentum compaction by dedicated families of sextupoles, resulting in a **very large energy acceptance** of -10%/+15%

The ring is composed by two symmetric arcs and two straight sections, one for the target insertion and one for the RF

		-
Muon beam energy	GeV	22.5
Circumference	m	140
Number of cells		12
rf frequency	GHz	3.9
rf voltage	MV	200
Harmonic number		2100
Number of bunches		1
Horizontal betatron tune		8.84
Vertical betatron tune		3.73
Longitudinal tune		0.015
Momentum compaction		-7.12×10^{-5}
Natural horizontal chromaticity		-8.28
Natural vertical chromaticity		-10.37
Bunch length	cm	0.9
Ring energy acceptance		-10%, +15%

Since the target region is in common for the positrons and the two muon beams, a septum in the first bending magnet is used to separate the beams $\sqrt{u^+}$

Target specifics and e^+ beam

The muon ring energy acceptance sets the positron beam energy at 45GeV.

Muon Energy MAX-MEAN-MIN [GeV]

The candidate materials are **low-Z** in order to reduce the multiple scattering contribution.

The thickness of the target is decided in order to maximise production efficiency and minimising the emittance. For $E_{e^+} = 45 GeV$ target thickness is chosen to be $L_{tgt} = 0.3X_0$

For accumulation 1500 bunches of 5×10^{11} e⁺ are considered, $\epsilon_{e^+} = 0.7 nm \ rad$.

Contributions to muon emittance

 $\epsilon_{final} = \epsilon_{prod} \oplus \epsilon_{e^+} \oplus \epsilon_{MSprod} \oplus \epsilon_{accum} \oplus \epsilon_{MSaccum}$

Effects due to the production

- Drift through the target
- Positron beam size
- Multiple scattering to the end of the target

Contributions to muon emittance

 $\epsilon_{final} = \epsilon_{prod} \oplus \epsilon_{e^+} \oplus \epsilon_{MSprod} \oplus \epsilon_{accum} \oplus \epsilon_{MSaccum}$

Effects due to the accumulation

- Mismatched β^* w.r.t. production emittance
- Repeated multiple scattering

Beryllium Target

Beryllium is the **most efficient solid target** for muon pair production.

After 1500 turns (~1.5 lifetimes), **3.5x10⁸ muon pairs** accumulated with $\epsilon_N = 2000 \ \mu m \ rad$ considering 1500 impinging positron bunches of 5x10¹¹ positrons per bunch.

Dominant contributions: repeated Multiple Scattering and mismatched β^*

Liquid Lithium Target

To **mitigate the effect of multiple scattering** during the accumulation a **thin film target** can be obtained using a jet of liquid Lithium.

If the transverse size of the target is much smaller than the stored beam size, muons will mostly not interact with matter. $\epsilon_N = 160 \ \mu m \ rad$

Dominant contribution: **mismatched** β^*

Liquid Lithium Target with Diamond dust

The film jet target length can be reduced by mixing **diamond micro-powder** to the liquid Lithium.

multiple scattering strongly suppressed
reduced target length

Using this target, a scan on β^* has been performed and it showed that a lower beta would **further reduce** the final muon beam emittance, **matching** the lattice action with the production emittance.

Positron bunch recombination at the target

Thanks to the small positron emittance it could be possible to simultaneously inject multiple positron bunches on the target by using a dedicated system of delay lines, spacing them on the vertical phase space.

Fewer number of cycles required:

- reduced MS contribution to emittance
- preventing a lot of muons from decaying

Limit parameters for the Single-pass

A possible improvement might be obtained by using a new lattice with **matched optical functions** in order to preserve the production emittance.

The contribution due to the **positron beam size** could be reduced, meaning a normalised production emittance of $\epsilon_N = 1 \mu m \cdot rad$ for a 45GeV e^+ beam on a $0.5X_0$ LLi-D jet target, without the requirement for 6D cooling.

The muon population might be enhanced by **upgrading the** e^+ **source** (x2~x4).

New lattice with larger energy acceptance would allow a positron energy up to 50GeV, increasing the muon population of a factor ~3.

With these improvements the number of muons per bunch could rise up to $N_{\mu}=10^{10}$

Considering working with continuous injections, only a factor 3 in population is required for LEMMA to be a discovery machine at $\sqrt{s} = 42TeV$. This could be further improved with stronger magnets, increasing the repetition rate or working in top-up mode

Single-pass scheme - Summary

	Setup	Accumulated muons		$\epsilon[\mu m \ rad]$	$\epsilon_N[\mu m]$	rad]
-0.3 Mos 10 fear			ϵ_{prod}	0.015		3
	Be $0.3X_0$ (106mm)	$3.5 \cdot 10^8 \mu$	ϵ_{accum}	1.5		300
			ϵ_{final}	10		2'000
0.310 2 10.500	$II; 0.2V_{c}$ (465mm)		ϵ_{prod}	0.025		5
	LLI $0.3X_0$ (405mm) Lot $50\mu m$	$5.0 \cdot 10^8 \mu$	ϵ_{accum}	0.3		60
	Jet 50µm		ϵ_{final}	0.8		160
0.3 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	LLi-D $0.5X_0$ (67mm)		ϵ_{prod}	0.011		2.2
	Jet $50 \mu m$	$4.2\cdot 10^8 \mu$	ϵ_{accum}	0.050		10
	$\beta^* = 0.1m$		ϵ_{final}	0.320		64
	LLi-D $0.3X_0$ (40mm)		$\epsilon_{prod,x}$	0.009		1.8
	Jet $50 \mu m$	8.0 108.0	$\epsilon_{final,x}$	0.110		22
	$\beta^* = 0.1m$	$8.0\cdot10^{-}\mu$	$\epsilon_{prod,y}$	0.032		6.4
	Revolver x7		$\epsilon_{final,y}$	0.150		30
	Limit scenario					
	pointlike 50 GeV e^+ beam	$10^{10}\mu$	ϵ_{limit}	0.005		1
	matched β^*	***********				'

The use of liquid jet targets and e^+ beam recombination allowed an increase of a factor 2 in the muon population and a reduction of a factor 100 in the normalised muon emittance w.r.t. the solid Beryllium target. Limit scenario foresees $10^{10}\mu/bunch$ and $\epsilon_N = 1\mu m \ rad$, result obtained without the requirement of 6D cooling.

Conclusions

In this thesis I have explored the possible reach of the single-pass LEMMA source

- Muon accumulator lattice has been optimised to reduce chromatic effects and have a large energy acceptance -10%/+15%
- The performance of the production and accumulation system has been studied by performing start-to-end simulations with the custom tool MUFASA.
- Single contributions to the muon emittance increase during the accumulation process (like the multiple scattering, energy loss, chromaticity,...) have been isolated and independently studied.
- The use of liquid jet targets allowed to reduce the multiple scattering contribution, and positron beam recombination reduced emittance (x100) and increased the number of muons per bunch (x2).
- Best case achieved: $\epsilon_N = 26[\mu m \ rad]$ and $8.0 \cdot 10^8 \mu/bunch$ without the requirement of 6D cooling.
- New accumulators lattice design and the positron source enhancement are necessary to achieve the limit parameters $\epsilon_N = 1[\mu m \ rad]$ and $N_\mu = 10^{10} \mu / bunch$
- With this configuration the limit for the LEMMA single-pass would be less than one order of magnitude from the minimum luminosity required to be a discovery machine at $\sqrt{s_{\mu}} \sim 40 TeV$, which could be reached by increasing the rep rate or working in top-up mode

List of Publications

- 1. M. Boscolo, M. Antonelli, A. Ciarma, P. Raimondi. "Muon production and accumulation from positrons on target". *Phys. Rev. Accel. Beams 23, 051001* (2020)
- 2. A. Ciarma. "MUFASA: MUon FAst Simulation Algorithm" Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati INFN-20-07/LNF (2020).
- 3. A. Ciarma. "Study of the production of a low emittance muon beam for the LEMMA project" *Il Nuovo Cimento 43 C (2020) 58*.
- 4. O. R. Blanco-García, A. Ciarma. "Nanometric muon beam emittance from e⁺ annihilation on multiple thin targets". *Phys. Rev. Accel. Beams 23, 091601 (2020)*
- 5. O. R. Blanco-García, A. Ciarma. "Optics studies of a Muon Accumulator Ring based on FFA cells". arXiv 2011.11701 (2020)
- 6. M.E. Biagini et al. "Positron driven muon source for a muon collider: recent development" IPAC2019, Melbourne, Australia 10.18429/JACoW-IPAC2019- MOZZPLS2 (2019)
- 7. O. R. Blanco-García et al. "Multi-target lattice for muon production from e+ beam annihilation on target" IPAC2019, Melbourne, Australia 10.18429/JACoW-IPAC2019-MOPRB003 (2019)
- 8. D. Alesini et al. "Positron driven muon source for a muon collider" arXiv:1905.05747 (2019)
- 9. G. Cesarini et al. "Theoretical Modeling for the Thermal Stability of Solid Targets in a Positron-Driven Muon Collider" Int. J. Thermophys. 42, 163 (2021)

Presentations at conferences

- 1. Incontri di Fisica delle Alte Energie IFAE19 Napoli 8-10 Aprile 2019 Awarded Best Presentation of the "New Technologies" section
- 2. 105° Congresso Nazionale della Società Italiana di Fisica L'Aquila 23-27 Settembre 2019

Backup

Target features are width, length and material.

```
// material[] = {X0, rho, A, Z, dE/dx};
double beryllium[] = {65.19,1.848,9.01218,4,0.2947};
```

The simulations starts with e⁺ macroparticles at the beginning of the target. **Multiple scattering** and **energy loss** are evaluated at each step.

The **production vertex** *z* is extracted from the exponential distribution $f(z) = e^{-z/X_0}$

The positron is tracked *step-by-step* to *z*. Then if the positron energy is above threshold $E \ge 43.8 GeV$ a muon is produced and a **weight** is associated to it.

Muons are tracked *step-by-step* through the target, then tracked with MADX-PTC in the accumulator optics back to the target. This **cycle** is repeated for the whole accumulation process

At the end of the accumulation process, **muon survival probability** is evaluated by:

$$P = e^{-L/\tau\beta c}$$

 $\tau = \gamma \cdot 2.2 \mu s$ and $L = L_{accumulator} \times N_{turns}$

where

Transport lines for Multi-Target LEMMA option

Multiple thin targets $\mathcal{O}(0.01X_0)$ connected by a transport line:

- ✓ Reduced power per target
- ✓ Focusing the beams (instead of drift through thick target)
- X Longer production system

A dedicated lattice for the accumulator ring has not been yet designed. In this paper the performances of the transport lines in use with thin targets have been studied. PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 091601 (2020)

Nanometric muon beam emittance from e^+ annihilation on multiple thin targets

> O. R. Blanco-García^{®*} and A. Ciarma[®] INFN-LNF, Via E. Fermi 40, 00044 Frascati, Rome, Italy

The line proves **very effective** in transporting the muon beam through several targets while keeping the **emittance constant**.

Changing the target material does not influence the trend as a function of the % of X_0

Small emittance increase (~30%) is due to higher order terms in the chromatic functions not corrected

Positron beam **energy scan** has been performed to find the optimised working point for this transport line.

Above 44.0GeV emittance starts to be degraded due to the **higher muon energy spread** at production, and increasing even more the energy saturates the population because muons are produced already outside the line energy acceptance.

The working point is set to 44.0GeV achieving a production efficiency of 50×10^{-8} muon pairs per positron and an emittance of 25π nm rad after 50 Beryllium targets of $1\% X_0$

Multiple Scattering

$$\sigma_{\theta}[rad] = \frac{0.0136}{E[GeV]} \sqrt{\frac{L[m]}{X_0[m]}}$$

Bremsstrahlung

$$\frac{d\sigma}{dk} = \frac{A}{X_0 N_A k} \left(\frac{4}{3} - \frac{4}{3}y + y^2\right)$$
$$P = \frac{N_A \rho}{A} L_{step} \sigma_{tot} \sim \frac{L_{step}[m]}{X_0[m]} \frac{4}{3} log\left(\frac{k_{max}}{k_{min}}\right)$$

Muon Production

$$w = \frac{N_{e+}^{true} \rho N_A Z / A l_{tgt} \sigma_{e^+e^- \to \mu^+\mu^-}}{N_{e+}^{macro}}$$

$$f(\theta^*) = \left[1 + \frac{E_{th}}{E} + \left(1 - \frac{E_{th}}{E}\right)\cos^2\theta^*\right]\sin\theta^*$$

Figure 3.10. Energy distribution muons produced by a 45GeV positron beam on a 0.106m Beryllium target.

J.P.Delahaye

Tentative IMC 3 TeV (based on MAP potential transmission factors)

IMC	3 TeV	Particle Transmission		Dilution/Cooling Factor			Beam	Number	Particles	Norm	Norm.	Runch	Beam	
				Transvers emittance	Transverse emittances		Longitudinal emittances		of bunches	per bunch	transv emittance	long. emittance	length	Power
5	Rep rate (Hz)							GeV	#	E12	μ rad-m	mrad-m	mm	W
	Driver	0.153 at 80	6eV					5	1	376.89			600 (2ns)	1.5E+06
Targe	et & Front End	0.0956						0.255	12	36.04	15000	45	85.2	8.8E+04
	Initial Cooling	0.72		0.2		0.22	2.182	0.255	12	25.77	3000	10	85.2	6.3E+04
	Charge separator	0.90	0.108	1.05		1.05		0.255	12	23.19	3150	10	85.2	5.7E+04
ing	6D cooling before merge	0.72		0.5	03	0.20		0.255	12	16.58	1575	2	85.2	4.1E+04
8	6D merge	0.88		2	0.0	4.00		0.255	1	14.59	3150	8	92.3	3.0E+03
0	6D cooling after merge	0.44		0.067		0.23 52.00		0.255	1	6.42	211	2	92.3	1.3E+03
	Final cooling & Re-Accel	0.61		0.188				0.255	1	3.91	40	98	92.3	8.0E+02
-	Injector Linac	0.92		1.05	1	1.05		1.25	1	3.60	42	103	46.2	3.6E+03
<u>e</u>	RLA1	0.92]	1.02]	1.02	1.159	5	1	3.32	42	105	23.1	1.3E+04
ara	RLA2	0.85	0.568	1.02	59	1.02 1.02 1.02		62.5	1	2.83	43	107	23.1	1.4E+05
Accele	RCS1	0.90		1.02	12			303	1	2.54	44	109	23.1	6.2E+05
	RCS2	0.92		1.02				750	1	2.34	45	112	23.1	1.4E+06
	RCS3	0.95		1.02	1	1.02		1500	1	2.22	46	114	23.1	2.7E+06
Collider	IP	0.99		1.02		1.02		1500	1	2.20	47	116	5.0	2.6E+06
Front E	nd to IP	6.10E-02		3.12E-03		2.58								

Proton beam power on target for 2.2E12 μ /5Hz at IP: 1.5 MW IP transverse/longitudinal emittances: 47/116 mm-mrad

$$\frac{\rho}{\mathbf{X}_0} = f(\mathbf{L}\mathbf{L}\mathbf{i})\frac{\rho\mathbf{L}\mathbf{L}\mathbf{i}}{\mathbf{X}_0^{\mathbf{L}\mathbf{L}\mathbf{i}}} + f(\mathbf{D})\frac{\rho^{\mathbf{D}}}{\mathbf{X}_0^{\mathbf{D}}}$$

fractions of liquid lithium f(LLi), and diamond powder f(D).

f(LLi)	$f(\mathbf{D})$	$\rho [{\rm g~cm^{-3}}]$	$X_0 \ [g\ cm^{-2}]$	X ₀ [cm]
1.0	0.0	0.534	82.78	155.02
0.9	0.1	0.833	59.26	71.18
0.7	0.3	1.430	48.89	34.19
0.5	0.5	2.027	45.61	22.50
0.3	0.7	2.624	44.00	16.77
0.1	0.9	3.221	43.04	13.36
0.0	1.0	3.520	42.70	12.13

Recirculating Muon Beam Size

LEMMA single-pass limit scenario: $\epsilon_N = 1 \mu m \ rad$ without the need for cooling. A further factor 4 in population is required for LEMMA to be a discovery machine at $\sqrt{s} = 38 TeV$, which could be achieved by reducing the collider circumference (16T \rightarrow 30km @17TeV), further upgrading the positron source or working in top-up mode.

Multi-pass 45GeV e+ on 3mm Be

Pointlike beam $\epsilon_N(\sigma_x = 0) = 44nm \ rad$ Realistic beam $\epsilon_N(\sigma_x = 20\mu m) = 1.9\mu m \ rad$

Single-pass 45GeV e+ on 0.5X0 LLi-D

Pointlike beam $\epsilon_N(\sigma_x = 0) = 1 \mu m \ rad$ Realistic beam $\epsilon_N(\sigma_x = 20 \mu m) = 2.2 \mu m \ rad$

