
Mining the Universe

✉ nkrach@sissa.it
Nicoletta Krachmalnicoff

SIGRAV international School
2022 on Cosmology

Machine Learning in Cosmology

Outline:

i. Intro: numbers about ML in
cosmology

ii. Open questions in cosmology
iii. NN applications on LSS

simulations
iv. NN applications on CMB

• Basics of Neural
Networks

• Convolutional Neural
Networks

• Generative adversarial
Networks

Machine learning (ML) is the study of computer algorithms that can
improve automatically through experience and by the use of data.

“Neural Networks” “Bayesian” “Dark Matter”

Some numbers

source: NASA/ADS

• What is Dark Matter?

• What is the nature of Dark
Energy?

• What is the correct theory
of Inflation?

• Which are the neutrino
masses?

• ….

Many open questions:

CMB:
“simple”, almost perfectly Gaussian, signal
…but faint and highly contaminated
(foregrounds and instrumental systematics)

Large Scale Structure:
Complex signal, involving highly non linear
physical process

Simons Observatory
2023 ~ 2028 LiteBIRD

~ 2029

DESI
ongoing ~ 2023 ~ 2025

CMB experiments

Galaxy surveys

Early Universe - faint signal

Large Scale Structure - complex signal

Are current methodologies sufficient, given
the amount of data, the signal complexity

and the precision we want to achieve?

How to fully exploit data?

➡ Parameter estimation is a huge data compression:
from many TB of data to few numbers

➡ The game we are playing in cosmology is to find the
value of few cosmological parameters, with the
highest possible precision

➡ To do that we typically use summary statistics
computed from data and compared with theoretical
expectations

parameters from CMB:

clean CMB map

Calibration
Map Making

Component separation

A&A 571, A1 (2014)

[l(
l +

1)
]

c l

lensing multipole l

angular scale [deg.]

Fig. 19. Fiducial lensing power spectrum estimates based on the 100, 143, and 217 GHz frequency reconstructions, as well as the minimum-
variance reconstruction that forms the basis for the Planck lensing likelihood (Planck Collaboration XVII 2014).

2 10 50
0

1000

2000

3000

4000

5000

6000

d
`[
µ
k2]

90� 18�

500 1000 1500 2000 2500

multipole moment, `

1� 0.2� 0.1� 0.07�
angular scale

Fig. 20. Temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks that
are well-fitted by a six-parameter ⇤CDM model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration XVI 2014).
The shaded area around the best-fit curve represents cosmic/sample variance, including the sky cut used. The error bars on individual points also
include cosmic variance. The horizontal axis is logarithmic up to ` = 50, and linear beyond. The vertical scale is `(` + 1)Cl/2⇡. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2014), but it has been rebinned to show better
the low-` region.

reducing the covariance between bins enough to neglect it. We
analytically marginalise over the beams, di↵use point sources,
and first order bias uncertainty and include them in the covari-
ance. The cosmological uncertainty on the normalization is ac-
counted for by a first-order correction. Our power spectrum mea-
surement constrains the lensing potential power spectrum to a

precision of ±4%, corresponding to a 2% constraint on the over-
all amplitude of matter fluctuations (�8). The construction of
the lensing likelihood is described in Planck Collaboration XVII
(2014), and its cosmological implications are discussed in detail
in Planck Collaboration XVI (2014).

A1, page 28 of 48

Power spectra
summary

sta
tist

ic
Parameters

Theoretical prediction

P(θ̄ |H)
Likelihood

Inference
P(H | θ̄) ∝ P(θ̄ |H)P(θ̄)

Planck Collaboration: Cosmological parameters

64

66

68

70

72

H
0

0.28

0.30

0.32

0.34

0.36

�
m

0.022 0.024

�bh2

0.76

0.78

0.80

0.82

0.84

�
8

0.112 0.120 0.128

�ch2

1.038 1.042

100�MC

0.04 0.06 0.08

�

0.94 0.96 0.98 1.00

ns

2.95 3.00 3.05 3.10

ln(1010As)

Planck EE+lowE+BAO Planck TE+lowE Planck TT+lowE Planck TT,TE,EE+lowE

Fig. 5. Constraints on parameters of the base-⇤CDM model from the separate Planck EE, T E, and TT high-` spectra combined
with low-` polarization (lowE), and, in the case of EE also with BAO (described in Sect. 5.1), compared to the joint result using
Planck TT,TE,EE+lowE. Parameters on the bottom axis are our sampled MCMC parameters with flat priors, and parameters on the
left axis are derived parameters (with H0 in km s�1Mpc�1). Contours contain 68 % and 95 % of the probability.

Table 1. Base-⇤CDM cosmological parameters from Planck TT,TE,EE+lowE+lensing. Results for the parameter best fits,
marginalized means and 68 % errors from our default analysis using the Plik likelihood are given in the first two numerical
columns. The CamSpec likelihood results give some idea of the remaining modelling uncertainty in the high-` polarization, though
parts of the small shifts are due to slightly di↵erent sky areas in polarization. The “Combined” column give the average of the
Plik and CamSpec results, assuming equal weight. The combined errors are from the equal-weighted probabilities, hence including
some uncertainty from the systematic di↵erence between them; however, the di↵erences between the high-` likelihoods are so small
that they have little e↵ect on the 1� errors. The errors do not include modelling uncertainties in the lensing and low-` likelihoods
or other modelling errors (such as temperature foregrounds) common to both high-` likelihoods. A total systematic uncertainty of
around 0.5� may be more realistic, and values should not be overinterpreted beyond this level. The best-fit values give a represen-
tative model that is an excellent fit to the baseline likelihood, though models nearby in the parameter space may have very similar
likelihoods. The first six parameters here are the ones on which we impose flat priors and use as sampling parameters; the remaining
parameters are derived from the first six. Note that ⌦m includes the contribution from one neutrino with a mass of 0.06 eV. The
quantity ✓MC is an approximation to the acoustic scale angle, while ✓⇤ is the full numerical result.

Parameter Plik best fit Plik [1] CamSpec [2] ([2] � [1])/�1 Combined

⌦bh2 0.022383 0.02237 ± 0.00015 0.02229 ± 0.00015 �0.5 0.02233 ± 0.00015
⌦ch2 0.12011 0.1200 ± 0.0012 0.1197 ± 0.0012 �0.3 0.1198 ± 0.0012
100✓MC 1.040909 1.04092 ± 0.00031 1.04087 ± 0.00031 �0.2 1.04089 ± 0.00031
⌧ 0.0543 0.0544 ± 0.0073 0.0536+0.0069

�0.0077 �0.1 0.0540 ± 0.0074
ln(1010As) 3.0448 3.044 ± 0.014 3.041 ± 0.015 �0.3 3.043 ± 0.014
ns 0.96605 0.9649 ± 0.0042 0.9656 ± 0.0042 +0.2 0.9652 ± 0.0042

⌦mh2 0.14314 0.1430 ± 0.0011 0.1426 ± 0.0011 �0.3 0.1428 ± 0.0011
H0 [km s�1Mpc�1] . . . 67.32 67.36 ± 0.54 67.39 ± 0.54 +0.1 67.37 ± 0.54
⌦m 0.3158 0.3153 ± 0.0073 0.3142 ± 0.0074 �0.2 0.3147 ± 0.0074
Age [Gyr] 13.7971 13.797 ± 0.023 13.805 ± 0.023 +0.4 13.801 ± 0.024
�8 0.8120 0.8111 ± 0.0060 0.8091 ± 0.0060 �0.3 0.8101 ± 0.0061
S 8 ⌘ �8(⌦m/0.3)0.5 . . 0.8331 0.832 ± 0.013 0.828 ± 0.013 �0.3 0.830 ± 0.013
zre 7.68 7.67 ± 0.73 7.61 ± 0.75 �0.1 7.64 ± 0.74
100✓⇤ 1.041085 1.04110 ± 0.00031 1.04106 ± 0.00031 �0.1 1.04108 ± 0.00031
rdrag [Mpc] 147.049 147.09 ± 0.26 147.26 ± 0.28 +0.6 147.18 ± 0.29

15

Even if the early Universe was a Gaussian random
field, non-linear gravitational evolution leads to a
non-Gaussian density field on small scales and at
low redshift

The main challenge is not in the amount and
quality of data (as for CMB) but in the signal
complexity!

1. What is the optimal summary statistic?

2. How to efficiently compute numerical simulations
for theoretical prediction?

3. How to marginalize over unknown physical
processes?

Parameters from LSS:

8 Bayer, Villaescusa-Navarro et al.

Figure 5. 68% (darker shades) and 95% (lighter shades) confidence contours for the cosmological parameters for the non-linear matter
power spectrum (Pm, red), the halo mass function (HMF, blue), and the void size function (VSF, green). Due to the often di↵erent
degeneracies of each probe, we obtain significantly tighter constraints when combining the three probes (black). We note that some
contours extend into unphysical regions (⌦b < 0, h < 0,M⌫ < 0): this is just a result of the Gaussian approximation associated with a
Fisher analysis.

ing the matter power spectrum alone, correlations cause
an increase in errors due to the positive correlation be-
tween di↵erent scales (see Fig. 4). However, it is the com-
plex correlation structure, notably the anti-correlations,
introduced by considering the HMF and VSF that leads
to a reduction in error, both for the HMF and VSF in-
dividually, and in turn when combining all probes. The
association of anti-correlation with the tightening of con-
straints was also pointed out by Chartier et al. (2020).
In Table 2 we quantify the improvement of the com-

bined constraints compared to those achieved from Pm

alone. We find the improvements to be a factor of 137,
5, 8, 20, 10, and 43, for ⌦m, ⌦b, h, ns, �8, and M⌫ , re-
spectively. Thus we achieve 43 times tighter constraints
on neutrino mass by combining all three probes. Specif-
ically, the marginalized errors on M⌫ are 0.77eV (Pm
alone) and 0.018eV (Pm+HMF+VSF). We provide an
additional plot in Appendix B to show the confidence el-
lipses when combining only two of the probes at a time.

6. DISCUSSION AND CONCLUSIONS

Detecting neutrino mass by combining matter clustering, halos, and voids 9

Marginalized Fisher Constraints

Probe(s) ⌦m ⌦b h ns �8 M⌫(eV)

Pm 0.098 0.039 0.51 0.50 0.014 0.77
HMF 0.034 0.042 0.28 0.12 0.082 1.6
VSF 0.31 0.12 1.3 0.42 0.083 1.1
Pm +HMF 0.00077 0.0089 0.076 0.034 0.0016 0.061
Pm +VSF 0.016 0.011 0.12 0.074 0.0018 0.025
HMF+VSF 0.0063 0.037 0.23 0.10 0.0069 0.096
Pm +HMF+VSF (diag) 0.0015 0.0088 0.066 0.028 0.00061 0.031
Pm +HMF+VSF (auto) 0.0015 0.0086 0.071 0.033 0.0016 0.025
Pm +HMF+VSF (full) 0.00071 0.0084 0.064 0.025 0.0015 0.018

Multiplicative improvement 137 5 8 20 10 43

Table 2
Marginalized errors of cosmological parameters for kmax = 0.5hMpc�1 using di↵erent probe combinations. Note, we list the constraints

obtained by combining all 3 probes while: 1) only using the diagonals of the covariance matrix (diag), 2) only considering auto-covariance
(auto), and 3) considering the full covariance (full). We highlight in bold the full constraints on the sum of the neutrino masses. We also

list the multiplicative improvement in the constraints from the full covariance compared to those from Pm alone.

Figure 6. The M⌫–�8 plane from Fig. 5. We inset a zoom-in of
the contour obtained by combining all three probes. The marginal-
ized error on M⌫ from Pm alone is 0.77eV, while the error after
combining all three probes is 0.018eV, corresponding to a factor
⇠ 43 improvement.

Upcoming galaxy surveys will map large volumes of
the Universe at low redshifts, with the potential to dras-
tically improve our understanding of the underlying cos-
mological model. With the unprecedentedly precision
achievable by these surveys, it is expected that a very
large amount of cosmological (and astrophysical) infor-
mation will lie in the mildly to fully non-linear regime,
where analytic methods are often intractable. It remains
an open question which observable(s) will lead to the
tightest bounds on the cosmological parameters.
In this paper, we use the Quijote simulations, based on

the Fisher formalism, to quantify the information content
embedded in the non-linear matter power spectrum, the
halo mass function, and the void size function, both in-

dividually and when combined, at z = 0. We find that
the HMF and VSF have di↵erent degeneracies to each
other and to the matter power spectrum, particularly in
the M⌫–�8 plane (Figs. 5 & 6). In terms of measuring
neutrino mass, we find the void size function to be the
more complementary probe to combine with the matter
power spectrum. This is consistent with findings that
void properties are particularly sensitive to matter com-
ponents that are less clustered, such as neutrinos (Mas-
sara et al. 2015; Kreisch et al. 2019).
By combining the non-linear matter power spectrum

(kmax = 0.5 hMpc�1), with the halo mass function
(M & 2 ⇥ 1013 h

�1
M�), and the void size function

(R > 10.4h�1Mpc), we achieve significantly tighter con-
straints on the cosmological parameters compared to Pm
alone (Fig. 7). In particular, we find that with a vol-
ume of just 1 (h�1Gpc)3, the error on the sum of neu-
trino masses from the combined probes is at the 0.018eV
level, compared to 0.77eV from the matter power spec-
trum alone — a factor of 43 improvement. We emphasize
that this value mainly demonstrates the information con-
tent in the late-time statistics, and they are not forecasts
for any particular survey.
Also of particular interest is the factor 137 improve-

ment in the error on ⌦m. This is driven by the infor-
mation in the HMF, and gives a marginalized error of
�(⌦m) = 7.1 ⇥ 10�4, which is almost 100 times smaller
than the error obtained from a joint large-scale struc-
ture analysis by DES Y1 (�(⌦m) ⇡ 0.04, To et al. 2021),
and 8 times smaller than Planck 2018, (�(⌦m) ⇡ 5.6 ⇥
10�3 (TT,TE,EE+lowE+lensing+BAO), Planck Collab-
oration et al. 2018). In addition, we found �(h) = 0.064
by combining the three probes, which is 8 times tighter
than the constraints from the matter power spectrum
alone. This could provide a new angle to investigate the
Hubble tension.
There are several caveats in this work. Firstly, we as-

sumed perfect knowledge of the three-dimensional spatial
distribution of the underlying matter field in real-space.
However, in reality, one observes either tracers of the
matter field in redshift-space, or the projected matter

Different summary statistics show
different correlations among
parameters, leading to different
constraints

Just one example…. Bayer, A.E. et al., ApJ 2021 (arXiv:2102.05049)

https://ui.adsabs.harvard.edu/link_gateway/2021ApJ...919...24B/arxiv:2102.05049

Initial
Conditions

Dark Matter
simulations

Distribution of
Galaxies and

Gas
Observations

Mapping from initial conditions to simulations

…and from observations to initial conditions

Credits: D. Spergel, ML x Cosmo group at CCA

Basics of Neural Networks

Basics of NNs

• The goal of a feed-forward Neural Network is to find a good enough
approximation of the function that maps inputs into outputsf

• The Neural Network defines a mapping and finds
the value of the parameters that results in the best approximation

f * = f * (x; θ)
θ

f * ∼ f

y = f(x)

f () = 8 f () = 2

f : IRn⇥m ! IN
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Basics of NNs

• Neural networks can, in principle, be used every time there is a
unique relation between a input and output

• very powerful tool, especially when this relation is unknown
• it must exist a set of data “large enough” for which the output

associated at each input is known (training set)

Supervised Learning

Basics of NNs

Q: How can a NN approximate very complex
unknown functions?

A: By recursively apply non-linear activation
functions to a linear combination of input
elements

Basics of NNs

Fully connected NN

Input layer

hidden layer 1

hidden layer 2

output layer

• Each line represents a weight w
• In each neuron a linear combination of the inputs is

computed
• The result is then activated with a non-linearity and

become one of the inputs of the following layer

W1 =
w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34
b1 =

b1

b2

b3

b4
x1

x2

x3

h11

h12

h13

h14

h21

h22

y1

h̃[1] = W[1]T ⋅ x + b[1]

h[1] = σ(h̃[1])

h[2] = σ(h̃[2])

y = σ*(ỹ)

h̃[2] = W[2]T ⋅ h[1] + b[2]

ỹ = W[3]T ⋅ h[2] + b[3]

…

…

…

…

…

…

…

…
… … … … … …

• very deep NNs can have thousands
of layers

• and O(107) parameters

• The number of layers and
neurons in each layer define
the architecture of the NN and
are called hyperparameters

• This type of NN are called dense or fully connected

Fully connected NN

Loss function

• Through the feed-forward propagation the NN produces the output
(values of the neurons in the output layer)

• During training the output is compared with the ground truth

• This is done by computing a loss function

NN output Ground truth

ℒ(yi, ŷi) “Distance” between
true output and NN

output

Cost function

𝒥 =
1
N

N

∑
i=0

ℒ(yi, ŷi)

𝒥 = 𝒥(w, b)

• The cost function is the average of the loss over the training set

• it is a function of all the NN's parameters (weights and biases):

The goal of training is to find the parameters
 and that minimize w b 𝒥

Gradient descent

XX X X X
X
XX

X
X

X
XX

We need to find the minimum of the cost function 𝒥 = 𝒥(w, b) = 𝒥(Θ)
Which could be a very complicated function

The minimum is achieved through a
gradient descent algorithm

Θn+1 = Θn − α∇𝒥(Θn)

Gradient descent

• at each iteration the parameters are updated as:

w := w − α
∂𝒥
∂w

b := b − α
∂𝒥
∂b

• is the learning rate and is an hyper-parameter of the NN α

(hyperparameter are set before training the network and are not optimize during training)

W[1], b[1] W[2], b[2] W[3], b[3]
W[4], b[4]

Feedforward & Backpropagation

W[1], b[1] W[2], b[2]

W[4], b[4]W[3], b[3]
W[4], b[4]W[3], b[3]W[2], b[2]

W[1], b[1]

Feedforward & Backpropagation

W[4], b[4]W[3], b[3]W[2], b[2]
W[1], b[1]

1. How to efficiently compute numerical simulations
for theoretical prediction?

2. Which is the optimal summary statistic?

3. How to marginalize over unknown physical
processes?

Initial
Conditions

Dark Matter
simulations

Distribution of
Galaxies and

Gas
Observations

Initial
Conditions

Dark Matter
simulations

Distribution of
Galaxies and

Gas
Observations

1. How to efficiently compute numerical simulations
for theoretical prediction?

2. Which is the optimal summary statistic?

3. How to marginalize over unknown physical
processes?

From Dark Matter to Galaxies

Gravity only N-body
simulations
evolving position and
velocity of massive
particles over time

Full cosmological simulations
including gravity, electromagnetism
and hydrodynamics to evolve
different species of particles.

Needed to compare theory with data

..but extremely computational expensive

Can we use NN to map DM into Galaxy distribution?

Neural Network

Convolutional Neural Networks

Fully connect NN works with one-
dimensional layers, destroying the spatial

information of the input

Convolutional neural networks preserve the
spatial information by using filters instead of

neurons

CNN: basic concepts

The convolution between sub-image (5x5x3)
and filter is computed as the sum of the
element wise product between the two

The full convolution is done by slicing the filter
over the whole input image

Different filters can be used in the same
convolutional layer

CNN: complete architecture

• A deep CNN is built by stacking together several convolution+pooling layers
• Pooling layers are used to reduce dimensionality in (width x height) and usually they

consist in taking the maximum or average values of pixels in the pooling reception field

• Typically while going deeper in the network (width x height) dimension is reduced while
depth of the volume grows

From Dark Matter to Galaxies

Mapping with Convolutional Neural Networks

Figure 1: Visualization of Illustris simulation at redshift
z = 0 (left), and Zoom-in visualization of corresponding
dark matters and galaxies. (Right), adapted from http://www.
illustris-project.org/media/

and dropout as critical design choices in the neural network archi-
tecture to achieve highly competitive performance in estimating
cosmology parameters. [18] used Extremely randomized Trees [14]
to predict a hydrodynamical simulation of galaxies and found that
ERT is very e�cient in reproducing the statistical properties of
galaxies in these hydrodynamical simulations. In [24], CNN has
been demonstrated to give signi�cantly better estimates of �m and
�8 cosmological parameters from simulated convergence maps than
the results from state-of-art methods, but is also free of systematic
bias. Additionally, the CNN model could be interpreted by using
the representations from internal layers. The similarity between
a kernel and the Laplace operator inspired Ribli et al. to propose
a new peak counting scheme that achieves better result than past
peak counting schemes.

3 DATA
We utilize two types of simulations in this work: hydrodynamic
(gravitational + hydrodynamic forces and astrophysical processes)
and N-body (only gravitational forces), both from the Illustris
project [13, 20, 30, 31]. The main purpose of this work is to train
neural networks to predict the abundance and spatial distribution
of galaxies from the very computationally expensive hydrodynamic
simulation only using information from the much cheaper N-body
simulation.

We use the level-1 simulations within Illustris, which is the
simulation set with highest spatial and mass resolution of the suite.
We focus our analysis at redshift z = 0, that corresponds with the
current epoch of the Universe.

The cosmological model used for the Illustris simulation is in
agreement with the constraints fromWMAP9 (Nine-YearWilkinson
Microwave Anisotropy Probe Observations)[16].

At z = 0, the hydrodynamic simulation contains 5,280,615,062
gas cells, 595,243,070 stellar particles and 32,552 supermassive black-
holes particles. The number of Dark Matter particles and galaxies
within this snapshot is 6,028,568,000 and 4,366,546, respectively.
The N-body simulation only contains 6,028,568,000 dark matter
particles. Figure 1 shows the spatial distribution of dark matter in
the N-body simulation as well as a close-up on a smaller region.

Figure 2: Spatial distribution of dark matter from the N-
body simulation (left) and galaxies from the hydrodynamic
simulation (right). The large boxes represent the entire sim-
ulations, while the small boxes correspond to the siezes of
our voxels and training cubes.

We compute the density �elds of galaxies and dark matter by
assigning each component to a regular grid with 10243 voxels using
the nearest-grid point mass assignment scheme: if a galaxy or dark
matter particle is inside a given voxel, the value of that cell is
increased by 1 for the corresponding �eld.

Within the grid, the number of particles in each voxel ranges
from 0 to 747,865 for dark matter and from 0 to 10 for galaxies. The
percentage of non-zero cells is 44.99% and 0.37% for dark matter
and galaxies, correspondingly. The low occupancy of galaxies in
the grid poses an interesting challenge for our work. Fig. 2 shows
the distribution of dark matter and galaxies from the N-body and
hydrodynamic simulations, respectively. The voxels are shown to
demonstrate the gridding we perform.

The simulation density �elds are then separated into sub-cubes of
size 323 voxels, corresponding to regions of size around 2.3 Mpc/h,
and are used as independent samples. There are 32,768 unique
sub-boxes and they are split spatially into three chunks. 62.6% of
all boxes are used for training, 19.63% of the boxes are used for
validation and then the other 17.76% are used for testing. Testing
data are retained as a concatenated cube of size 42.4 Mpc/h for the
ease of computation of relevant statistics.

4 METHODS
Here we present our approach for linking the 3D dark matter �eld
from N-body simulations to the 3D galaxy distribution from hydro-
dynamic simulations.

The two key challenges in predicting galaxy positions from the
darkmatter �eld are (i) the inherently spatial nature of the data (dark
matter and galaxies are structured spatially, on various correlated
scales), (ii) the high sparsity of the galaxy (target) distribution.

To address the �rst aspect, we propose to rely on convolutional
networks. They naturally provide interesting properties for our
problem such as translational invariance [19]. Convolutional net-
works are also commonly employed for extraction of spatial pat-
terns [23]. To address the second aspect, we developed a two-phase
architecture and learning process. We present in the following sec-
tion the details of this architecture, and we discuss the di�erent
convolutional networks we tested in our experiments.

3

Dark matter:
• 0 to 7.5x105 particles in each voxel
• 45% non zero cells

 Galaxies:
• 0 to 10 particles in each voxel
• 0.4% non zero cells

To solve the sparsity problem the task of going from Dark Matter to Galaxy
distribution is divided in two steps:

1. Use a fully connected NN that output the probability that
in each voxel there is at least one Galaxy

2. Use a CNN to make prediction on Galaxy distribution for
voxel selected in the first step

4.1 Two-phase architecture
The high sparsity in our simulation dataset (99.6% of output vox-
els do not contain any galaxies) makes our training challenging.
Because of imbalanced distribution between input and output, the
model could easily achieve a high accuracy even if it fails in pre-
dicting all the galaxies. This slows down the training process to a
great extent. In order to overcome this problem, we propose the
following two-phase architecture.

The main idea is to break down the training into separate
processes. The whole model is composed of two parts. The �rst
part is a classi�er, which predicts the presence or absence of
galaxies as a probability for each voxel representing one part of
Universe. Using a binary classi�er as a �rst "layer" allows us to use
special loss functions designed for such high sparsity prediction.
Speci�cally, we use weighted cross-entropy loss, which penalizes
wrong predictions with high probability, and introduces weights to
correct imbalances in classes. For a single output voxel, it can be
written as follows:

LCrossEnt(p̂, y) = �(w · y · log(p̂) + (1 � y) · log(1 � p̂)) (1)

where p̂ is the vector of predicted probability of the presence of
at least one galaxy in the considered voxel. y is the actual target
value (1 if there exists at least 1 galaxy in the voxel, 0 otherwise).
w characterizes the weight applied for counter-balancing the large
number of voxels without galaxies2.

This �rst prediction is then used as a mask for the �nal
prediction of the number of galaxies in each voxel. The second step
of the network is optimized only on the voxels that are expected to
contain at least a galaxy, according to the binary prediction result
from the �rst phase. We propose to use a L2-loss since we decide to
predict a probabilistic number of galaxies in each voxel, and expect
to have a real value as output. The complete loss of the model for a
single output voxel is illustrated below:

L(n� , p̂,nt) = M(p̂)(n� � nt)2 (2)

M(p̂) =
(
1 p̂ > 0.5
0 Otherwise

(3)

WhereM is a function of the �rst-phase output (p̂) for the given
voxel, which returns 1(0) if we expect to see at least 1 galaxy in the
voxel (or not). n� is the prediction of the second-phase model and
nt is the actual target: number of galaxies in the output voxel.

From an experimental point of view, the training of both parts is
done separately. We select the �rst classi�er (e.g. with the highest
recall) and then train the second part of the model. More details
are given in Sec 5. A schema of this generic architecture is shown
in Figure 3 for a better visualization of the process.

This two-phase set-up is quite generic, and allows us to build
di�erent types of architecture depending on the choice of networks
for each phase.

2Details on the selection forw are given in Section 5 and in Supplementary Materials

Figure 3: Two Phase Model Structure

4.2 Network architectures
Wenow present di�erent types of convolutional networks we tested,
with their physical motivations and speci�c modi�cations to better
�t our problem. The models mentioned below can be used for both
classi�cation(�rst-phase) and regression(second-phase). We will
compare di�erent choices of networks in Section 5, as well as a
more classical "one-phase" training.

U-Net. U-Net is a fully convolutional neural network, �rst pro-
posed in [25] for bio-medical image segmentation. The networks is
composed of a contracting path and a symmetric expanding path.
The �rst path is a typical convolutional architecture, with convolu-
tions followed by a recti�ed linear unit (ReLU) and max-pooling
operation. The number of channels is increased at each step. This
part aims at capturing spatial relations and context. The expanding
path relies on up-sampling functions on the feature map, followed
by up-convolutions that reduce the number of channels. Addition-
ally, a skip connection is added at each level, which concatenates
the up-sampled features and the corresponding map from the con-
tracting path. This part provides the network with various levels
of granularity for the �nal prediction, usually segmentation, which
is in a similar shape as the input.

This type of network can be easily adapted to 3D data and has
been successfully applied in di�erent applications, for instance in
cosmology [15], or for volumetric segmentation on medical data [7].
As its architecture is constructed to map between input and output
with similar shapes and to extract spatial information on multiple
scales, it appears as a good candidate to learn the relationship
between dark-matter halos and the distribution of galaxies.

Our early experiments on this model structure showed that the
prediction had a strong similarity in distribution with inputs in-
stead of targets, which constrains the model from generalizing
to larger scale. Thus, we proposed one modi�cation to the origi-
nal architecture. The last (topmost) skip-connection was removed
to prevent the model from "feeding" too much information from
the dark-matter halos on high resolution features. The �nal U-Net
architecture used in the experiments is illustrated in Figure 4.

Recurrent Residual U-Net (R2Unet). Recurrent Residual U-Net
(R2U-Net) were proposed in [1] as an upgrade of U-Net. The au-
thors propose di�erent variations around the U-Net architecture,
but we focus here on the Recurrent-Residual one. The main idea is
to change the convolution functions used in the U-Net architecture.
Instead of using classical convolution functions, R2U-Net relies on
a composition of two stacked Recurrent Convolutions (RCNN), as

4

4.1 Two-phase architecture
The high sparsity in our simulation dataset (99.6% of output vox-
els do not contain any galaxies) makes our training challenging.
Because of imbalanced distribution between input and output, the
model could easily achieve a high accuracy even if it fails in pre-
dicting all the galaxies. This slows down the training process to a
great extent. In order to overcome this problem, we propose the
following two-phase architecture.

The main idea is to break down the training into separate
processes. The whole model is composed of two parts. The �rst
part is a classi�er, which predicts the presence or absence of
galaxies as a probability for each voxel representing one part of
Universe. Using a binary classi�er as a �rst "layer" allows us to use
special loss functions designed for such high sparsity prediction.
Speci�cally, we use weighted cross-entropy loss, which penalizes
wrong predictions with high probability, and introduces weights to
correct imbalances in classes. For a single output voxel, it can be
written as follows:

LCrossEnt(p̂, y) = �(w · y · log(p̂) + (1 � y) · log(1 � p̂)) (1)

where p̂ is the vector of predicted probability of the presence of
at least one galaxy in the considered voxel. y is the actual target
value (1 if there exists at least 1 galaxy in the voxel, 0 otherwise).
w characterizes the weight applied for counter-balancing the large
number of voxels without galaxies2.

This �rst prediction is then used as a mask for the �nal
prediction of the number of galaxies in each voxel. The second step
of the network is optimized only on the voxels that are expected to
contain at least a galaxy, according to the binary prediction result
from the �rst phase. We propose to use a L2-loss since we decide to
predict a probabilistic number of galaxies in each voxel, and expect
to have a real value as output. The complete loss of the model for a
single output voxel is illustrated below:

L(n� , p̂,nt) = M(p̂)(n� � nt)2 (2)

M(p̂) =
(
1 p̂ > 0.5
0 Otherwise

(3)

WhereM is a function of the �rst-phase output (p̂) for the given
voxel, which returns 1(0) if we expect to see at least 1 galaxy in the
voxel (or not). n� is the prediction of the second-phase model and
nt is the actual target: number of galaxies in the output voxel.

From an experimental point of view, the training of both parts is
done separately. We select the �rst classi�er (e.g. with the highest
recall) and then train the second part of the model. More details
are given in Sec 5. A schema of this generic architecture is shown
in Figure 3 for a better visualization of the process.

This two-phase set-up is quite generic, and allows us to build
di�erent types of architecture depending on the choice of networks
for each phase.

2Details on the selection forw are given in Section 5 and in Supplementary Materials

Figure 3: Two Phase Model Structure

4.2 Network architectures
Wenow present di�erent types of convolutional networks we tested,
with their physical motivations and speci�c modi�cations to better
�t our problem. The models mentioned below can be used for both
classi�cation(�rst-phase) and regression(second-phase). We will
compare di�erent choices of networks in Section 5, as well as a
more classical "one-phase" training.

U-Net. U-Net is a fully convolutional neural network, �rst pro-
posed in [25] for bio-medical image segmentation. The networks is
composed of a contracting path and a symmetric expanding path.
The �rst path is a typical convolutional architecture, with convolu-
tions followed by a recti�ed linear unit (ReLU) and max-pooling
operation. The number of channels is increased at each step. This
part aims at capturing spatial relations and context. The expanding
path relies on up-sampling functions on the feature map, followed
by up-convolutions that reduce the number of channels. Addition-
ally, a skip connection is added at each level, which concatenates
the up-sampled features and the corresponding map from the con-
tracting path. This part provides the network with various levels
of granularity for the �nal prediction, usually segmentation, which
is in a similar shape as the input.

This type of network can be easily adapted to 3D data and has
been successfully applied in di�erent applications, for instance in
cosmology [15], or for volumetric segmentation on medical data [7].
As its architecture is constructed to map between input and output
with similar shapes and to extract spatial information on multiple
scales, it appears as a good candidate to learn the relationship
between dark-matter halos and the distribution of galaxies.

Our early experiments on this model structure showed that the
prediction had a strong similarity in distribution with inputs in-
stead of targets, which constrains the model from generalizing
to larger scale. Thus, we proposed one modi�cation to the origi-
nal architecture. The last (topmost) skip-connection was removed
to prevent the model from "feeding" too much information from
the dark-matter halos on high resolution features. The �nal U-Net
architecture used in the experiments is illustrated in Figure 4.

Recurrent Residual U-Net (R2Unet). Recurrent Residual U-Net
(R2U-Net) were proposed in [1] as an upgrade of U-Net. The au-
thors propose di�erent variations around the U-Net architecture,
but we focus here on the Recurrent-Residual one. The main idea is
to change the convolution functions used in the U-Net architecture.
Instead of using classical convolution functions, R2U-Net relies on
a composition of two stacked Recurrent Convolutions (RCNN), as

4

Yip et al. 2019, Zhang et al. 2019 (arXiv:1902.05965, arXiv:1910.07813)

For the power spectrum, our cascade model obtains a good fit on a large range of scales even though
it is trained on relatively small sub-cubes. Over the full range of scales, its mean relative residual2 is
26.9% which is much smaller than HOD’s 246.6%. Our model achieves a comparable performance
as HOD for k < 0.3 h/Mpc (larger scales), and outperforms for larger k (smaller scales). This shows
that our model can better capture the non-linearities in the smaller scales of the field. This is further
demonstrated in the bispectra on small scales (k1 = 1.2 h/Mpc and k2 = 1.3 h/Mpc), in which our
model outperforms HOD by a significant margin (0.79% vs 435% in mean relative residual).

Figure 1: Snapshots of a slice from simulations and results: First column shows the dark matter input;
Second shows the target galaxies; Third shows the prediction from our cascade model; Forth is from
our benchmark model, the commonly deployed method in cosmology. Second row is a zoomed-in on
the white squares in the first row. Brighter colors represent more dark matter particles/galaxies3.

Figure 2: Power spectra P (k) (left) and bispectra B(k1, k2, ✓) (right)

4 Conclusion and future work

We show in this paper that our cascade model of convolutional neural networks can efficiently predict
the number density field of galaxies given only the dark matter density field, and can outperform a
benchmark method used in cosmology in a large range of scales.

We plan for several extensions of this work, notably focusing on predicting additional properties of the
galaxies (e.g. stellar mass, star formation rate, etc). We are also looking into the ability of the model

2The mean relative residual is defined by mean{|ym/yt � 1|}, where ym and yt are spectrum values of
the model’s prediction and the target respectively.

3For illustration purposes, colors in the galaxies snapshots range from blue-violet (darkest) to blue-green and
to yellow-orange (brightest). Yellow-orange represents voxels with 2 or more galaxies, blue-green represents
voxels with 1 galaxy and blue-violet represents empty voxels in the backgrounds. For our cascade model’s
prediction, there are more intermediate colors as it predicts continuous numbers of galaxies.

4

For the power spectrum, our cascade model obtains a good fit on a large range of scales even though
it is trained on relatively small sub-cubes. Over the full range of scales, its mean relative residual2 is
26.9% which is much smaller than HOD’s 246.6%. Our model achieves a comparable performance
as HOD for k < 0.3 h/Mpc (larger scales), and outperforms for larger k (smaller scales). This shows
that our model can better capture the non-linearities in the smaller scales of the field. This is further
demonstrated in the bispectra on small scales (k1 = 1.2 h/Mpc and k2 = 1.3 h/Mpc), in which our
model outperforms HOD by a significant margin (0.79% vs 435% in mean relative residual).

Figure 1: Snapshots of a slice from simulations and results: First column shows the dark matter input;
Second shows the target galaxies; Third shows the prediction from our cascade model; Forth is from
our benchmark model, the commonly deployed method in cosmology. Second row is a zoomed-in on
the white squares in the first row. Brighter colors represent more dark matter particles/galaxies3.

Figure 2: Power spectra P (k) (left) and bispectra B(k1, k2, ✓) (right)

4 Conclusion and future work

We show in this paper that our cascade model of convolutional neural networks can efficiently predict
the number density field of galaxies given only the dark matter density field, and can outperform a
benchmark method used in cosmology in a large range of scales.

We plan for several extensions of this work, notably focusing on predicting additional properties of the
galaxies (e.g. stellar mass, star formation rate, etc). We are also looking into the ability of the model

2The mean relative residual is defined by mean{|ym/yt � 1|}, where ym and yt are spectrum values of
the model’s prediction and the target respectively.

3For illustration purposes, colors in the galaxies snapshots range from blue-violet (darkest) to blue-green and
to yellow-orange (brightest). Yellow-orange represents voxels with 2 or more galaxies, blue-green represents
voxels with 1 galaxy and blue-violet represents empty voxels in the backgrounds. For our cascade model’s
prediction, there are more intermediate colors as it predicts continuous numbers of galaxies.

4

Target: full hydrodynamical simulations

Yip et al. 2019, Zhang et al. 2019 (arXiv:1902.05965, arXiv:1910.07813)

HOD: Halo Occupation Distribution model

Initial
Conditions

Dark Matter
simulations

Distribution of
Galaxies and Gas Observations

1. How to efficiently compute numerical simulations
for theoretical prediction?

2. Which is the optimal summary statistic?

3. How to marginalize over unknown physical
processes?

Credits: D. Spergel, ML x Cosmo group at CCA

Initial
Conditions

Dark Matter
simulations

Distribution of
Galaxies and Gas Observations

1. How to efficiently compute numerical simulations
for theoretical prediction?

2. Which is the optimal summary statistic?

3. How to marginalize over unknown physical
processes?

Credits: D. Spergel, ML x Cosmo group at CCA

We can use NNs to infer parameters directly from our observations.

• No need of selecting a summary statistic
• No need to build a likelihood model (likelihood-free inference)
• Need of large number of (realistic) simulations to train the NN

• More than 4,000 numerical simulation
(both N-body and magneto-hydrodynamic)

• Includes thousands of different cosmological
and astrophysical models

• Large Dataset to train Machine Learning
models

https://www.camel-simulations.org/science
Villaescusa-Navarro et. al 2021 (arXiv:2201.01300)

https://ui.adsabs.harvard.edu/link_gateway/2022arXiv220101300V/arxiv:2201.01300

• Convolutional NN to infer cosmological parameters () from density maps
• Simulations are produced with two different codes with different treatment of

baryonic effects
• Training is done on one set of simulations and test on the other in order to

understand if the NN can marginalize over baryonic effects
• Output of CNN are and

Ωm

Ωm σ(Ωm)
2

FIG. 1: Examples of the projected total mass maps used to train the neural networks from the IllustrisTNG (top row) and
SIMBA (bottom row) simulations. Each map contains 256⇥ 256 pixels and has a physical size of 25⇥ 25 (h�1Mpc)2.

is varied across a very wide range; e.g. ⌦m 2 [0.1, 0.5]
and �8 2 [0.6, 1.0]. We refer the reader to [10] for further
details on the CAMELS simulations.

From these simulations we generate 2D total mass sur-
face density maps as follows. First, we take slices of di-
mensions 25⇥ 25⇥ 5 (h�1Mpc)3 and project all particle
positions in the slice into the 2D plane along the third
axis. We then assign the particle positions and their
masses to a 2D regular grid with 256⇥256 pixels, consid-
ering that each particle represents a circle with uniform
density within its radius. For gas and dark matter par-
ticles this radius is set to the distance from the particle
to its 32nd nearest neighbor, while stars and black holes
are considered to be point masses. Finally, we divide
the projected mass in every pixel by its area to obtain
the total mass surface density. For each simulation we
produce 15 maps, giving rise to 15,000 maps for the Il-
lustrisTNG simulations, and another 15,000 maps for the
SIMBA simulations. In Fig. 1 we show a few examples
of these maps. We provide further details on the method
used to generate the maps in our companion paper [16].

We use these maps to train moment neural networks
[17] to infer the values of the marginal posterior mean
(µi) and standard deviation (�i) for each parameter ✓i.
The output of the network is thus twelve numbers, two
per parameter. The loss function we optimize via gradi-
ent descent is

L =
6X

i=1

log

0

@
X

j2batch

(✓i,j � µi,j)
2

1

A

+
6X

i=1

log

0

@
X

j2batch

⇣
(✓i,j � µi,j)

2 � �2
i,j

⌘2

1

A , (1)

where the interior sum runs over all maps in the batch
while the external sum runs over all six parameters.

Our architecture consists in a set of 6 blocks, where
each block follows the structure CBACBACBA, where C,

B, and A are convolutional, batchnorm, and LeakyReLU
layers, respectively. In each block, the first two convolu-
tional layers have kernel size of 3, stride 1 and padding
1, while the last layer has kernel size of 2, padding 0
and stride 2. The first convolutional layer of the first
block is not followed by a batchnorm layer. After the six
blocks, we use a smaller block with CBA where the con-
volutional layer has kernel size 4, stride 1 and padding 0.
The output of the last block is flattened and passed into
two fully connected layers. Our models have between 10
and 30 million free parameters.
We train the networks for 200 epochs using the

AdamW optimizer [18] with batch size equal to 128. We
perform hyper-parameter optimization using the optuna
package [19]. We train using data augmentation on the
maps, rotations and flipping of the maps, to teach the
model to preserve rotational and parity symmetries. We
emphasize that by construction, our model is already in-
variant under translations. We provide further details on
the architecture and training procedure in our companion
paper [16].
We first train and validate a network using maps from

900 and 50 IllustrisTNG simulations, respectively. We
test the model on maps from the 50 IllustrisTNG sim-
ulations of the test set (Fig. 2). We find that the
model is able to infer the value of ⌦m and �8 with
high accuracy: h�⌦m/⌦mi ' 3.4%, h��8/�8i ' 2.4%.
The network can also infer the value of ASN1 and ASN2

but with much larger errors: h�ASN1/ASN1i ' 38% and
h�ASN1/ASN1i ' 17%. On the other hand, the network
is not capable of constraining the parameters controlling
the e�ciency of AGN feedback.
We now test the above model using maps from the

SIMBA simulations. We emphasize that the above model
has never seen a map from those simulations in the train-
ing. We show the results in Fig. 2 for a subset of 40 maps.
Each point represents a map from the SIMBA simula-
tions; the dot is the posterior mean while the errorbar
shows the posterior standard deviation. We find that the

3

FIG. 2: We train two neural networks to perform likelihood-free inference on the value of the cosmological and astrophysical
parameters. The two networks are trained using either IllustrisTNG or SIMBA total mass maps from CAMELS simulations
at z = 0. We then test the models using either IllustrisTNG or SIMBA maps from their test sets. We show the results for ⌦m

and �8 in the left and right panels, respectively. The dots with errorbars represent the posterior mean and standard deviation
from a single map. We have subtracted the true value to the posterior mean to facilitate visualization. The network is capable
to recover the true value of ⌦m and �8 with high-accuracy in all situations, even when the network is tested on maps from
simulations completely di↵erent to the ones used to train the model.

network trained on the IllustrisTNG maps is able to infer
the true value of ⌦m and �8 from the SIMBA maps with
a similar accuracy to that for the IllustrisTNG maps:
h�⌦m/⌦mi ' 3.9%, h��8/�8i ' 2.6%. We emphasize
that the SIMBA simulations not only solve the hydrody-
namic equations in a di↵erent way than the IllustrisTNG
simulations, but the subgrid model is also quite distinct.
Thus, it is not obvious that this test should work at all.
On the other hand, the network completely fails at pre-
dicting the astrophysical parameters. This is expected
since the astrophysical parameters in the IllustrisTNG
and SIMBA simulations are di↵erent in definition and in
their e↵ect on multiple quantities (see [10] for a detailed
discussion).

Next, we train another network with the same archi-
tecture but using maps from the SIMBA simulations.
As above, we employ maps from 900 and 50 simula-
tions for training and validating the model. We first test
the model using SIMBA maps from the test set. We
find results very similar to those obtained when train-
ing and testing with IllustrisTNG maps: the network
is able to infer the value of ⌦m and �8 with high ac-
curacy, h�⌦m/⌦mi ' 4.5%, h��8/�8i ' 2.7% (see Fig.
2). The model can also put some constraints on ASN1

(49%) and ASN2 (23%), while the AGN parameters can-
not be inferred. We note that the average errors on the
value of the cosmological parameters from this network

are slightly higher than those from the model trained on
IllustrisTNG maps. This could be because the SIMBA
simulations have a wider range of e↵ective variation in
the astrophysics parameters, which could force the net-
work to marginalize more deeply than in the IllustrisTNG
maps.
Finally, we test this model using IllustrisTNG maps.

The results are very similar to those discussed above.
Namely, we find that the model is able to accurately infer
the value of the cosmological parameters: h�⌦m/⌦mi '
4.3%, h��8/�8i ' 2.7%. On the other hand, this model
is unable to infer any value of the astrophysical parame-
ters of these maps, as expected for the reasons discussed
above.
These results illustrate how neural networks can 1) ex-

tract information from the field and 2) marginalize over
baryonic e↵ects. The most important point we would
like to emphasize in this paper is that this procedure
seems to be robust, i.e., it does not rely on training on
a particular set of simulations with a particular hydro-
dynamics solver and implementation of subgrid physics.
In our companion paper [9] we showed that this may not
always be the case; when repeating the above exercise
using gas temperature maps, the model is not robust.
We now carry out a set of tests as an attempt to un-

derstand what the network is doing and what it is not.
First, we investigate whether the network is only using

CNN

ℒ =
Npar

∑
i=1

log(∑
j∈batch

(θi,j − μi,j)2) +
Npar

∑
i=1

log(∑
j∈batch

((θi,j − μi,j)2 − σ2
i,j))

3

FIG. 2: We train two neural networks to perform likelihood-free inference on the value of the cosmological and astrophysical
parameters. The two networks are trained using either IllustrisTNG or SIMBA total mass maps from CAMELS simulations
at z = 0. We then test the models using either IllustrisTNG or SIMBA maps from their test sets. We show the results for ⌦m

and �8 in the left and right panels, respectively. The dots with errorbars represent the posterior mean and standard deviation
from a single map. We have subtracted the true value to the posterior mean to facilitate visualization. The network is capable
to recover the true value of ⌦m and �8 with high-accuracy in all situations, even when the network is tested on maps from
simulations completely di↵erent to the ones used to train the model.

network trained on the IllustrisTNG maps is able to infer
the true value of ⌦m and �8 from the SIMBA maps with
a similar accuracy to that for the IllustrisTNG maps:
h�⌦m/⌦mi ' 3.9%, h��8/�8i ' 2.6%. We emphasize
that the SIMBA simulations not only solve the hydrody-
namic equations in a di↵erent way than the IllustrisTNG
simulations, but the subgrid model is also quite distinct.
Thus, it is not obvious that this test should work at all.
On the other hand, the network completely fails at pre-
dicting the astrophysical parameters. This is expected
since the astrophysical parameters in the IllustrisTNG
and SIMBA simulations are di↵erent in definition and in
their e↵ect on multiple quantities (see [10] for a detailed
discussion).

Next, we train another network with the same archi-
tecture but using maps from the SIMBA simulations.
As above, we employ maps from 900 and 50 simula-
tions for training and validating the model. We first test
the model using SIMBA maps from the test set. We
find results very similar to those obtained when train-
ing and testing with IllustrisTNG maps: the network
is able to infer the value of ⌦m and �8 with high ac-
curacy, h�⌦m/⌦mi ' 4.5%, h��8/�8i ' 2.7% (see Fig.
2). The model can also put some constraints on ASN1

(49%) and ASN2 (23%), while the AGN parameters can-
not be inferred. We note that the average errors on the
value of the cosmological parameters from this network

are slightly higher than those from the model trained on
IllustrisTNG maps. This could be because the SIMBA
simulations have a wider range of e↵ective variation in
the astrophysics parameters, which could force the net-
work to marginalize more deeply than in the IllustrisTNG
maps.
Finally, we test this model using IllustrisTNG maps.

The results are very similar to those discussed above.
Namely, we find that the model is able to accurately infer
the value of the cosmological parameters: h�⌦m/⌦mi '
4.3%, h��8/�8i ' 2.7%. On the other hand, this model
is unable to infer any value of the astrophysical parame-
ters of these maps, as expected for the reasons discussed
above.
These results illustrate how neural networks can 1) ex-

tract information from the field and 2) marginalize over
baryonic e↵ects. The most important point we would
like to emphasize in this paper is that this procedure
seems to be robust, i.e., it does not rely on training on
a particular set of simulations with a particular hydro-
dynamics solver and implementation of subgrid physics.
In our companion paper [9] we showed that this may not
always be the case; when repeating the above exercise
using gas temperature maps, the model is not robust.
We now carry out a set of tests as an attempt to un-

derstand what the network is doing and what it is not.
First, we investigate whether the network is only using

25x25
256 x 256 pixels

(h−1 Mpc)2

Likelihood-free inference with CNNs Villaescusa-Navarro et. al 2021
arXiv:2109.10360

https://ui.adsabs.harvard.edu/link_gateway/2021arXiv210910360V/arxiv:2109.10360

• Is the NN only learning information from
the total mass in the maps?

• No. The correlation of total mass and is
not enough to explain the small error bars
that the NN is getting

Ωm

• Is the NN only learning the information that
is encoded in the two point correlation
function?

• No. If you estimate from the the power
spectrum you get relative errors ~20%

Ωm

• Is contamination from baryonic effects
negligible?

• No. If you train a CNN from N-body only
simulations it is unable to retrieve Ωm

• Is the NN ignoring the smallest angular
scales which are more effected by
baryonic effects?

• No. Errors on are
larger if input maps
are smoothed

Ωm

6

FIG. 3: Left: We have trained a neural network using maps from N-body simulations and tested the model on maps from the
total matter mass density of IllustrisTNG simulations. Right: We have tested the model that was trained on total matter
mass density maps from IllustrisTNG simulations on N-body maps. As can be seen, neither test worked, indicating that 1) the
reason why the networks perform so well cannot be that maps are barely a↵ected by baryonic e↵ects and 2) the network is not
applying a cut on the scales a↵ected by baryonic e↵ects.

FIG. 4: We have trained four neural networks on IllustrisTNG maps with no smoothing (red) and smoothing the maps with a
Gaussian kernel of size 1 pixel (green), 2 pixels (magenta), and 3 pixels (blue). This figure shows the results when testing these
networks on IllustrisTNG maps with the same characteristic as those used in their training. The average relative accuracy,
h�i/µii, is displayed in the upper part of the plot. As can be seen, by smoothing the maps, the network is only able to infer
the value of the cosmological parameters with lower accuracy. This indicates that the network trained on the maps that are
not smoothed is extracting information from the smallest scales (1 pixel) available in the map.

Likelihood-free inference with CNNs Villaescusa-Navarro et. al 2021
arXiv:2109.10360

https://ui.adsabs.harvard.edu/link_gateway/2021arXiv210910360V/arxiv:2109.10360

Conclusions part 1:

• Many explorative works are being conducted to
understand the applicability of NNs in the context of
Cosmology from LSS

• Interesting results have been obtained for computing fast
simulations and likelihood free inference

• Still at the level of “toy models” applied on simulated data

• What is Dark Matter?

• What is the nature of Dark
Energy?

• What is the correct theory
of Inflation?

• What are neutrino
masses?

• Is General Relativity
correct on large scales?

Many open questions:

CMB:
“simple”, almost perfectly Gaussian, signal
…but faint and highly contaminated
(foregrounds and instrumental systematics)

2 30 180 500 1000 2500 5000

Multipole �

10�5

10�4

10�3

10�2

10�1

100

101

102

103

Va
ria

nc
e

in
CM

B
m

ap
[µ

K2]

Planck
BICEP2/Keck

LiteBIRD

SO

CMB-TT

CMB-EE

CMB-BB
tensor r = 0.01 (��) + lensing (�·)

90� 1� 0.2� 0.1� 0.05�

Angular separation in the sky

Figure 1: (Top) Planned sky coverage of the Small Aperture Telescopes (SATs, left) and Large Aperture
Telescope (LAT, right, targeting maximal overlap with LSST and DESI), in Equatorial coordinates. (Bottom)
CMB temperature and polarization angular power spectra, showing projected SO-Nominal errors compared
to current data from Planck [10] and the BICEP/Keck array [11], and projected errors for the LiteBIRD
0.4 m satellite. Other current ground-based data are in Fig. 18 of [10]. SO will increase angular resolution
compared to Planck, and will improve the sensitivity of the divergence-like E-mode and curl-like B-mode
polarization signals. Other key SO statistics include the TE primary spectrum, the CMB lensing power
spectrum, the bispectrum, the kinematic Sunyaev-Zel’dovich (kSZ) effect, and the number of clusters seen
via the thermal Sunyaev-Zel’dovich (tSZ) effect.

in those channels. These measurement requirements are described in [1]. The anticipated sky
coverage and CMB power spectra uncertainties are shown in Fig. 1. In the following we quote
projections for baseline noise levels, with goal noise in braces {}.

2

Polarized Galactic dust + synchrotron 90% ➞ 1% of the sky
@ 150 GHz

modified from SO Astro2020 white paper

Challenges in CMB observations
CMB

Synchrotron

Dust

Main Goal: detection of primordial
Gravitational waves (B-modes)

Challenges: Instrumental
systematics + contamination by

foreground emission

How can machine learning help?

1. Solution to specific, unsolved, problems/tasks: e.g. foreground
modeling, instrumental systematic treatment, optimal masking
etc…

2. Complement and support classical data analysis techniques: e.g.
component separation, parameter estimation

2 30 180 500 1000 2500 5000

Multipole �

10�5

10�4

10�3

10�2

10�1

100

101

102

103

Va
ria

nc
e

in
CM

B
m

ap
[µ

K2]

Planck
BICEP2/Keck

LiteBIRD

SO

CMB-TT

CMB-EE

CMB-BB
tensor r = 0.01 (��) + lensing (�·)

90� 1� 0.2� 0.1� 0.05�

Angular separation in the sky

Figure 1: (Top) Planned sky coverage of the Small Aperture Telescopes (SATs, left) and Large Aperture
Telescope (LAT, right, targeting maximal overlap with LSST and DESI), in Equatorial coordinates. (Bottom)
CMB temperature and polarization angular power spectra, showing projected SO-Nominal errors compared
to current data from Planck [10] and the BICEP/Keck array [11], and projected errors for the LiteBIRD
0.4 m satellite. Other current ground-based data are in Fig. 18 of [10]. SO will increase angular resolution
compared to Planck, and will improve the sensitivity of the divergence-like E-mode and curl-like B-mode
polarization signals. Other key SO statistics include the TE primary spectrum, the CMB lensing power
spectrum, the bispectrum, the kinematic Sunyaev-Zel’dovich (kSZ) effect, and the number of clusters seen
via the thermal Sunyaev-Zel’dovich (tSZ) effect.

in those channels. These measurement requirements are described in [1]. The anticipated sky
coverage and CMB power spectra uncertainties are shown in Fig. 1. In the following we quote
projections for baseline noise levels, with goal noise in braces {}.

2

Polarized Galactic dust + synchrotron 90% ➞ 1% of the sky
@ 150 GHz

modified from SO Astro2020 white paper

• Small scales (< 1°) added as extrapolation
realizations of power law spectra

• Few data available!

• foregrounds are highly non-Gaussian, and
we must understand their impact especially
on lensing reconstruction

Data driven

Extrapolation

Foreground modeling

GANs to simulate small scale foregrounds
i. Train Neural Networks to learn the statistics of foregrounds at the sub-degree scale

in total intensity (in the regions where we have enough sensitivity)

?
ii.Reproduce the same statistics starting from large scales in other regions of the sky

and in polarization

Training

Application

Generative Adversarial Networks (GAN)
• A generative adversarial NN is a system of two separate NNs that compete

against each other
• Given a training set a GAN learns to generate new sets of data with the

same “properties" as the training set
• The original paper (Goodfellow et al. 2014, https://arxiv.org/abs/1406.2661)

has more than 40.000+ citations

https://arxiv.org/abs/1406.2661

GAN: architecture
Radford et al. 2015
https://arxiv.org/abs/1511.06434Deep Convolutional GAN (DCGAN):

Generator G

Discriminator D

GAN: training
N : number of elements in the mini-batch

 i-th noise vector which is the input of G
 i-th real image

 output of the generator for

zi :
xi :
G(zi) : zi

Discriminator D:
• D receives as input real images (labeled as 1) and fake images generated by G (labeled as 0)
• its goal is therefore to output 1 when input is x and 0 when input is G(z)
• during training it aims at minimizing the following cost function:

𝒥D = −
1
N

N

∑
i

log[D(xi)] + log[1 − D(G(zi))]

Generator G:
• its goal is to produce images that mislead D
• it aims at minimizing

𝒥G = −
1
N

N

∑
i

log[D(G(zi))]

in minimizing this cost function
weights of G are fixed while the

training optimizes the weights of D

in minimizing this cost function the
weights of G are optimized while

those of D are fixed

64

64

128

32

256
16

128

32

64

64

64

64

128

32

256
16

10
0 10

0

Generator

Discriminator

64

64

128

32

128

64

64

32

32

128

64

64

256

16

256

16 M
oc
k/
Re
al

Generator (G)

Discriminator (D)

M LS m̃
mock

SS

m̃
mock

SS

m̃
rea

l
SS

or

✦ Input to the NN are patches of the sky (20°x20°) at low resolution (80 arcmin):
✦ Output are small scale features at 12 arcmin:

MLS

mSS

M = MLS + MSS
MSS = MLS ⋅ msswith small scales modulated by the large ones:

GANs to simulate small scale foregrounds

m̃ real
SS

m̃ mock
SS

MLS Mreal Mmock

m
K

m
K

m
K

MLS

MLS
Mreal

Mmock

MLS
Mreal

Mmock

MLS
Mreal

Mmock

To
ta

l I
nt

en
sit

y
te

st
 c

a
se

MQ
LS m̃ mock,Q

SS
m̃ gauss,Q

SS

MU
LS m̃ mock,U

SS
m̃ gauss,U

SS

Polarization application
✦ No data to train the network directly in polarization
✦ Assumption that small scale structures on Q and U maps have the same statistical properties as the ones

in Total intensity

Q

U

m̃ gauss,Q
SS

m̃ mock,Q
SS

m̃ real,I
SS

m̃ gauss,U
SS

m̃ mock,U
SS

m̃ real,I
SS

MQ
LS Mmock,Q Mgauss,Q

MU
LS Mmock,U Mgauss,U

MP
LS Mmock,P Mgauss,P

μK

EE

BB

MLS
Mgauss

Mmock

μK
μK

MLS
Mgauss

Mmock

Polarization application

How can machine learning help?

1. Solution to specific, unsolved, problems/tasks: e.g. foreground
modeling, instrumental systematic treatment, optimal masking
etc…

2. Complement and support classical data analysis techniques: e.g.
component separation, parameter estimation

Convolutional NN on HEALPix

A&A proofs: manuscript no. ms

Fig. 2. Tessellation of a sphere according the the HEALPix scheme. In
this figure the pixel resolution corresponds to Nside = 4 (Npix = 192).
Almost every pixel in a HEALPix map has 8 neighbors; however, a few
pixels only have 7 of them. In this figure, the blue pixel has 7 neighbors,
while the green one has 8. Black dots represent pixel centers; seven-
neighbor pixels are highlighted with grey dimonds. These pixels are at
the intersection of three base-pixels (delimited using thick lines); this
kind of intersection occurs only near the two polar caps, and in any map
with Nside � 2 there are exactly 8 of them. Thus, the number of seven-
neighbor pixels is always 24 (because of the nature of the orthographic
projection used in this sketch, only 9 seven-neighbor pixels are visible).

Algorithms able to apply CNNs on spherical maps projected
with the HEALPix scheme, as the one presented in this work,
have therefore the potential of being of large interest, with pos-
sible applications in several di↵erent contexts.

3.2. Description of the HEALPix CNN algorithm

The algorithm that we propose implements CNNs over
HEALPix maps preserving the local information of the signal
by applying kernels to pixels close to each other, as described in
the following sections.

3.2.1. Convolutional layers on a sphere

The majority of pixels in the HEALPix scheme has eight adja-
cent neighbors (structured with a “diamond” shape). Standard
HEALPix libraries implement algorithms to find and enumerate
them. In particular, for a given pixel labeled by the index p, these
functions return the indices of its eight closest neighbors follow-
ing some pre-defined ordering (North-West, N, NE, E, SE, S,
SW, and W). However, a few pixels (24 for Nside � 2) have only
7 neighbors: this happens for those pixels along some of the bor-
ders of the 12 base-resolution ones, as shown in Fig. 2.

Our convolutional algorithm makes use of the possibility to
quickly find neighbor pixels in the following way (see Fig. 3):

1. the input of the convolutional layer is a map (or a set of maps)
at a given Nside, which is stored in a vector m of Npix ele-
ments.

2. Before applying the convolution, the vector m is replaced by
a new vector M with 9 ⇥ Npix elements. We associate each
element p in m with nine elements P

p

i
of M (i = 0 . . . 8), set-

ting P
p

0 equal to the value of the pixel p itself and the others
equal to the values of the eight neighbors of p, following the
clockwise order specified above. Pixels with 7 neighbors are
still associated with 9 elements of M, but the element corre-
sponding to the missing pixel is set to zero.

1
2

7
8

6

N

S

W E

NW NE

SW SE

1 2 3 4 5 6 7 …

Stride: 9

3
4/p2

5
p1/0

8 3 9 10

9
10

11
12

13

p1 p2 1213 5 011

…p1 p2

…p1 p2

1D convolutional layer (hidden)

Input map

Output map

w1

w2

w3

w4

w5

w6

w7

w8 w0

m
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

m�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

M
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fig. 3. Sketch of the convolution algorithm developed in this work. The
elements p1 and p2 of the vector m correspond to two pixels on map (in
this case 0 and 4). p1 and p2 are associated to nine elements each, in
vector M. The first of this nine elements corresponds to the pixel it-
self, while the subsequent ones corresponds to its eight neighbors. The
neighbors are visited, and unrolled in the M vector, following a clock-
wise order staring from the NW direction. The filter (in grey) is also
unrolled in a nine element long vector, using the same convention. Con-
volution is then implemented as a standard 1D convolutional layer with
a stride of 9, and the output is the m

0 convolved vector (map), which
has the same number of elements (pixels) as the input m. In the figure,
numbers over the pixels do not represent the values of the pixels but
their unique index: in practical applications, these indices will be those
associated to an ordering scheme and a map resolution Nside. Colors are
the same as in Fig. 1, to underline the similiarity.

3. Once the vector M is generated, a 1D convolution is done
in the standard way: a nine element long 1D kernel, with
elements wi, is applied to M. This convolution is done with
a stride parameter equal to 9, meaning that the kernel is not
applied to all the elements of the M vector, but it makes a
jump of nine of them at each move. This is equivalent to
the convolution of each pixel with its 8 closest neighbors.
The elements wi of the kernel represent the weights that the
network needs to optimize during the training phase.

4. The output of this operation is a new vector m
0 with Npix

elements, corresponding to the convolved map.

This algorithm has a few interesting properties:

– The search of pixel neighbors needs to be done only once for
each Nside value: the re-ordering scheme that brings a map m

into M is always the same once Nside is fixed, and re-ordering
operation of a vector is computationally extremely fast.

– The convolution is pixel based, therefore there is an imme-
diate analogy between standard Euclidean convolution and
this implementation of a spherical one.

– Since the operation is the 1D convolution between a kernel
and a vector, it can be performed using the NN libraries com-
monly available today (e.g., TensorFlow, PyTorch, Theano,
Flux, etc.)

To visualize how the algorithm works, we have prepared
a simple example. We have created two nine-elements filters,
shown in Fig. 4. In this figure, filters are shown with a diamond
shape, but they are flattened into a nine-element vector to com-
pute the convolution, following the clockwise order of elements.

Article number, page 4 of 13

A&A proofs: manuscript no. ms

Fig. 2. Tessellation of a sphere according the the HEALPix scheme. In
this figure the pixel resolution corresponds to Nside = 4 (Npix = 192).
Almost every pixel in a HEALPix map has 8 neighbors; however, a few
pixels only have 7 of them. In this figure, the blue pixel has 7 neighbors,
while the green one has 8. Black dots represent pixel centers; seven-
neighbor pixels are highlighted with grey dimonds. These pixels are at
the intersection of three base-pixels (delimited using thick lines); this
kind of intersection occurs only near the two polar caps, and in any map
with Nside � 2 there are exactly 8 of them. Thus, the number of seven-
neighbor pixels is always 24 (because of the nature of the orthographic
projection used in this sketch, only 9 seven-neighbor pixels are visible).

Algorithms able to apply CNNs on spherical maps projected
with the HEALPix scheme, as the one presented in this work,
have therefore the potential of being of large interest, with pos-
sible applications in several di↵erent contexts.

3.2. Description of the HEALPix CNN algorithm

The algorithm that we propose implements CNNs over
HEALPix maps preserving the local information of the signal
by applying kernels to pixels close to each other, as described in
the following sections.

3.2.1. Convolutional layers on a sphere

The majority of pixels in the HEALPix scheme has eight adja-
cent neighbors (structured with a “diamond” shape). Standard
HEALPix libraries implement algorithms to find and enumerate
them. In particular, for a given pixel labeled by the index p, these
functions return the indices of its eight closest neighbors follow-
ing some pre-defined ordering (North-West, N, NE, E, SE, S,
SW, and W). However, a few pixels (24 for Nside � 2) have only
7 neighbors: this happens for those pixels along some of the bor-
ders of the 12 base-resolution ones, as shown in Fig. 2.

Our convolutional algorithm makes use of the possibility to
quickly find neighbor pixels in the following way (see Fig. 3):

1. the input of the convolutional layer is a map (or a set of maps)
at a given Nside, which is stored in a vector m of Npix ele-
ments.

2. Before applying the convolution, the vector m is replaced by
a new vector M with 9 ⇥ Npix elements. We associate each
element p in m with nine elements P

p

i
of M (i = 0 . . . 8), set-

ting P
p

0 equal to the value of the pixel p itself and the others
equal to the values of the eight neighbors of p, following the
clockwise order specified above. Pixels with 7 neighbors are
still associated with 9 elements of M, but the element corre-
sponding to the missing pixel is set to zero.

1
2

7
8

6

N

S

W E

NW NE

SW SE

1 2 3 4 5 6 7 …

Stride: 9

3
4/p2

5
p1/0

8 3 9 10

9
10

11
12

13

p1 p2 1213 5 011

…p1 p2

…p1 p2

1D convolutional layer (hidden)

Input map

Output map

w1

w2

w3

w4

w5

w6

w7

w8 w0

m
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

m�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

M
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fig. 3. Sketch of the convolution algorithm developed in this work. The
elements p1 and p2 of the vector m correspond to two pixels on map (in
this case 0 and 4). p1 and p2 are associated to nine elements each, in
vector M. The first of this nine elements corresponds to the pixel it-
self, while the subsequent ones corresponds to its eight neighbors. The
neighbors are visited, and unrolled in the M vector, following a clock-
wise order staring from the NW direction. The filter (in grey) is also
unrolled in a nine element long vector, using the same convention. Con-
volution is then implemented as a standard 1D convolutional layer with
a stride of 9, and the output is the m

0 convolved vector (map), which
has the same number of elements (pixels) as the input m. In the figure,
numbers over the pixels do not represent the values of the pixels but
their unique index: in practical applications, these indices will be those
associated to an ordering scheme and a map resolution Nside. Colors are
the same as in Fig. 1, to underline the similiarity.

3. Once the vector M is generated, a 1D convolution is done
in the standard way: a nine element long 1D kernel, with
elements wi, is applied to M. This convolution is done with
a stride parameter equal to 9, meaning that the kernel is not
applied to all the elements of the M vector, but it makes a
jump of nine of them at each move. This is equivalent to
the convolution of each pixel with its 8 closest neighbors.
The elements wi of the kernel represent the weights that the
network needs to optimize during the training phase.

4. The output of this operation is a new vector m
0 with Npix

elements, corresponding to the convolved map.

This algorithm has a few interesting properties:

– The search of pixel neighbors needs to be done only once for
each Nside value: the re-ordering scheme that brings a map m

into M is always the same once Nside is fixed, and re-ordering
operation of a vector is computationally extremely fast.

– The convolution is pixel based, therefore there is an imme-
diate analogy between standard Euclidean convolution and
this implementation of a spherical one.

– Since the operation is the 1D convolution between a kernel
and a vector, it can be performed using the NN libraries com-
monly available today (e.g., TensorFlow, PyTorch, Theano,
Flux, etc.)

To visualize how the algorithm works, we have prepared
a simple example. We have created two nine-elements filters,
shown in Fig. 4. In this figure, filters are shown with a diamond
shape, but they are flattened into a nine-element vector to com-
pute the convolution, following the clockwise order of elements.

Article number, page 4 of 13

N. Krachmalnico↵ and M. Tomasi: Convolutional Neural Networks on the HEALPix sphere

Fig. 4. Filters used in the example of convolution described in
Sect. 3.2.1. Black pixels are set to 1, white pixels to �1, gray pixels
to zero. The filter on the left is designed to pick vertical features, i.e.,
stripes that are aligned with meridians. The filter on the right picks fea-
tures running along parallels. These filters are here shown with a di-
amond shape, but practically they are applied as 1D vectors to maps,
following the algorithm sketched in Fig. 3. The unrolling into vectors is
done clockwise, starting from the NW direction.

Fig. 5. Maps used in the explanation of convolution in Sec. 3.2.1. All
the maps have Nside = 16. Each map is shown using two orthographic
projections: in the upper row, maps are represented as seen from the
Equatorial plane; in the lower row, maps are centered around the poles.

Fig. 6. Result of the application of the two filters in Fig. 4 to the three
maps shown in Fig. 5.

The sum of the values of the weights wi is zero in both filters, and
the only non-zero pixels are aligned along vertical or horizontal
lines. In this way, the application of a filter to a block of nine
pixels on a map will be significantly di↵erent from zero only if
the pixels in this block show some vertical/horizontal features.

1
2 3

4 5 6 7 4

8 9 10 11

0 2π−π/2

π/2

0

0

0
12

3

4
56

7

0 1 2 3 4 5 6 7 …

0 1 …

Stride: 4

Fig. 7. Sketch for the implementation of pooling layers on HEALPix
maps. Since a map with Nside > 1 can be degraded to a map with Nside/2,
thanks to HEALPix hierarchical construction, pooling can be imple-
mented naturally using standard 1D pooling layers, if pixels of the input
vector (map) m are properly ordered and a stride equal to 4 is used.

We have produced three maps m1, m2, m3, where the value
associated with each pixel p is given, respectively, by:

p1(✓,') = sin(20 ✓), (4)
p2(✓,') = sin(20'), (5)

p3(✓,') = p1(✓,') sin2(✓) + p2(✓,') cos2(✓), (6)

with (✓,') being the colatitude/longitude of the pixel center (0
✓ ⇡, 0 ' < 2⇡). The maps are shown in Fig. 5; map m3 is a
weighted combination of m1 and m2, where the weights sin2(✓)
and cos2(✓) make horizontal stripes (from m1) and vertical stripes
(from m2) negligible at the Equator and at the poles, respectively.

The application of the horizontal and vertical filters in Fig. 4
to the maps in Fig. 5 is shown in Fig. 6. The result of applying
the horizontal filter to the vertically striped map is a map with
almost no feature: the only residuals are shaped like a plus sign
around the pole and correspond to those pixels that only have 7
neighbors instead of 8 (see Fig. 2), as the sum of the weights
is no longer zero in this case. Similar results occur in the other
maps. In particular, consider the case of map m3, which contains
both horizontal and vertical stripes: the two filters correctly pick
the right feature depending on the latitude, as expected.

Unlike the spherical CNN algorithms presented by Cohen
et al. (2018) and Perraudin et al. (2018), our implementation is
not rotationally-invariant. In order to recognize features regard-
less of their orientation on the sphere, we have to employ data
augmentation. Nevertheless, this should not be seen as a draw-
back. As a matter of fact, in many astrophysical applications,
the orientation of features on map is important and needs to be
taken into account to understand their nature. For example, this
applies to residual systematic e↵ects in maps and signals aligned
to a specific direction, e.g., the Milky Way or the Ecliptic plane.

Other important considerations are related to peculiarities in
the HEALPix tessellation that could impact the CNN perfor-
mance, namely: (1) the presence of the few 7-neighbour pixels
on map, and (2) the di↵erent shape of the pixels in the map (see
Fig. 2). Nevertheless, with in Sections 5 and 6 we show that these
two issues do not impact CNN results, as they are naturally taken
into account by the network during training.

Article number, page 5 of 13

CONVOLUTION POOLING

Krachmalnicoff, N. & Tomasi, M., A&A, 2019

https://github.com/ai4cmb/NNhealpix

• NN can be used to estimate cosmological parameters from CMB maps
• Valuable tool especially at large angular scales, which are highly contaminated by

systematics and foreground. Non Gaussian signal.
• First step: need convolution on the sphere.

N. Krachmalnico↵ and M. Tomasi: Convolutional Neural Networks on the HEALPix sphere

we have trained a new CNN, where the input simulated maps
have been obtained as described before, but the Q/U signal out-
side the mask have been set to zero. The output of the networks
is, as before, the pair of estimates for `Ep and `Bp .

fsky
50%

20%

10%

5%

Fig. 12. The four circular masks applied to the estimation of the `E/Bp
parameters (see Section 6.1.2), with a retained sky fraction of about 50,
20, 10 and 5 %. On the image masks shown with dark colors retain also
the portion of the sky included in those with lighter colors.

Results of are summarized in Table 2. The mean percentage
error on the recovered `E/Bp parameter scales roughly as f �0.36

sky ,
meaning, therefore, that the NN accuracy is closer to the optimal
one for smaller masks (this could be due to the smaller amount of
data that it needs to process) and that mixing between di↵erent
modes and polarization states does not a↵ect its performance.

Table 2. Accuracy (mean percentage error) reached on the estimation
of the `E/Bp parameters with CNN for the full sky case and the four sky
masks shown in Fig. 12.

fsky = 1 fsky = 0.5 fsky = 0.2 fsky = 0.1 fsky = 0.05

2.7 % 3.9 % 5.3 % 6.4 % 8.4 %

6.2. Estimation of ⌧

In Sect.6.1.2, we have showed that our network can estimate the
value of simple parameters defined in Fourier space using data
in pixel space as input. This proves that the spherical CNN algo-
rithm presented in this paper works well for this kind of regres-
sion problems, making it suitable for estimating real cosmologi-
cal parameters directly from CMB maps (either in total intensity
or in polarization). Consequently, we have tested our network ar-
chitecture on a more realistic case: the estimation of the value of
the Thomson scattering optical depth at reionization.

CMB photons, released at the last scattering surface in the
early universe, interact with free electrons of the intergalactic
medium, ionized by the first emitting objects, at a redshift z be-
tween about 11 and 6, during the so-called reionization epoch.
This causes modifications in the CMB signal both in total in-
tensity and in polarization. In particular, for what concern the
polarized signal, the e↵ect is visible especially at the larger an-
gular scales (for multipoles ` . 20) as a bump in the E-mode
power spectrum, caused by the new Thomson scattering events
experienced by the CMB photons. The optical depth of Thom-
son scattering at reionization, usually indicated with the letter ⌧,
parametrizes the amplitude and shape of this low-ell bump.

In order to constrain the value of ⌧, high sensitivity po-
larization observations on large portion of the sky are needed.
Moreover, at the large angular scales a↵ected by the reionization
bump, spurious signals, coming either from instrumental system-
atic e↵ects or from residual foreground emission, can strongly
contaminate the measurements, making the estimation of this
parameter particularly tricky. Currently, the tightest constraint
available on the value of ⌧ comes from the full sky observation
of the Planck satellite, with ⌧ = 0.054 ± 0.007 (68 % confidence
level) (Planck Collaboration VI 2018). Among the six cosmolog-
ical parameters of the standard ⇤CDM model, ⌧ is the parameter
whose value is currently constrained with the largest uncertainty.

The peculiarity of ⌧ makes it an interesting test case for pa-
rameter estimation using the algorithm presented in this work.
Firstly, the fact that ⌧ a↵ects the large angular scales requires
algorithms defined on the sphere, as the flat-sky approximation
cannot be applied. Secondly, since mainly multipoles at ` . 20
are a↵ected by the parameter, low resolution maps (at Nside = 16)
are su�cient to fit for ⌧: this makes the problem computationally
feasible for CNNs. Lastly, the complexity in the estimation of ⌧
calls for new analysis techniques that can complement standard
parameter estimation routines, thus increasing the confidence on
the results.

To estimate ⌧ we have used a similar approach as the one de-
scribed for the `p parameter, generating training, validation, and
test sets from simulations. We have computed a set of five thou-
sands E-mode power spectra, using the CAMB code (Lewis &
Bridle 2002). Each spectrum has a di↵erent value of ⌧, uniformly
distributed in the range 0.03 � 0.08, while the other cosmologi-
cal parameters are fixed to the best ⇤CDM model from Planck
(Planck Collaboration VI 2018) (we show a subset of these spec-
tra in Fig. 13). From these spectra, we have generated 100,000
pairs of full sky Q and U maps with Nside = 16 for the training
set, and 10,000 and 1,000 for the validation and test sets respec-
tively15. We have not included any primordial or lensing B-mode
signal.

Fig. 13. Subset of the E-modes power spectra used to generate to po-
larization maps for training, validation and test set on which we run the
neural network. The value of ⌧ changes in the range 0.03�0.08 while all
the other cosmological parameters are fixed to the best ⇤CDM model
from Planck results.

We have used the same network architecture, working en-
vironment and training procedure described in Sect. 4, feeding
the network with the simulated Q and U maps and producing
15 Each pair of maps is simulated by randomly choosing one of the
5,000 spectra with di↵erent ⌧ and with a di↵erent seed.

Article number, page 11 of 14

• Optical depth at reionization is
one of the most difficult
parameter to estimate

• it impacts CMB polarization at
very large angular scales (> 20°)

• highly contaminated by
foreground and systematics:
current constrain
(Pagano et al. 2020)

• Typically a spectrum based
likelihood is used

• Can we estimate it directly from
maps with CNN?

τ = 0.059 ± 0.006

Towards estimation from Planck data τ

Towards estimation from Planck data τ
• Tested on simulations, with realistic correlated noise and masked sky
• Next step is to train on realistic sims, including foreground residuals and

systematics
• Goal: demonstrate the feasibility of the approach on real and complex data!

In collaboration with Kevin Wolz (SISSA) and Luca Pagano (UniFe)

Preliminary results

Conclusions:
• The field of Machine Learning (and specifically of Neural Networks) is growing fast…and

so does the amount of cosmological data

• Important to understand the role ML can play in the future of Cosmology

• Ideally it has the potential to:

1. help in computing faster and better simulations
2. allow a full exploitation of data (summary statistic - free and likelihood - free

inference)
• Many preliminary works and proof-of-concepts has been done, with great results

• full end-to-end applications that work on real and complex data are still missing (but I’m
confident we will arrive there)

