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• Empirically:
• The CMB is an abundant background of photons, remarkably

isotropic over the entire sky. 
• Its specific brightness is remarkably close to a blackbody with a 

temperature To=2.725K
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Specific Brightness and Blackbody Radiation
• Specific Brightness of a radiation field: 

• Useful to describe extended sources.

• A map of the sky is a map of the specific brightness versus celestial
coordinates:   𝐵𝜈 = 𝐵𝜈 𝜃, 𝜑
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• When matter is in local thermal equilibirium with radiation, or close to, 
the radiation fiels is thermal: a blackbody or similar. Astrophysical cases:

• Photospheres of stars

• Surface (or atmosphere) of planets

• Clouds of interstellar dust

• Early Universe (CMB)

• Planck demonstrated that for the gas of photons in equilibrium in a 
closed isothermal cavity, the specific energy density and the brightness
are: 

𝜌𝜈 =
8𝜋𝜈2
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blackbody brightnessenergy density of a blackbody



Locus of maxima : lmaxT=0.0029 m K

Blackbody Brightness for different temperatures



Blackbody
Radiation

• Maximum 
brightness

• Low frequency :
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• Empirically:
• The CMB is an abundant background of photons, remarkably

isotropic over the entire sky. 
• Its specific brightness is remarkably close to a blackbody with a 

temperature To=2.725K

• Which is the scientific significance of this fact ?

The Cosmic Microwave Background (CMB)

0 5K
Measured brightness 

temperature of the sky (K)

at n=150 GHz

Angular distribution specific brightness



• While expanding, an insulated system cools down. 

• So does the Universe: it expands and thus cools down.

• A blackbody spectrum in an expanding universe remains a blackbody spectrum, 
while its temperature changes as the inverse of the scale factor 1/a
(𝜌𝐵𝐵 ∝ 𝑇4 and  𝜌𝐵𝐵= 𝑛𝛾ℎ𝜈 ∝ 𝑎−3𝑎−1 ⇒    𝑇 ∝ 𝑎−1)

• If today we have the CMB as a cold blackbody, it’s possible that it was produced 
in the distant past, when the Universe was denser and hotter and there was 
thermal contact between matter and radiation. 

• If this is true, the existence of the CMB is the proof of an early hot phase of the 
Universe (in the Hot Big Bang, from George Gamow, the Primeval Fireball from 
Jim Peebles). 

The CMB and cosmology

• But why is the CMB there at all ? A hint comes from the fact that the CMB is an 
abundant background of photons:  

• for T=2.725K compute:

• This is 9 orders of magnitude larger than the density of baryons in the Universe

• The universe has a very high specific entropy (photons to baryons ratio)

• When and how was that generated ?

𝑛 = න
0

∞ 𝜌𝜈

ℎ𝜈
𝑑𝜈 = 411 𝛾/𝑐𝑚3



Do we have proofs that the CMB is not local ?
• The spectrum is too close to a perfect blackbody to be generated by cold dust emission 

or redshifted dust emission or overlaps of the above.

• The angular distribution is too smooth (small-scale anisotropy too small) to be 
generated by discrete sources

• Sunyaev-Zeldovich effect (see later): the CMB comes from beyond the most distant 
clusters of galaxies.

• The CMB temperature measured at early epochs (see later) scales as (1/a)=(1+z) :

Notredame et al. A&A 526, L7 (2011)

TCMB(z) = (2.725 ± 0.002) × (1 + z)1−b K with b = −0.007 ± 0.027



According to modern cosmology:
The CMB is an abundant background of 
photons, filling the whole Universe.

• Generated in the very early universe, 
less than 4 ms after the Big Bang from a 
small             asymmetry (109g for each 
baryon) 

• Thermalized in the primeval fireball (in 
the first 380000 years after the big 
bang) by repeated scattering against
free electrons

• Released, diluted and redshifted to 
microwave frequencies (zCMB=1100) in 
the subsequent 14 Gyrs of expansion of 
the Universe

• So CMB photons played a key role 
during baryogenesis, nucleosynthesis, 
recombination. 

• For us: they form our best tool for 
cosmological investigation, since they 
carry informations about all the phases 
of the evolution of the universe.
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How do we measure the CMB ?

• In terms of photons, the CMB (a 2.725K blackbody) consists of 411 g/cm3, 
isotropically distributed, with an average energy per photon of 6x10-4 eV.

• This is a problem for the detectors, because the energy of CMB photons 
(meV) is very small compared to thermal energy and atomic and even 
molecular transitions, so complex detection processes are needed just to 
detect photons. In addition, we want a high quality (small error) 
measurement. 

• So, we need (1) very low noise detectors for very-low-energy photons.

• The second problem comes from the environment: 
• From a solid angle of 1 deg2 and in a telescope area of 1 m2 we collect about 

3x1012 CMB photons/s. 

• Meanwhile, the telescope mirror and the Earth atmosphere, in excellent observing 
conditions produce ~1014 photons/s in the same solid angle and frequency band, 
while our Galaxy produces ~1011 photons/s.

• So we need to envisage strategies to distinguish CMB photons from local, 
overwhelming photons. So we need experimental techniques to (2)
minimize systematic effects in the measurement of CMB photons. 



Photon noise and Detector Noise
• In addition to be able to just 

detect CMB observables, the 
detectors must also allow for 
precision measurements. So 
their noise should be low. 
Example: 

• What is detector noise, and 
how is it described ?

• How low the noise has to be, in 
case of CMB measurements ?

• In short, in an optimized
measurement detector noise
has to be lower than intrinsic
radiation noise. 

5/400 MJy/sr =
=1.2x10-22 W/m2/sr/Hz



Variance and Power Spectrum

• Given a measured observable whose true value is to be 
estimated, noise is the random fluctuation of the 
instantaneous value of the measured observable. 

• This can be intrinsic to the observable, or generated by 
the measurement apparatus: both contribute to the 
fluctuation of the measurements of the observable.

• Usually we select the average value as the best estimate 
of the true value of the observable. The presence of noise
induces an error in such an estimate.

• The larger the variance of the noise, the larger the error. 

• Variance and power spectrum are the appropriate 
statistics to describe noise in detectors and radiation. 



Variance and Power Spectrum

• If y(t) is the measured fluctuating quantity (average
subtracted), its autocorrelation is

𝜓𝑦(𝜏) = 0

∞
𝑦 𝑡 𝑦(𝑡 + 𝜏)𝑑𝑡

• and its variance is 𝜎𝑦
2 = 𝜓𝑦 0 = 0

∞
𝑦2 𝑡 𝑑𝑡

• The power spectrum of y(t), 𝑤𝑦(𝑓) specifies the 
contributions to the variance coming from the different

frequencies, i.e.     𝜎𝑦
2 = 0

∞
𝑤𝑦 𝑓 𝑑𝑓

• The Wiener-Khintchine theorem demonstrates that the 
power spectrum and the autocorrelation function are a 
Fourier-transform couple:           𝑤𝑦 𝑓

𝐹𝑇
𝜓𝑦(𝜏)

• If y(t) is a Gaussian variable, the power spectrum 𝑤𝑦 𝑓
describes completely its statistical behaviour.



Variance and Power Spectrum

• Examples of two random variables V(t), with the same
variance but with different power spectra:

𝑤𝑉 𝑓

f
𝑤𝑉 𝑓

f

LPF white noise

LPF white noise + 1/f noise



Variance and Power Spectrum

• In the case of radiation power measurements, the output of 
the radiation detector has two fluctuating components: one 
proportional to the input power (which is an intrinsically
fluctuating quantity, as we will see in a while), and another
generated by the detector   𝑉 𝑡 = 𝑅𝑃 𝑡 + 𝑛(𝑡).  

• R is the «responsivity» of the detector, which is assumed to 
respond proportionally to the input, while n(t) is the detector 
noise.

• The input power is the observable, and has a constant part Po
to be estimated and a zero-average fluctuating part Pf(t). 

• If we know, having calibrated the detector, its responsivity, we
can estimate 𝑃𝑜 = 𝑉(𝑡) 𝑡. But our job is not over if we do not
estimate the uncertainty of such an estimate. 



Variance and Power Spectrum

• The error on this estimate depends on the statistical properties of n(t)
and Pf(t). If these are gaussian random variables, these statistical
properties are described by the power spectra 𝑤𝑛 𝑓 and 𝑤𝑃1

𝑓 . 

• Note that 𝑤𝑉 𝑓 = 𝑅2𝑤𝑃1
𝑓 + 𝑤𝑛 𝑓 = 𝑅2𝑤𝑃 𝑓 + 𝑤𝑛 𝑓 .

• So it is mandatory to study the power spectra of radiation power 
(photon noise) and of detector noise. Both should be minimized to 
minimize the uncertainty in our estimates. 

• It is customary to express the noise of a detector using its Noise
Equivalent Power (NEP). 

• With our definitions,     𝑁𝐸𝑃 =
𝑤𝑛 𝑓

𝑅

• Its units are the same units as the observable, divided by 𝐻𝑧.

Remeber, in fact, that 𝜎𝑛
2= 0

∞
𝑤𝑛 𝑓 𝑑𝑓

• Numerically, the NEP is the minimum signal which can be measured
with the detector in 1s of integration. 



Noise and integration time
• Any detector has a response time t which limits its sensitivity at

high post-detection frequencies. Data taken at intervals shorter
than t will not be independent.

• The error on the estimate of 𝑊 𝑡 , the average power in the 
observation time t, is

•

• where Δ𝑊2 = 𝑤𝑊(𝑓) is the power spectrum of the radiation
power, and N is the number of independent measurements. 

• In the integration time t, it will be N=t/t. 
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Noise and integration time
•

• The noise decreases as the square root of the integration time. 

• Notice that this applies equally to detector noise and to intrinsic
radiation noise. 

• Neglecting radiation noise, the uncertainty derived above is
numerically equal to the detector NEP for 1 s of integration. 
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Radiation Noise
• Is the fundamental limit of any radiation measurement: when detector 

noise is negligible, only radiation noise contributes to the error. 

• A steady flux of radiation is not perfectly stable. The intrinsic instability is
called radiation noise, and reflects the particle-wave duality of light.

• It is the sum of Poisson noise (photon particles) PLUS interference noise
(waves)

• Poisson noise: if N is the number of photons received in a given
integration time interval t, Δ𝑁2 = 𝑁 , and:    

Δ𝐸2 = ℎ𝜈 2 Δ𝑁2 = ℎ𝜈 2 𝑁 = ℎ𝜈 2
𝑊𝑡

ℎ𝜈
= ℎ𝜈𝑊𝑡

• This is a typical random-walk process (variance prop. to time).
• Using Einstein’s generalization

we get the power spectrum and the variance of radiative power 
fluctuations: 

Δ𝜃2 = 2𝑘𝐵𝑇𝑡 ⇒ ሶ𝜃𝑓
2 𝑑𝑓 = 4𝑘𝐵𝑇𝑑𝑓

Δ𝑊𝑓
2 𝑑𝑓 = 2

Δ𝐸2

𝑡
𝑑𝑓 = 2ℎ𝜈𝑊𝑑𝑓



Radiation Noise

• Orders of magnitude example: A He-Ne 1 mW laser 
beam has a perfect Poisson statistics, so

• Notice the power spectrum units (remember that
the integral of the PS over frequency is the 
variance). 

• In this case the intrinsic fluctuations per unit
bandwidth are >7 orders of magnitude smaller than
the signal. 

• It is useless to build a complex detector with a 
noise of for this measurement: the 
precision of the measurement will be limited at a 
level of                               anyway. 

Δ𝑊𝑓
2 = 2ℎ𝜈𝑊 = 2.5 × 10−11

𝑊

𝐻𝑧

HzW /10 15−

HzW /105.2 11−



Radiation Noise
• Thermal radiation (like the CMB) has also wave interference noise: 

the correct statistics is Bose-Einstein.
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Radiation Noise
• For a blackbody
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Radiation Noise

Δ𝑁2 = 𝑁 1 +
1

𝑒ℎ𝜈/𝑘𝑇 − 1

Δ𝐸2 = ℎ𝜈 2 𝑁 1 +
1

𝑒ℎ𝜈/𝑘𝑇 − 1
= ℎ𝜈𝑊 1 +

1

𝑒ℎ𝜈/𝑘𝑇 − 1
𝑡

Δ𝑊2 𝑑𝑓 = 2ℎ𝜈 𝑊 1 +
1

𝑒ℎ𝜈/𝑘𝑇 − 1
𝑑𝑓

Δ𝑊2 𝑑𝑓 =
4𝑘5

𝑐2ℎ3
𝐴Ω𝑇5 න

𝑥1

𝑥2
𝑥4𝑒𝑥

𝑒𝑥 − 1
𝑑𝑥 𝑑𝑓

4𝑘5

𝑐2ℎ3
= 2.77 × 10−18

𝑊

𝑐𝑚2𝑠𝑟 𝐻𝑧 𝐾5

Calculating as before: 

And using the Planck formula: 



CMB observables

• The spectrum

• The angular 
distribution

• The polarization 
state

• The noise
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Noise and integration time

• Numerical example: CMB anisotropy (or polarization) measurement
limited only by radiation noise:

Δ𝐵(𝜈, 𝑇) =
Δ𝑇

𝑇
න

𝑥1

𝑥2
𝑥𝑒𝑥

𝑒𝑥 − 1
𝐵(𝑥, 𝑇)𝑑𝑥

𝜎
Δ𝑇

𝑇
=

𝜎 Δ𝐵

𝑥1

𝑥2 𝑥𝑒𝑥

𝑒𝑥 − 1
𝐵(𝑥, 𝑇)𝑑𝑥

𝜎
Δ𝑇

𝑇
=

4𝑘5𝑇5

𝑐2ℎ3 𝐴Ω 𝑥1

𝑥2 𝑥4𝑒𝑥

𝑒𝑥 − 1 2 𝑑𝑥

2𝑘4𝑇4

𝑐2ℎ3 𝐴Ω 𝑥1

𝑥2 𝑥4𝑒𝑥

(𝑒𝑥 − 1)2 𝑑𝑥

1

𝑡



1 10 100 1000 10000
0.01

0.1

1

10

  150 GHz,10% BW, l
2

  150 GHz, 10% BW, 1 cm
2
sr

    30 GHz, 10% BW,  l
2

e
rr

o
r 

p
e

r 
p

ix
e

l 
(m

K
)

integration time (s)

The ultimate sensitivity plot

CMB BLIP

40000
square degrees
to cover the full sky !



Radiation Noise
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• For a grey-body with emissivity

• relevant cases: 
• Radiation emitted by a mirror
• Radiation emitted by the atmosphere in the atmospheric

windows 
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Photon noise from the local environment, for CMB observations

240K

=2%

240K

=0.1%

atmosphere

2 mm PWV

atmosphere

0.5 mm PWV

atmosphere

40 km

• Turbulence not included.

• Space-based measurements appealing.
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Radiation noise and detector noise

• If the intrinsic noise of the detector is lower that the radiation 
noise, the operation mode of the detector is optimal. 

• Photon-noise limited performance (analogous to BLIP, 
background limited infrared photodetection). 

• The measurement is optimized if
• The environment minimizes photon noise so that the dominant photon 

noise is the one from the CMB

• The noise of the detectors is lower than CMB noise.

• How can we reduce detector noise below CMB photon noise ?

• To answer, we need to understand the physics of CMB detectors.



Detectors for the CMB

• A photon (or radiation) detector is a sensor producing an electrical
signal which is an unequivocal function of the radiation input.

• Typical detectors : 
• a photoconductor: a doped semiconductor crystal with electrical

contacts at the opposite edges, so that a static electrical field is
present. Incoming photons excite electrons from the valence band to 
the conduction band. These are accelerated by the electric field, 
producing an electrical current proportional to the incoming flux of 
photons.  

• A CCD (Charge Coupled Device): here free electrons are created by 
incoming photons in a semiconductor pixel, in the same way as above, 
and are accumulated in the pixel until the integration period is over. 
Then are read, converting the accumulated charge (proportional to the 
number of photons arrived in the integration time) into a voltage. 

• These are not sensitive to CMB photons



Detectors for the CMB

• As of today, there are three ways to detect very-low energy 
CMB photons:

• Coherent detectors, where the EM field produces an AC current in 
an antenna. The AC current is amplified coherently before
rectification and detection. They are sensitive to amplitude and 
phase of the EM field. High-frequency extension of 
radioastronomy techniques, does not work above 100 GHz.

• Thermal detectors, integrating the thermal energy of a large 
number of absorbed photons (bolometers, TESs). They are 
sensitive to the amplitude of the EM field. Low-frequency 
extension of techniques used in infrared astronomy. Does not
work below 40 GHz. 

• Quantum detectors, exploiting low-binding-energy quantum 
systems which are affected by the energy of CMB quanta (KIDs). 
Recent development, exploiting superconductivity effects.  They do 
not work below 60 GHz. 



Cryogenic

Bolometers

and 

Kinetic Inductance
Detectors



Bolometer
• A bolometer is a thermal sensor of 

EM radiation.
• A radiation absorber is thermally 

insulated from a thermal reservoir, 
and heats up when illuminated by 
radiation.

• A thermistor (a resistor with steep 
temperature  dependance of the 
resistance) is used to measure the 
temperature change, and infer the 
absorbed power. 

• A bolometer is able to absorb a wide 
range of wavelengths (depending on 
the technology of the absorber) and 
can be optimized for operation from 
radio frequencies to X-rays. They are 
optimal detectors in the mm/sub-
mm/FIR range. 



History: early days
• The infrared range has been discovered by 

astronomers!
– Friedrich Wilhelm Herschel, using a prism and 

balckened bulb  thermometers, detects the infrared 
section of the solar spectrum (calorific rays, 1800)

• The final demonstration that IR is also EM 
waves happens a bit later
– Macedonio Melloni in 1829 develops the 

thermomultiplier, a sensitive IR detector. With this 
system he demonstrates that calorific rays have the 
same nature as light, also demonstrating that they 
have polarization properties exactly like light rays. 
He names the calorific rays “ultrared radiation”. 

• The first astronomical observation is carried 
out soon after:
– IR radiation from the moon is detected by Charles 

Piazzi Smyth in Tenerife, using a thermocouple. He 
also shows that IR radiation is better detected at 
higher altitudes. 



History: early days
• The first bolometers were developed for 

astronomy, and allowed the first IR 
spectroscopy of an astronomical source
– Samuel Pierpoint Langley in 1878 develops the 

bolometer: a thin blackened platinum strip, 
sensitive enough to measure the heat of a cow 
from a distance of ¼ mile. 

– The detector works because the resistance of the 
Pt strip changes when heated by the absorbed
radiation. 

– The detector is differential: 4 strips are placed in 
a Wheatstone bridge but only one is blackened
and exposed to incoming radiation. Common-
mode effects are rejected by the bridge and tiny
variations of bolometer resistance can be 
measured.

• With his bolometer Langley is able to 
measure the IR spectrum of the sun, 
discovering atomic and molecular lines.



Old times

• Further developments:
– 1915 : William Coblentz uses thermopiles (an 

improved version of Macedonio Melloni’s detector !) to 
measure the infrared radiation from 110 stars, as well 
as from planets, such as Jupiter and Saturn, and 
several nebulae. 

– 1920’s : systematic IR observations with vacuum 
thermopiles (Seth B. Nicholson, Edison Pettit and 
others): diameters of giant stars

– 1948: IR observations show that the moon is covered 
by dust. 

– 1950s: Lead Sulphide photodetectors – Johnson’s  
star photometry 

– First Semiconductor bolometers, slicing carbon 
resistors to make the thermistor (W. S. Boyle and K. F. 
Rodgers, J . Opt . Soc . Am . 49 :66 (1959))



One generation ago
• The revolution :

– 1961: Franck J. Low develops the first 

cryogenic Ge bolometer, boosting the 

sensitivity by orders of magnitude.  

– 1960’s and ff. bolometers and semiconductors 

detectors with their telescopes are carried to 

space using stratospheric balloons and 

rockets. 

• Consequence:

– First sky surveys @ l 100 mm

– 1968 First IR ground based 

large area sky survey (2 mm, 

from Mt. Wilson)



Few decades ago

• mm-wave bolometers 
– cooled at 1.5K or 0.3K 

– operating from space 

• become sensitive enough to measure the finest 
details of the Cosmic Microwave Background.

• Breakthrough:
– The composite bolometer (absorber and thermistor 

separated and each optimized independently): 
N. Coron, P. Richards …



Circa 1970

Circa 1980

Composite 

Bolometer

(Coron, Richards …)

monolitic 

bolometer

(Goddard, ..)



Spider-Web Bolometers

Absorber

Thermistor

Built by JPL Signal wire

2 mm

•The absorber is micro 
machined as a web of 
metallized Si3N4 wires, 2 
mm thick, with 0.1 mm 
pitch. 

•This is a good absorber
for mm-wave photons and 
features a very low cross 
section for cosmic rays. 
Also, the heat capacity is
reduced by a large factor
with respect to the solid
absorber.

•NEP ~ 2 10-17 W/Hz0.5 is
achieved @0.3K  

•150mKCMB in 1 s

•Mauskopf et al. Appl.Opt. 
36, 765-771, (1997)



Antenna-coupled bolometers
• Radiation is collected by a suitable (planar) antenna, and transferred via suitable 

waveguides (e.g. coplanar) to a matched resistor, where is dissipated.

• The resistor is placed on a thermally insulated island, and its temperature is sensed by a 
suitable thermistor (usually a superconducting Transition Edge Sensor - TES)

• All this is built on a Si wafer, using advanced microfabrication technology, and can be 

replicated to obtain large-format detector arrays. BOOST of the MAPPING SPEED.

• Currently moving from laboratory developments to industrial production. 

Figure from https://export.arxiv.org/pdf/1801.06991



Bolometers are not just for astronomy … 

10 mm thermal 
camera based on an 
array of 640x512 
microbolometers


