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9 Linear perturbation theory

9.1 Structure formation

Up to this point we have discussed the universe in terms of the homogeneous and
isotropic FRW model. We have however already used the notion of temperature,
which involves fluctuations, so inhomogeneities have already implicitly been present.
We now take the next step by explicitly considering small perturbations around the
homogeneous and isotropic model (which we now refer to as the “unperturbed” or the
“background” universe). In cosmology, perturbation theory has wide applicability.
Often the distribution of non-linear objects can be treated in terms of linear theory,
even though their internal composition cannot, and even very non-linear structures
such as planets, stars and galaxies have evolved from small initial perturbations
under the influence of gravity. This growth is called structure formation, though
sometimes the term is used to refer only to the situation when perturbations become
of order unity and bound structures form. The discussion of perturbations can thus
be divided into two parts.

1) The generation of the primordial perturbations, “the seeds of structure”. This
is the more speculative part of structure formation theory. We don’t know
how the primordial perturbations came about, but we have a good candidate
scenario, inflation, the predictions of which have so far agreed very well with
observations, and which are currently being tested more thoroughly. According
to the inflationary scenario, all structure originates from quantum fluctuations

in the early universe.

2) The growth of the small perturbations into the present observable structure
of the universe. This part is less speculative, since we have a well established
theory of gravity, general relativity. However, there is uncertainty in this part
too, since we do not know the precise nature of the dominant components
to the energy density of the universe, the dark matter and the possible dark

energy. The gravitational growth depends on the equations of state and the
streaming lengths (particle mean free path between interactions) of these den-
sity components. Besides gravity, the growth is affected by pressure (due to
non-gravitational interactions).

We will first discuss the formalism of cosmological perturbation theory. We will
apply it to the generation and early evolution of structures, then to the evolution
of the perturbations in the various later eras in the history of the universe. We
will discuss the cosmic microwave background using perturbation theory. We will
not discuss the formation of galaxies or other non-linear structures except in very
general terms, as we only follow perturbations up to the time when they enter the
non-linear regime.

We will work with first order perturbation theory (also called linear perturbation

theory). This means that all quantities are written as a sum of the background value,
corresponding to the homogeneous and isotropic model, and a perturbation, which
is the deviation from the background value. For example, for the energy density we
have

ρ(t,x) = ρ̄(t) + δρ(t,x) ,
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where x are the comoving spatial coordinates. We assume that perturbations are
small, so that we can drop all terms which contain a product of two or more pertur-
bations. The remaining equations then contain only terms which are either zeroth

order i.e. contain only background quantities, or first order i.e. contain exactly one
power of the perturbed quantities. If we understand the zeroth order parts as the
average, then the average of the perturbations vanishes. By averaging the inhomo-
geneous equations we thus get back the equations of the homogeneous and isotropic
universe. Subtracting these from our equations we arrive at the perturbation equa-

tions where every term is first order in the perturbation quantities, i.e. the equations
are linear1.

The more rigorous way of doing perturbation theory would be to take the full
set of equations (in this case the various components of the Einstein equation) for a
general inhomogeneous spacetime and linearise them, dropping higher order terms
as discussed above. The more conventional way is to start with the homogeneous
and isotropic model and add perturbations on top of that. We will follow this easier
route2.

9.2 The perturbed metric

Let us first discuss perturbations of the metric. We leave the development of cos-
mological perturbation theory to a more advanced course, and just summarise some
basic concepts and results. (The interested reader may consult [1, 2] for details.)
We have the line element

ds2 = gαβdx
αdxβ

= (ḡαβ + δgαβ)dx
αdxβ , (9.1)

where ḡαβ is the background metric,

ḡαβdx
αdxβ = −dt2 + a2(t)δijdx

idxj , (9.2)

and δgαβ is a perturbation, which we take to be small. In this course, we only
consider spatially flat backgrounds, as spatial curvature would introduce technical
complications we don’t want to deal with. The question what is a small perturbation
is not entirely straightforward. For example, we might naively demand |δgαβ | ≪
|ḡαβ |. But (leaving aside that some of the components ḡαβ are zero) this kind of a
statement is coordinate-dependent. We can make a coordinate transformation that
will make a large change to the metric, while keeping the physics exactly the same.
An example would be a large Lorentz boost. This shows another problem, namely
that perturbations in the metric do not necessarily correspond to changes in the
physical state of the system.

In general, if perturbations in all physical quantities are small, it should be
possible to choose a coordinate system where the metric perturbations are small
(compared to unity). Note that the reverse is not true: from the fact that the
metric perturbations are small one cannot conclude that perturbations in all physical

1This way of decoupling the background and the perturbations does not work straightforwardly
beyond first order perturbation theory. We will be content with linear theory.

2Note that it is not guaranteed that such a linear extension is a linearised version of a solution
of the full equations. We won’t worry about such details.
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where ḡαβ is the background metric,
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|ḡαβ |. But (leaving aside that some of the components ḡαβ are zero) this kind of a
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where ḡαβ is the background metric,
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quantities are small. For example, the gravitational field in the solar system is quite
small, and the solar system can be represented as a linear perturbation around
Minkowski space. However, the energy density in the solar system changes by a
factor 1020 when going from Earth to interplanetary space.

From now on, we assume that we have chosen an appropriate coordinate system
such that the metric perturbations are small, so we can neglect all terms which are
second order or higher in the metric perturbations.

In the linear approximation, the metric perturbations do not influence the evo-
lution of the background on which they live. The metric perturbations inherit geo-
metric structure from the background. Just like in classical electrodynamics we can
decompose a general tensor into irreducible representations of the Lorentz group,
we can decompose the metric perturbations into irreducible parts with regard to
the symmetries of the background, namely translation and rotation in the spatial
dimensions. In less technical language, the perturbations can be split up into things
which have either zero, one or two spatial indices, and which we can treat like scalars,
vectors and tensor living on a Euclidean space. The most general linear perturbation
around the FRW metric (9.2), decomposed into its irreducible parts, reads

ds2 = gαβdx
αdxβ

= ḡαβdx
αdxβ + δgαβdx

αdxβ

= −(1 + 2Φ)dt2 + 2a(t)(B,i − Si)dx
idt
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where Φ,Ψ, B and E are scalars, Si, Fi are vectors and hij is a tensor, and a comma
stands for derivative with respect to xi i.e. f,i ≡ ∂f/∂xi. The vector perturbations
are transverse, δijSi,j = δijFi,j = 0, and the tensor perturbation is transverse and
traceless, δijhij = 0, hij,j = 0. Physically, tensors correspond to gravity waves,
vectors describe rotation and scalars are directly related to the density perturbation,
as we will see.

Since we drop all non-linear terms, the scalar, vector and tensor perturbations
evolve independently. The vector perturbations decay with the expansion, and are
expected to be negligible in the linear regime, so we put them to zero, Si = Fi = 0.
There can be significant tensor perturbations in the universe, and they may be
observable in the cosmic microwave background anisotropy. This depends on the
details of inflation. No tensor perturbations have been detected thus far, but it is
possible the Planck satellite, whose data on the polarisation of the CMB is set to
be released in 2014 will be able to detect them.

For the metric perturbation, we have 10 functions δgαβ(t,x). So there would
appear to be ten degrees of freedom. However, four of them are not physical degrees
of freedom, they just correspond to the freedom of choosing the four coordinates.
So there are 6 physical degrees of freedom. There are thus different coordinate
systems (also called different gauges) which describe the same physics. The choice
of coordinates is called a choice of gauge3. It can be shown that we can choose

3More precisely, perturbation theory is formulated in terms of a mapping from the real inhomo-
geneous and anisotropic spacetime to a background spacetime, and it is the choice of map which
is called a “gauge choice”. However, the choice of coordinates and choice of mapping are often
conflated in cosmological parlance. More simply, change of gauge is a change of coordinates, except
that it only affects the perturbations, the background is kept fixed. We will not get into such details.
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where x are the comoving spatial coordinates. We assume that perturbations are
small, so that we can drop all terms which contain a product of two or more pertur-
bations. The remaining equations then contain only terms which are either zeroth

order i.e. contain only background quantities, or first order i.e. contain exactly one
power of the perturbed quantities. If we understand the zeroth order parts as the
average, then the average of the perturbations vanishes. By averaging the inhomo-
geneous equations we thus get back the equations of the homogeneous and isotropic
universe. Subtracting these from our equations we arrive at the perturbation equa-

tions where every term is first order in the perturbation quantities, i.e. the equations
are linear1.

The more rigorous way of doing perturbation theory would be to take the full
set of equations (in this case the various components of the Einstein equation) for a
general inhomogeneous spacetime and linearise them, dropping higher order terms
as discussed above. The more conventional way is to start with the homogeneous
and isotropic model and add perturbations on top of that. We will follow this easier
route2.

9.2 The perturbed metric

Let us first discuss perturbations of the metric. We leave the development of cos-
mological perturbation theory to a more advanced course, and just summarise some
basic concepts and results. (The interested reader may consult [1, 2] for details.)
We have the line element

ds2 = gαβdx
αdxβ

= (ḡαβ + δgαβ)dx
αdxβ , (9.1)

where ḡαβ is the background metric,

ḡαβdx
αdxβ = −dt2 + a2(t)δijdx

idxj , (9.2)

and δgαβ is a perturbation, which we take to be small. In this course, we only
consider spatially flat backgrounds, as spatial curvature would introduce technical
complications we don’t want to deal with. The question what is a small perturbation
is not entirely straightforward. For example, we might naively demand |δgαβ | ≪
|ḡαβ |. But (leaving aside that some of the components ḡαβ are zero) this kind of a
statement is coordinate-dependent. We can make a coordinate transformation that
will make a large change to the metric, while keeping the physics exactly the same.
An example would be a large Lorentz boost. This shows another problem, namely
that perturbations in the metric do not necessarily correspond to changes in the
physical state of the system.

In general, if perturbations in all physical quantities are small, it should be
possible to choose a coordinate system where the metric perturbations are small
(compared to unity). Note that the reverse is not true: from the fact that the
metric perturbations are small one cannot conclude that perturbations in all physical

1This way of decoupling the background and the perturbations does not work straightforwardly
beyond first order perturbation theory. We will be content with linear theory.

2Note that it is not guaranteed that such a linear extension is a linearised version of a solution
of the full equations. We won’t worry about such details.
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quantities are small. For example, the gravitational field in the solar system is quite
small, and the solar system can be represented as a linear perturbation around
Minkowski space. However, the energy density in the solar system changes by a
factor 1020 when going from Earth to interplanetary space.

From now on, we assume that we have chosen an appropriate coordinate system
such that the metric perturbations are small, so we can neglect all terms which are
second order or higher in the metric perturbations.

In the linear approximation, the metric perturbations do not influence the evo-
lution of the background on which they live. The metric perturbations inherit geo-
metric structure from the background. Just like in classical electrodynamics we can
decompose a general tensor into irreducible representations of the Lorentz group,
we can decompose the metric perturbations into irreducible parts with regard to
the symmetries of the background, namely translation and rotation in the spatial
dimensions. In less technical language, the perturbations can be split up into things
which have either zero, one or two spatial indices, and which we can treat like scalars,
vectors and tensor living on a Euclidean space. The most general linear perturbation
around the FRW metric (9.2), decomposed into its irreducible parts, reads

ds2 = gαβdx
αdxβ

= ḡαβdx
αdxβ + δgαβdx

αdxβ

= −(1 + 2Φ)dt2 + 2a(t)(B,i − Si)dx
idt

+a(t)2 [(1− 2Ψ)δij + 2E,ij + Fi,j + Fj,i + hij ] dx
idxj , (9.3)

where Φ,Ψ, B and E are scalars, Si, Fi are vectors and hij is a tensor, and a comma
stands for derivative with respect to xi i.e. f,i ≡ ∂f/∂xi. The vector perturbations
are transverse, δijSi,j = δijFi,j = 0, and the tensor perturbation is transverse and
traceless, δijhij = 0, hij,j = 0. Physically, tensors correspond to gravity waves,
vectors describe rotation and scalars are directly related to the density perturbation,
as we will see.

Since we drop all non-linear terms, the scalar, vector and tensor perturbations
evolve independently. The vector perturbations decay with the expansion, and are
expected to be negligible in the linear regime, so we put them to zero, Si = Fi = 0.
There can be significant tensor perturbations in the universe, and they may be
observable in the cosmic microwave background anisotropy. This depends on the
details of inflation. No tensor perturbations have been detected thus far, but it is
possible the Planck satellite, whose data on the polarisation of the CMB is set to
be released in 2014 will be able to detect them.

For the metric perturbation, we have 10 functions δgαβ(t,x). So there would
appear to be ten degrees of freedom. However, four of them are not physical degrees
of freedom, they just correspond to the freedom of choosing the four coordinates.
So there are 6 physical degrees of freedom. There are thus different coordinate
systems (also called different gauges) which describe the same physics. The choice
of coordinates is called a choice of gauge3. It can be shown that we can choose

3More precisely, perturbation theory is formulated in terms of a mapping from the real inhomo-
geneous and anisotropic spacetime to a background spacetime, and it is the choice of map which
is called a “gauge choice”. However, the choice of coordinates and choice of mapping are often
conflated in cosmological parlance. More simply, change of gauge is a change of coordinates, except
that it only affects the perturbations, the background is kept fixed. We will not get into such details.
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= ḡαβdx
αdxβ + δgαβdx

αdxβ

= −(1 + 2Φ)dt2 + 2a(t)(B,i − Si)dx
idt

+a(t)2 [(1− 2Ψ)δij + 2E,ij + Fi,j + Fj,i + hij ] dx
idxj , (9.3)

where Φ,Ψ, B and E are scalars, Si, Fi are vectors and hij is a tensor, and a comma
stands for derivative with respect to xi i.e. f,i ≡ ∂f/∂xi. The vector perturbations
are transverse, δijSi,j = δijFi,j = 0, and the tensor perturbation is transverse and
traceless, δijhij = 0, hij,j = 0. Physically, tensors correspond to gravity waves,
vectors describe rotation and scalars are directly related to the density perturbation,
as we will see.

Since we drop all non-linear terms, the scalar, vector and tensor perturbations
evolve independently. The vector perturbations decay with the expansion, and are
expected to be negligible in the linear regime, so we put them to zero, Si = Fi = 0.
There can be significant tensor perturbations in the universe, and they may be
observable in the cosmic microwave background anisotropy. This depends on the
details of inflation. No tensor perturbations have been detected thus far, but it is
possible the Planck satellite, whose data on the polarisation of the CMB is set to
be released in 2014 will be able to detect them.

For the metric perturbation, we have 10 functions δgαβ(t,x). So there would
appear to be ten degrees of freedom. However, four of them are not physical degrees
of freedom, they just correspond to the freedom of choosing the four coordinates.
So there are 6 physical degrees of freedom. There are thus different coordinate
systems (also called different gauges) which describe the same physics. The choice
of coordinates is called a choice of gauge3. It can be shown that we can choose

3More precisely, perturbation theory is formulated in terms of a mapping from the real inhomo-
geneous and anisotropic spacetime to a background spacetime, and it is the choice of map which
is called a “gauge choice”. However, the choice of coordinates and choice of mapping are often
conflated in cosmological parlance. More simply, change of gauge is a change of coordinates, except
that it only affects the perturbations, the background is kept fixed. We will not get into such details.

9 LINEAR PERTURBATION THEORY 145

quantities are small. For example, the gravitational field in the solar system is quite
small, and the solar system can be represented as a linear perturbation around
Minkowski space. However, the energy density in the solar system changes by a
factor 1020 when going from Earth to interplanetary space.

From now on, we assume that we have chosen an appropriate coordinate system
such that the metric perturbations are small, so we can neglect all terms which are
second order or higher in the metric perturbations.

In the linear approximation, the metric perturbations do not influence the evo-
lution of the background on which they live. The metric perturbations inherit geo-
metric structure from the background. Just like in classical electrodynamics we can
decompose a general tensor into irreducible representations of the Lorentz group,
we can decompose the metric perturbations into irreducible parts with regard to
the symmetries of the background, namely translation and rotation in the spatial
dimensions. In less technical language, the perturbations can be split up into things
which have either zero, one or two spatial indices, and which we can treat like scalars,
vectors and tensor living on a Euclidean space. The most general linear perturbation
around the FRW metric (9.2), decomposed into its irreducible parts, reads

ds2 = gαβdx
αdxβ
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E = B = 0, and that doing so fixes the coordinate system completely. This choice
is known as the longitudinal gauge and also as the conformal Newtonian gauge. We
are then left with the metric

ds2 = gαβdx
αdxβ

= ḡαβdx
αdxβ + δgαβdx

αdxβ

= −(1 + 2Φ)dt2 + a(t)2 [(1− 2Ψ)δij + hij ] dx
idxj , (9.4)

so we have two scalar degrees of freedom and one transverse traceless symmetric
tensor, which has two independent degrees of freedom. The metric perturbations
Φ(t,x) and Ψ(t,x) are called the Bardeen potentials4. The function Φ is also called
the Newtonian potential, since in the Newtonian limit, it becomes equal to the New-
tonian potential perturbation, andΨ is called the Newtonian curvature perturbation,
because it determines the curvature of the 3-dimensional t = const. subspaces, which
are flat in the unperturbed universe.

The evolution of the metric perturbations is determined by the Einstein equa-
tion, which couples the metric to the matter content as described by the energy-
momentum tensor.

9.3 The perturbed equations of motion

The Einstein equation is

Gαβ = 8πGNTαβ , (9.5)

where Gαβ is a tensor which is built from the metric and its first and second deriva-
tives, and the energy-momentum tensor Tαβ describes the properties of matter. In
chapter 3 we noted that for an ideal fluid the energy-momentum tensor has the
following form

Tαβ = (ρ+ p)uαuβ + pgaβ , (9.6)

where ρ is the energy density and p is the pressure measured by an observer moving
with four-velocity uα. In the FRW case, the energy-momentum tensor necessarily
has this form for all forms of matter due to the symmetry of the spacetime. In
the perturbed case, the energy-momentum tensor can also have contributions from
energy flux and anisotropic stress in addition to then energy density and pressure.
We will not discuss such imperfect fluids.

As with the metric, we split the contributions to the energy-momentum tensor
into background plus perturbations,

ρ(t,x) = ρ̄(t) + δρ(t,x) (9.7)

p(t,x) = p̄(t) + δp(t,x) (9.8)

uα(t,x) = δα0 + δuα(t,x) , (9.9)

and we throw out all terms which have two or more powers of the perturbations,
whether of the metric or the matter variables. The four-velocity is normalised as
gαβuαuβ = −1, from which it follows that δu0 = −Φ in linear theory.

4Warning: Sign conventions for Φ and Ψ differ, and the definitions of Ψ and Φ are also sometimes
switched with each other.
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= ḡαβdx
αdxβ + δgαβdx

αdxβ

= −(1 + 2Φ)dt2 + a(t)2 [(1− 2Ψ)δij + hij ] dx
idxj , (9.4)

so we have two scalar degrees of freedom and one transverse traceless symmetric
tensor, which has two independent degrees of freedom. The metric perturbations
Φ(t,x) and Ψ(t,x) are called the Bardeen potentials4. The function Φ is also called
the Newtonian potential, since in the Newtonian limit, it becomes equal to the New-
tonian potential perturbation, andΨ is called the Newtonian curvature perturbation,
because it determines the curvature of the 3-dimensional t = const. subspaces, which
are flat in the unperturbed universe.

The evolution of the metric perturbations is determined by the Einstein equa-
tion, which couples the metric to the matter content as described by the energy-
momentum tensor.

9.3 The perturbed equations of motion

The Einstein equation is

Gαβ = 8πGNTαβ , (9.5)

where Gαβ is a tensor which is built from the metric and its first and second deriva-
tives, and the energy-momentum tensor Tαβ describes the properties of matter. In
chapter 3 we noted that for an ideal fluid the energy-momentum tensor has the
following form

Tαβ = (ρ+ p)uαuβ + pgaβ , (9.6)

where ρ is the energy density and p is the pressure measured by an observer moving
with four-velocity uα. In the FRW case, the energy-momentum tensor necessarily
has this form for all forms of matter due to the symmetry of the spacetime. In
the perturbed case, the energy-momentum tensor can also have contributions from
energy flux and anisotropic stress in addition to then energy density and pressure.
We will not discuss such imperfect fluids.

As with the metric, we split the contributions to the energy-momentum tensor
into background plus perturbations,

ρ(t,x) = ρ̄(t) + δρ(t,x) (9.7)

p(t,x) = p̄(t) + δp(t,x) (9.8)

uα(t,x) = δα0 + δuα(t,x) , (9.9)

and we throw out all terms which have two or more powers of the perturbations,
whether of the metric or the matter variables. The four-velocity is normalised as
gαβuαuβ = −1, from which it follows that δu0 = −Φ in linear theory.

4Warning: Sign conventions for Φ and Ψ differ, and the definitions of Ψ and Φ are also sometimes
switched with each other.

9 LINEAR PERTURBATION THEORY 146

E = B = 0, and that doing so fixes the coordinate system completely. This choice
is known as the longitudinal gauge and also as the conformal Newtonian gauge. We
are then left with the metric

ds2 = gαβdx
αdxβ
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Equating the Einstein tensor corresponding to the metric (9.4) to the energy-
momentum tensor (9.6) (times 8πGN) in the linear approximation, we get the fa-
miliar equations for the background:

3H2 = 8πGNρ̄ (9.10)

3(Ḣ +H2) = −4πGN(ρ̄+ 3p̄) , (9.11)

where we have used the relation ä/a = Ḣ +H2. For the perturbations, we get

4πGNδρ =
1

a2
∇2Ψ− 3H(Ψ̇+HΦ) (9.12)

4πGN(ρ̄+ p̄)δui = −(Ψ̇+HΦ),i (9.13)

4πGNδpδij =

[

(2Ḣ + 3H2)Φ+HΦ̇+ Ψ̈+ 3HΨ̇+
1

2

1

a2
∇2D

]

δij

−
1

2

1

a2
D,ij (9.14)

0 = ḧij + 3Hḣij −
1

a2
∇2hij , (9.15)

where ∇2 ≡ δij∂i∂j and D ≡ Φ−Ψ. These are the central equations for discussing
the evolution of perturbations. In this course, we cannot properly derive them from
the general Einstein equation, we just have to take them as given.

From the non-diagonal components of (9.14) we get that D,ij = 0 for all i ≠
j. The general solution of this equation is D = A(t, x) + B(t, y) + C(t, z). In
cosmology there are no preferred coordinate axes, so the only physically relevant
solution is D = D(t). However, this corresponds to changing the time coordinate,
so we can set D(t) = 0 without loss of generality. We therefore have Φ = Ψ.5 To see
what the single remaining scalar metric degree of freedom corresponds to, we can
manipulate the remaining perturbations equations (9.12)–(9.14). Let us introduce
some notation: the density contrast is defined as

δ ≡
δρ

ρ̄
. (9.16)

We also define the background equation of state as w ≡ p̄/ρ̄, and introduce the
variable v2 ≡ δp/δρ. We will later see that v corresponds (for certain types of
perturbation called adiabatic) to the sound speed of the cosmic fluid (if v2 < 0,
it instead describes an instability of the fluid). We can now express the pressure

5In fact, neutrinos develop anisotropic stress after neutrino decoupling, they do not behave like
an ideal fluid. Therefore the two Bardeen potentials actually differ from each other by about 10%
in the time between neutrino decoupling and matter-radiation equality. After the universe becomes
matter-dominated, the neutrinos become unimportant, and Ψ and Φ rapidly approach each other.
The same thing happens to photons after photon decoupling, but the universe is then already
matter-dominated, so the photons do not cause a significant difference between Ψ and Φ.
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j. The general solution of this equation is D = A(t, x) + B(t, y) + C(t, z). In
cosmology there are no preferred coordinate axes, so the only physically relevant
solution is D = D(t). However, this corresponds to changing the time coordinate,
so we can set D(t) = 0 without loss of generality. We therefore have Φ = Ψ.5 To see
what the single remaining scalar metric degree of freedom corresponds to, we can
manipulate the remaining perturbations equations (9.12)–(9.14). Let us introduce
some notation: the density contrast is defined as

δ ≡
δρ

ρ̄
. (9.16)

We also define the background equation of state as w ≡ p̄/ρ̄, and introduce the
variable v2 ≡ δp/δρ. We will later see that v corresponds (for certain types of
perturbation called adiabatic) to the sound speed of the cosmic fluid (if v2 < 0,
it instead describes an instability of the fluid). We can now express the pressure

5In fact, neutrinos develop anisotropic stress after neutrino decoupling, they do not behave like
an ideal fluid. Therefore the two Bardeen potentials actually differ from each other by about 10%
in the time between neutrino decoupling and matter-radiation equality. After the universe becomes
matter-dominated, the neutrinos become unimportant, and Ψ and Φ rapidly approach each other.
The same thing happens to photons after photon decoupling, but the universe is then already
matter-dominated, so the photons do not cause a significant difference between Ψ and Φ.

9 LINEAR PERTURBATION THEORY 147

Equating the Einstein tensor corresponding to the metric (9.4) to the energy-
momentum tensor (9.6) (times 8πGN) in the linear approximation, we get the fa-
miliar equations for the background:

3H2 = 8πGNρ̄ (9.10)
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3(Ḣ +H2) = −4πGN(ρ̄+ 3p̄) , (9.11)
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1

a2
∇2hij , (9.15)

where ∇2 ≡ δij∂i∂j and D ≡ Φ−Ψ. These are the central equations for discussing
the evolution of perturbations. In this course, we cannot properly derive them from
the general Einstein equation, we just have to take them as given.

From the non-diagonal components of (9.14) we get that D,ij = 0 for all i ≠
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3(Ḣ +H2) = −4πGN(ρ̄+ 3p̄) , (9.11)
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j. The general solution of this equation is D = A(t, x) + B(t, y) + C(t, z). In
cosmology there are no preferred coordinate axes, so the only physically relevant
solution is D = D(t). However, this corresponds to changing the time coordinate,
so we can set D(t) = 0 without loss of generality. We therefore have Φ = Ψ.5 To see
what the single remaining scalar metric degree of freedom corresponds to, we can
manipulate the remaining perturbations equations (9.12)–(9.14). Let us introduce
some notation: the density contrast is defined as

δ ≡
δρ

ρ̄
. (9.16)

We also define the background equation of state as w ≡ p̄/ρ̄, and introduce the
variable v2 ≡ δp/δρ. We will later see that v corresponds (for certain types of
perturbation called adiabatic) to the sound speed of the cosmic fluid (if v2 < 0,
it instead describes an instability of the fluid). We can now express the pressure

5In fact, neutrinos develop anisotropic stress after neutrino decoupling, they do not behave like
an ideal fluid. Therefore the two Bardeen potentials actually differ from each other by about 10%
in the time between neutrino decoupling and matter-radiation equality. After the universe becomes
matter-dominated, the neutrinos become unimportant, and Ψ and Φ rapidly approach each other.
The same thing happens to photons after photon decoupling, but the universe is then already
matter-dominated, so the photons do not cause a significant difference between Ψ and Φ.

9 LINEAR PERTURBATION THEORY 147

Equating the Einstein tensor corresponding to the metric (9.4) to the energy-
momentum tensor (9.6) (times 8πGN) in the linear approximation, we get the fa-
miliar equations for the background:

3H2 = 8πGNρ̄ (9.10)
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3(Ḣ +H2) = −4πGN(ρ̄+ 3p̄) , (9.11)
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j. The general solution of this equation is D = A(t, x) + B(t, y) + C(t, z). In
cosmology there are no preferred coordinate axes, so the only physically relevant
solution is D = D(t). However, this corresponds to changing the time coordinate,
so we can set D(t) = 0 without loss of generality. We therefore have Φ = Ψ.5 To see
what the single remaining scalar metric degree of freedom corresponds to, we can
manipulate the remaining perturbations equations (9.12)–(9.14). Let us introduce
some notation: the density contrast is defined as

δ ≡
δρ

ρ̄
. (9.16)

We also define the background equation of state as w ≡ p̄/ρ̄, and introduce the
variable v2 ≡ δp/δρ. We will later see that v corresponds (for certain types of
perturbation called adiabatic) to the sound speed of the cosmic fluid (if v2 < 0,
it instead describes an instability of the fluid). We can now express the pressure

5In fact, neutrinos develop anisotropic stress after neutrino decoupling, they do not behave like
an ideal fluid. Therefore the two Bardeen potentials actually differ from each other by about 10%
in the time between neutrino decoupling and matter-radiation equality. After the universe becomes
matter-dominated, the neutrinos become unimportant, and Ψ and Φ rapidly approach each other.
The same thing happens to photons after photon decoupling, but the universe is then already
matter-dominated, so the photons do not cause a significant difference between Ψ and Φ.

9 LINEAR PERTURBATION THEORY 147

Equating the Einstein tensor corresponding to the metric (9.4) to the energy-
momentum tensor (9.6) (times 8πGN) in the linear approximation, we get the fa-
miliar equations for the background:

3H2 = 8πGNρ̄ (9.10)
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perturbation in terms of v2 and δ, and write (9.12)–(9.15) as

0 = Φ̈+H(4 + 3v2)Φ̇− v2
1

a2
∇2Φ+ [2Ḣ + (3 + 3v2)H2]Φ (9.17)

δ =
2

3

1

(aH)2
∇2Φ− 2

1

H
Φ̇− 2Φ (9.18)

δui =
1

a2Ḣ
∂i(Φ̇+HΦ) (9.19)

0 = ḧij + 3Hḣij −
1

a2
∇2hij . (9.20)

From the set of equations (9.17)–(9.19) it follows that the metric perturbation
Φ is non-zero only if there is matter. So φ is generated directly by matter sources,
in particular by the density perturbations. In contrast, the tensor perturbation hij
can be non-zero even if the space is empty: they correspond to gravity waves.

The procedure for solving the perturbed equations is the following.

1) Give the matter model, i.e. give w and v2.

2) Solve for the evolution of the background and obtain a(t).

3) Solve the perturbation equations.

The order of solving the perturbation equations is that (9.17) gives the evolution
of Φ, and we then find the corresponding density contrast from (9.18) and the
velocity perturbation from (9.19). (We will not be much concerned about the velocity
perturbation.) Note an important difference in (9.18) from the classical Poisson
equation: there are terms of the metric perturbation without any gradients on the
right-hand side. This is a purely general relativistic feature which has very important
consequences, as we will see.

9.4 Fourier transformation

Since the equations are linear, they are easily solved in terms of a Fourier transfor-
mation. We define

Φ(t,x) =
1

(2π)3/2

∫

d3kΦk(t)e
ik·x , (9.21)

and δk, uik and hkij are defined in the same way. Because the universe is expanding,
the variable k, called the comoving momentum or comoving wavenumber, is not
the physical momentum, which is instead given by k/a. With the scale factor
normalised to unity today, the comoving momentum of a Fourier mode is the physical
momentum it has today.

The flatness of the spatial sections is crucial here. If the spatial sections were
curved, plane waves would not form a complete set of basis functions, and we would
instead have to use more complicated functions. (There would also be an additional
scale present, given by the spatial curvature term K/a2.)

Different Fourier modes decouple, and the equations for the metric perturbations
reduce to ordinary second order differential equations for each mode. Inserting (9.21)
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1

a2
∇2hij . (9.20)

From the set of equations (9.17)–(9.19) it follows that the metric perturbation
Φ is non-zero only if there is matter. So φ is generated directly by matter sources,
in particular by the density perturbations. In contrast, the tensor perturbation hij
can be non-zero even if the space is empty: they correspond to gravity waves.

The procedure for solving the perturbed equations is the following.

1) Give the matter model, i.e. give w and v2.

2) Solve for the evolution of the background and obtain a(t).

3) Solve the perturbation equations.

The order of solving the perturbation equations is that (9.17) gives the evolution
of Φ, and we then find the corresponding density contrast from (9.18) and the
velocity perturbation from (9.19). (We will not be much concerned about the velocity
perturbation.) Note an important difference in (9.18) from the classical Poisson
equation: there are terms of the metric perturbation without any gradients on the
right-hand side. This is a purely general relativistic feature which has very important
consequences, as we will see.

9.4 Fourier transformation

Since the equations are linear, they are easily solved in terms of a Fourier transfor-
mation. We define

Φ(t,x) =
1

(2π)3/2

∫

d3kΦk(t)e
ik·x , (9.21)

and δk, uik and hkij are defined in the same way. Because the universe is expanding,
the variable k, called the comoving momentum or comoving wavenumber, is not
the physical momentum, which is instead given by k/a. With the scale factor
normalised to unity today, the comoving momentum of a Fourier mode is the physical
momentum it has today.

The flatness of the spatial sections is crucial here. If the spatial sections were
curved, plane waves would not form a complete set of basis functions, and we would
instead have to use more complicated functions. (There would also be an additional
scale present, given by the spatial curvature term K/a2.)

Different Fourier modes decouple, and the equations for the metric perturbations
reduce to ordinary second order differential equations for each mode. Inserting (9.21)

9 LINEAR PERTURBATION THEORY 148

perturbation in terms of v2 and δ, and write (9.12)–(9.15) as

0 = Φ̈+H(4 + 3v2)Φ̇− v2
1

a2
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0 = ḧij + 3Hḣij −
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3) Solve the perturbation equations.
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velocity perturbation from (9.19). (We will not be much concerned about the velocity
perturbation.) Note an important difference in (9.18) from the classical Poisson
equation: there are terms of the metric perturbation without any gradients on the
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the physical momentum, which is instead given by k/a. With the scale factor
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into (9.17)–(9.20) (we drop the equation for the velocity)

0 = Φ̈k +H(4 + 3v2)Φ̇k + v2
k2

a2
Φk + [2Ḣ + (3 + 3v2)H2]Φk (9.22)

δk = −
2

3

k2

(aH)2
Φk − 2

1

H
Φ̇k − 2Φk (9.23)

0 = ḧkij + 3Hḣkij +
k2

a2
hkij , (9.24)

where we have denoted k ≡ |k|.
The equations (9.22) and (9.23) as well as (9.24) have an interesting property. For

a fluid for which v2 = w, the last term in (9.22) vanishes due to (9.10) and (9.11).
Thus, for long wavelength perturbations, k ≪ aH, we find that Φk =constant
is a solution of the equations, and (9.23) shows that the density contrast δk is
then also constant in time and equal to −2Φk. The gravity waves also have a
constant solution, regardless of the sound speed or the equation of state, as long as
k ≪ aH. So the relativistic equations allow for the possibility that perturbations
with wavelengths much larger than the Hubble scale are ’frozen in’ and remain
unaffected by cosmological evolution. Such a feature is not present in Newtonian
gravity.

In the first part of the course we saw that the early universe is radiation-
dominated until t = teq ≈ 50 000 years, after which the universe is matter-dominated
until it becomes (in the ΛCDM model) dominated by the vacuum energy at a few
billion years. In order to know the evolution of the perturbations, all we need to
do is to plug the background evolution we have already calculated into the above
equations and solve, keeping in mind that we have to track at least four different
components (photons, neutrinos, baryons and dark matter) with different behaviour
(i.e. different w and v2).

The equations (9.22) and (9.23) give the time evolution of the Fourier compo-
nents, but the spatial dependence (i.e. dependence on k) is left unconstrained, and
since the equations are linear, all linear combinations of solutions are also solutions.
The spatial dependence is fixed by the initial conditions at early times. Until the
1980s, initial conditions were based on assumptions about simplicity, but today we
have a scenario called inflation in which it is possible to actually calculate how per-
turbations are generated from quantum fluctuations. We will discuss this in the
next chapter, but let us first consider some statistical properties of fluctuations.

9.5 Gaussian perturbations

Simplest models of inflation predict, and observations show, that cosmological per-
turbations are (in the linear regime) close to Gaussian. Possible deviations from
Gaussianity are a topical subject in cosmology at the moment. No deviations in th
primordial perturbations have been found, and the non-Gaussian contribution has
to be less than 10−4, according to observations by the Planck satellite. (Non-linear
structure formation does destroy the Gaussianity of the initial perturbations on small
scales.). Let us discuss a generic Gaussian perturbation g(x), where g could be Φ,
δ or some other linear theory quantity (we suppress the time dependence here):

g(x) =
∑

k

gke
ik·x , (9.25)
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0 = ḧkij + 3Hḣkij +
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Simplest models of inflation predict, and observations show, that cosmological per-
turbations are (in the linear regime) close to Gaussian. Possible deviations from
Gaussianity are a topical subject in cosmology at the moment. No deviations in th
primordial perturbations have been found, and the non-Gaussian contribution has
to be less than 10−4, according to observations by the Planck satellite. (Non-linear
structure formation does destroy the Gaussianity of the initial perturbations on small
scales.). Let us discuss a generic Gaussian perturbation g(x), where g could be Φ,
δ or some other linear theory quantity (we suppress the time dependence here):
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gke
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where we have denoted k ≡ |k|.
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next chapter, but let us first consider some statistical properties of fluctuations.
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primordial perturbations have been found, and the non-Gaussian contribution has
to be less than 10−4, according to observations by the Planck satellite. (Non-linear
structure formation does destroy the Gaussianity of the initial perturbations on small
scales.). Let us discuss a generic Gaussian perturbation g(x), where g could be Φ,
δ or some other linear theory quantity (we suppress the time dependence here):
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10 Inflation: perturbations

10.1 The evolution of perturbations

10.1.1 The equations of motion

We now want to find out how perturbations are generated during inflation and
how they evolve. In chapter 9 we gave the equations of motion for the metric
perturbations, and noted that in order to solve them we need to give the background
equation of state and v2 = δp/δρ. We have discussed the background evolution
during inflation in chapter 8. Rather than dealing with the perturbation equations in
terms of the energy density and pressure, in the inflationary case it is more convenient
to discuss perturbations in the inflaton field. As with the other quantities, we split
the field into the background and the perturbation,

ϕ(t,x) = ϕ̄(t) + δϕ(t,x) . (10.1)

In chapter 8, we derived the equation of motion for the scalar field,

1√
−g

∂µ(
√
−ggµν∂νϕ)− V ′(ϕ) = 0 . (10.2)

In the spatially flat Friedmann-Robertson-Walker universe, we have

ϕ̈+ 3Hϕ̇−
1

a2
∇2ϕ+ V ′(ϕ) = 0 , (10.3)

which in Minkowski space reduces to

ϕ̈−∇2ϕ+ V ′(ϕ) = 0 . (10.4)

We now input, instead of the FRW metric, the perturbed metric in the longitu-
dinal gauge from chapter 9. We then get (recall that gµν is the inverse of the metric
tensor)

δϕ̈+ 3Hδϕ̇+

(

−
1

a2
∇2 + V ′′(ϕ̄)

)

δϕ = −2ΦV ′(ϕ̄) +
(

Φ̇+ 3Ψ̇
)

˙̄ϕ . (10.5)

Making a Fourier transformation, we obtain

δϕ̈k + 3Hδϕ̇k +

[

(

k

a

)2

+m2(ϕ̄)

]

δϕk = −2ΦkV
′(ϕ̄) +

(

Φ̇k + 3Ψ̇k

)

˙̄ϕ . (10.6)

where we have used m2(ϕ̄) ≡ V ′′(ϕ̄).
We could now write the perturbed energy density and pressure of the scalar field,

plug them into the perturbation equations given in chapter 9, and solve them in con-
nection with (10.6). However, there is an easier way. We mentioned in chapter 9
that not all metric perturbations correspond to changes in physics. This is not just a
nuisance, it may also be used for benefit. By making coordinate transformations (or
more precisely gauge transformations!), we can change the form of our equations of
motion to be more easily solved. Dealing with the details of the gauge transforma-
tions is beyond the scope of this course, so we just note that it is possible to choose
the coordinate system such that metric perturbations make a negligible contribution
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We could now write the perturbed energy density and pressure of the scalar field,

plug them into the perturbation equations given in chapter 9, and solve them in con-
nection with (10.6). However, there is an easier way. We mentioned in chapter 9
that not all metric perturbations correspond to changes in physics. This is not just a
nuisance, it may also be used for benefit. By making coordinate transformations (or
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motion to be more easily solved. Dealing with the details of the gauge transforma-
tions is beyond the scope of this course, so we just note that it is possible to choose
the coordinate system such that metric perturbations make a negligible contribution
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where we have used m2(ϕ̄) ≡ V ′′(ϕ̄).
We could now write the perturbed energy density and pressure of the scalar field,

plug them into the perturbation equations given in chapter 9, and solve them in con-
nection with (10.6). However, there is an easier way. We mentioned in chapter 9
that not all metric perturbations correspond to changes in physics. This is not just a
nuisance, it may also be used for benefit. By making coordinate transformations (or
more precisely gauge transformations!), we can change the form of our equations of
motion to be more easily solved. Dealing with the details of the gauge transforma-
tions is beyond the scope of this course, so we just note that it is possible to choose
the coordinate system such that metric perturbations make a negligible contribution
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10.1 The evolution of perturbations

10.1.1 The equations of motion

We now want to find out how perturbations are generated during inflation and
how they evolve. In chapter 9 we gave the equations of motion for the metric
perturbations, and noted that in order to solve them we need to give the background
equation of state and v2 = δp/δρ. We have discussed the background evolution
during inflation in chapter 8. Rather than dealing with the perturbation equations in
terms of the energy density and pressure, in the inflationary case it is more convenient
to discuss perturbations in the inflaton field. As with the other quantities, we split
the field into the background and the perturbation,

ϕ(t,x) = ϕ̄(t) + δϕ(t,x) . (10.1)

In chapter 8, we derived the equation of motion for the scalar field,

1√
−g

∂µ(
√
−ggµν∂νϕ)− V ′(ϕ) = 0 . (10.2)

In the spatially flat Friedmann-Robertson-Walker universe, we have

ϕ̈+ 3Hϕ̇−
1
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∇2ϕ+ V ′(ϕ) = 0 , (10.3)

which in Minkowski space reduces to

ϕ̈−∇2ϕ+ V ′(ϕ) = 0 . (10.4)

We now input, instead of the FRW metric, the perturbed metric in the longitu-
dinal gauge from chapter 9. We then get (recall that gµν is the inverse of the metric
tensor)

δϕ̈+ 3Hδϕ̇+
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)

δϕ = −2ΦV ′(ϕ̄) +
(

Φ̇+ 3Ψ̇
)

˙̄ϕ . (10.5)

Making a Fourier transformation, we obtain

δϕ̈k + 3Hδϕ̇k +

[

(

k

a

)2

+m2(ϕ̄)

]

δϕk = −2ΦkV
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˙̄ϕ . (10.6)

where we have used m2(ϕ̄) ≡ V ′′(ϕ̄).
We could now write the perturbed energy density and pressure of the scalar field,

plug them into the perturbation equations given in chapter 9, and solve them in con-
nection with (10.6). However, there is an easier way. We mentioned in chapter 9
that not all metric perturbations correspond to changes in physics. This is not just a
nuisance, it may also be used for benefit. By making coordinate transformations (or
more precisely gauge transformations!), we can change the form of our equations of
motion to be more easily solved. Dealing with the details of the gauge transforma-
tions is beyond the scope of this course, so we just note that it is possible to choose
the coordinate system such that metric perturbations make a negligible contribution
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equation of state and v2 = δp/δρ. We have discussed the background evolution
during inflation in chapter 8. Rather than dealing with the perturbation equations in
terms of the energy density and pressure, in the inflationary case it is more convenient
to discuss perturbations in the inflaton field. As with the other quantities, we split
the field into the background and the perturbation,
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where we have used m2(ϕ̄) ≡ V ′′(ϕ̄).
We could now write the perturbed energy density and pressure of the scalar field,

plug them into the perturbation equations given in chapter 9, and solve them in con-
nection with (10.6). However, there is an easier way. We mentioned in chapter 9
that not all metric perturbations correspond to changes in physics. This is not just a
nuisance, it may also be used for benefit. By making coordinate transformations (or
more precisely gauge transformations!), we can change the form of our equations of
motion to be more easily solved. Dealing with the details of the gauge transforma-
tions is beyond the scope of this course, so we just note that it is possible to choose
the coordinate system such that metric perturbations make a negligible contribution
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where we have used m2(ϕ̄) ≡ V ′′(ϕ̄).
We could now write the perturbed energy density and pressure of the scalar field,

plug them into the perturbation equations given in chapter 9, and solve them in con-
nection with (10.6). However, there is an easier way. We mentioned in chapter 9
that not all metric perturbations correspond to changes in physics. This is not just a
nuisance, it may also be used for benefit. By making coordinate transformations (or
more precisely gauge transformations!), we can change the form of our equations of
motion to be more easily solved. Dealing with the details of the gauge transforma-
tions is beyond the scope of this course, so we just note that it is possible to choose
the coordinate system such that metric perturbations make a negligible contribution

154

For perturbed FLRW metric in 
longitudinal gauge

10 Inflation: perturbations

10.1 The evolution of perturbations

10.1.1 The equations of motion

We now want to find out how perturbations are generated during inflation and
how they evolve. In chapter 9 we gave the equations of motion for the metric
perturbations, and noted that in order to solve them we need to give the background
equation of state and v2 = δp/δρ. We have discussed the background evolution
during inflation in chapter 8. Rather than dealing with the perturbation equations in
terms of the energy density and pressure, in the inflationary case it is more convenient
to discuss perturbations in the inflaton field. As with the other quantities, we split
the field into the background and the perturbation,

ϕ(t,x) = ϕ̄(t) + δϕ(t,x) . (10.1)

In chapter 8, we derived the equation of motion for the scalar field,
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∇2ϕ+ V ′(ϕ) = 0 , (10.3)

which in Minkowski space reduces to

ϕ̈−∇2ϕ+ V ′(ϕ) = 0 . (10.4)
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tensor)

δϕ̈+ 3Hδϕ̇+

(

−
1

a2
∇2 + V ′′(ϕ̄)

)

δϕ = −2ΦV ′(ϕ̄) +
(

Φ̇+ 3Ψ̇
)

˙̄ϕ . (10.5)

Making a Fourier transformation, we obtain

δϕ̈k + 3Hδϕ̇k +

[

(

k

a

)2

+m2(ϕ̄)

]

δϕk = −2ΦkV
′(ϕ̄) +

(

Φ̇k + 3Ψ̇k

)

˙̄ϕ . (10.6)

where we have used m2(ϕ̄) ≡ V ′′(ϕ̄).
We could now write the perturbed energy density and pressure of the scalar field,

plug them into the perturbation equations given in chapter 9, and solve them in con-
nection with (10.6). However, there is an easier way. We mentioned in chapter 9
that not all metric perturbations correspond to changes in physics. This is not just a
nuisance, it may also be used for benefit. By making coordinate transformations (or
more precisely gauge transformations!), we can change the form of our equations of
motion to be more easily solved. Dealing with the details of the gauge transforma-
tions is beyond the scope of this course, so we just note that it is possible to choose
the coordinate system such that metric perturbations make a negligible contribution
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where we have used m2(ϕ̄) ≡ V ′′(ϕ̄).
We could now write the perturbed energy density and pressure of the scalar field,

plug them into the perturbation equations given in chapter 9, and solve them in con-
nection with (10.6). However, there is an easier way. We mentioned in chapter 9
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nuisance, it may also be used for benefit. By making coordinate transformations (or
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to the equation of motion of the inflaton perturbations during slow-roll inflation, to
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+m2(ϕ̄)

]

δϕk = 0 . (10.7)

This is precisely what we would get if we just inserted (10.1) into the background
equation of motion for the inflaton field and subtracted the background (i.e. ignored
perturbations in the metric).

10.1.2 Solutions

During inflation, H and m2 change slowly. Thus we now make an approximation
where we treat them as constants. The general solution of (10.7) is then

δϕk(t) = a−3/2

[

AkJ−ν

(

k

aH

)

+BkJν

(

k

aH

)]

, (10.8)

where Jν is the Bessel function of order ν, with

ν =

√

9

4
−

m2

H2
. (10.9)

The time dependence of the scale factor for constant H is

a(t) ∝ eHt . (10.10)

If the slow-roll approximation is valid, the inflaton has negligible mass, m2 ≪ H2,
since then

m2

H2
= 3M2

Pl

V ′′

V
= 3η ≪ 1 . (10.11)

Thus we can drop m2/H2 in (10.9), so

ν =
3

2
. (10.12)

Bessel functions of half-integer order are the spherical Bessel functions which can be
expressed in terms of trigonometric functions. The solution (10.8) now reduces to

δϕk(t) = Akwk(t) +Bkw
∗
k(t) , (10.13)

where the constants Ak, Bk have been redefined to absorb some numerical constants,
compared to (10.8), and

wk(t) =

(

i+
k

aH

)

exp

(

ik

aH

)

. (10.14)

Well before horizon exit, k ≫ aH, the argument of the exponent is large, and the
solution oscillates rapidly. After horizon exit, k ≪ aH, the solution stops oscillating
and approaches the constant value i(Ak −Bk). (This fits in with our observation in
chapter 9 that the scalar metric perturbation and the density become constant for
k ≪ aH.)

1One such gauge is the spatially flat gauge, where the scalar perturbations are chosen such
that constant time slices have Euclidean geometry. There are still perturbations in the spacetime

curvature, which show up in the g0i components of the metric.
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ik

aH

)

. (10.14)

Well before horizon exit, k ≫ aH, the argument of the exponent is large, and the
solution oscillates rapidly. After horizon exit, k ≪ aH, the solution stops oscillating
and approaches the constant value i(Ak −Bk). (This fits in with our observation in
chapter 9 that the scalar metric perturbation and the density become constant for
k ≪ aH.)

1One such gauge is the spatially flat gauge, where the scalar perturbations are chosen such
that constant time slices have Euclidean geometry. There are still perturbations in the spacetime

curvature, which show up in the g0i components of the metric.
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10.1.3 The comoving curvature perturbation

We have now the solution for the field perturbation – or, more precisely, a field
perturbation, that is to say, the field perturbation in a particular gauge. (The
field perturbation is not a gauge-invariant quantity.) How is this field perturbation
related to quantities in the longitudinal gauge we have used earlier? The price to
pay for simplifying the equations of motion by judicious choice of gauge is that we
have to deal with quantities in different gauges. A clean way to solve the problem is
to use quantities which are gauge-invariant, that is to say, the same in every gauge.
A central such quantity is the the comoving curvature perturbation R. We won’t go
into the definition of this quantity: for us it is sufficient to know that its value is the
same in all gauges. So if we calculate R in terms of δϕ in the gauge above, we can
use the resulting value of R in any other gauge. The gauge invariant quantity is a
“bridge” from one gauge to another, if you will.

In the gauge we used above, the comoving curvature perturbation is

Rk = −H
δϕk

˙̄ϕ
. (10.15)

So, we should calculate the inflaton field perturbation some time after horizon
exit, when it has settled to a constant value, calculate R with (10.15). This is then
a quantity which is gauge-independent and conserved outside the horizon, and we
can calculate things like the density contrast δ from it (we will discuss this in the
next chapter).

The pieces that we are missing are the constants of integration in (10.13), i.e.
the initial conditions for the perturbation.

10.2 The generation of perturbations

It may sound somewhat odd to discuss the generation of perturbations. This implies
that we consider the state of a system which is homogeneous and isotropic at some
initial time, but where the behaviour is nevertheless different at different positions at
a later time. This may seem impossible, because then we would have to a have a rule
that would say where the perturbations are going to be, which would distinguish one
position from another. Therefore it would seem that perturbations have to be given
as initial conditions, and cannot be calculated from first principles. In a deterministic
theory, this is true. However, quantum mechanics offers a way out of this impasse.
Quantum theory is is indeterministic, and there is no rule that will tell what the
outcome of a quantum process will be, only probabilities of various outcomes (i.e.
statistical distributions) are calculable. To discuss quantum behaviour of the inflaton
field, we need to use quantum field theory in an inflating FRW universe. To warm
up we first consider quantum field theory of a scalar field in Minkowski space.

10.2.1 Vacuum fluctuations in Minkowski space

The field equation for a massive free (i.e. V (ϕ) = 1

2
m2ϕ2) real scalar field in

Minkowski space is
ϕ̈−∇2ϕ+m2ϕ = 0 , (10.16)

or
ϕ̈k + E2

kϕk = 0 , (10.17)
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calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)

10.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum

PR(k) =

(

H

ϕ̇

H

2π

)2

aH=k

, (10.47)

(In this section, we drop the overbar from the background values.) We have ex-
pressed the dynamics of slow-roll inflation in terms of the two slow-roll variables,
so let us see how the power spectrum looks like in terms of them. Applying the
slow-roll equations

H2 =
V

3M2
Pl

and 3Hϕ̇ = −V ′

(10.47) becomes

PR(k) =
1

12π2

1

M6
Pl

V 3

V ′2
=

1

24π2

1

M4
Pl

V

ε
, (10.48)

where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is

PR(k)
1/2 ≈ 5× 10−5 (10.49)

on cosmological scales. This gives a constraint on inflation

(

V

ε

)1/4

≈ 241/4
√
π
√

5× 10−5MPl ≈ 0.028MPl = 6.8× 1016 GeV . (10.50)

Since ε ≪ 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We
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on cosmological scales. This gives a constraint on inflation

(

V

ε

)1/4

≈ 241/4
√
π
√

5× 10−5MPl ≈ 0.028MPl = 6.8× 1016 GeV . (10.50)

Since ε ≪ 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We
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calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)

10.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum
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, (10.47)

(In this section, we drop the overbar from the background values.) We have ex-
pressed the dynamics of slow-roll inflation in terms of the two slow-roll variables,
so let us see how the power spectrum looks like in terms of them. Applying the
slow-roll equations
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where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is

PR(k)
1/2 ≈ 5× 10−5 (10.49)

on cosmological scales. This gives a constraint on inflation

(

V

ε

)1/4
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5× 10−5MPl ≈ 0.028MPl = 6.8× 1016 GeV . (10.50)

Since ε ≪ 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We
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calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)

10.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum
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, (10.47)

(In this section, we drop the overbar from the background values.) We have ex-
pressed the dynamics of slow-roll inflation in terms of the two slow-roll variables,
so let us see how the power spectrum looks like in terms of them. Applying the
slow-roll equations
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where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is

PR(k)
1/2 ≈ 5× 10−5 (10.49)

on cosmological scales. This gives a constraint on inflation
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5× 10−5MPl ≈ 0.028MPl = 6.8× 1016 GeV . (10.50)

Since ε ≪ 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We
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calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)

10.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum

PR(k) =
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, (10.47)

(In this section, we drop the overbar from the background values.) We have ex-
pressed the dynamics of slow-roll inflation in terms of the two slow-roll variables,
so let us see how the power spectrum looks like in terms of them. Applying the
slow-roll equations
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where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is

PR(k)
1/2 ≈ 5× 10−5 (10.49)

on cosmological scales. This gives a constraint on inflation

(

V

ε

)1/4

≈ 241/4
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5× 10−5MPl ≈ 0.028MPl = 6.8× 1016 GeV . (10.50)

Since ε ≪ 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We
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calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)

10.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum

PR(k) =
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, (10.47)

(In this section, we drop the overbar from the background values.) We have ex-
pressed the dynamics of slow-roll inflation in terms of the two slow-roll variables,
so let us see how the power spectrum looks like in terms of them. Applying the
slow-roll equations
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and 3Hϕ̇ = −V ′
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where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is

PR(k)
1/2 ≈ 5× 10−5 (10.49)

on cosmological scales. This gives a constraint on inflation
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5× 10−5MPl ≈ 0.028MPl = 6.8× 1016 GeV . (10.50)

Since ε ≪ 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We
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calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)

10.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum

PR(k) =
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, (10.47)

(In this section, we drop the overbar from the background values.) We have ex-
pressed the dynamics of slow-roll inflation in terms of the two slow-roll variables,
so let us see how the power spectrum looks like in terms of them. Applying the
slow-roll equations
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(10.47) becomes
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where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is

PR(k)
1/2 ≈ 5× 10−5 (10.49)

on cosmological scales. This gives a constraint on inflation

(
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≈ 241/4
√
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5× 10−5MPl ≈ 0.028MPl = 6.8× 1016 GeV . (10.50)

Since ε ≪ 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We
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calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)

10.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum

PR(k) =
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, (10.47)

(In this section, we drop the overbar from the background values.) We have ex-
pressed the dynamics of slow-roll inflation in terms of the two slow-roll variables,
so let us see how the power spectrum looks like in terms of them. Applying the
slow-roll equations

H2 =
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where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is

PR(k)
1/2 ≈ 5× 10−5 (10.49)

on cosmological scales. This gives a constraint on inflation

(
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≈ 241/4
√
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5× 10−5MPl ≈ 0.028MPl = 6.8× 1016 GeV . (10.50)

Since ε ≪ 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We
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calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)

10.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum

PR(k) =
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, (10.47)

(In this section, we drop the overbar from the background values.) We have ex-
pressed the dynamics of slow-roll inflation in terms of the two slow-roll variables,
so let us see how the power spectrum looks like in terms of them. Applying the
slow-roll equations
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where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is

PR(k)
1/2 ≈ 5× 10−5 (10.49)

on cosmological scales. This gives a constraint on inflation

(
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≈ 241/4
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5× 10−5MPl ≈ 0.028MPl = 6.8× 1016 GeV . (10.50)

Since ε ≪ 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We

10 INFLATION: PERTURBATIONS 162

calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)

10.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum

PR(k) =
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, (10.47)

(In this section, we drop the overbar from the background values.) We have ex-
pressed the dynamics of slow-roll inflation in terms of the two slow-roll variables,
so let us see how the power spectrum looks like in terms of them. Applying the
slow-roll equations
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where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is

PR(k)
1/2 ≈ 5× 10−5 (10.49)

on cosmological scales. This gives a constraint on inflation

(
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5× 10−5MPl ≈ 0.028MPl = 6.8× 1016 GeV . (10.50)

Since ε ≪ 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We
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calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)

10.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum

PR(k) =
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, (10.47)

(In this section, we drop the overbar from the background values.) We have ex-
pressed the dynamics of slow-roll inflation in terms of the two slow-roll variables,
so let us see how the power spectrum looks like in terms of them. Applying the
slow-roll equations

H2 =
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Pl
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where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is

PR(k)
1/2 ≈ 5× 10−5 (10.49)

on cosmological scales. This gives a constraint on inflation
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5× 10−5MPl ≈ 0.028MPl = 6.8× 1016 GeV . (10.50)

Since ε ≪ 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We

10 INFLATION: PERTURBATIONS 162

calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)

10.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum

PR(k) =
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, (10.47)

(In this section, we drop the overbar from the background values.) We have ex-
pressed the dynamics of slow-roll inflation in terms of the two slow-roll variables,
so let us see how the power spectrum looks like in terms of them. Applying the
slow-roll equations

H2 =
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where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is

PR(k)
1/2 ≈ 5× 10−5 (10.49)

on cosmological scales. This gives a constraint on inflation
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5× 10−5MPl ≈ 0.028MPl = 6.8× 1016 GeV . (10.50)

Since ε ≪ 1, this implies an upper limit on the energy scale of inflation,

V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We
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calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)

10.3 The primordial spectrum in slow-roll inflation

So, inflation generates primordial perturbations Rk with the power spectrum
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(In this section, we drop the overbar from the background values.) We have ex-
pressed the dynamics of slow-roll inflation in terms of the two slow-roll variables,
so let us see how the power spectrum looks like in terms of them. Applying the
slow-roll equations
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where ε is the slow-roll parameter.
According to observations of CMB and large-scale structure, the amplitude of

the primordial power spectrum is
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on cosmological scales. This gives a constraint on inflation
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V 1/4 < 0.028MPl . (10.51)

This puts a limit on the Hubble scale during inflation. From H2 = V/(3M2
Pl
), the

constraint V 1/4 < 6.8 × 1016 GeV translates into H < 1015 GeV, or in terms of
length, H−1 > 10−31 m.

Since during slow-roll inflation V and V ′ change slowly while a wide range of
scales k exit the horizon, we expect PR(k) to be a slowly varying function of k. We
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calculate how the background evolves, and plug it in (10.46) to get complete infor-
mation about the perturbations. That, in turn, is the starting point for calculating
structure formation and the CMB anisotropy. Turning this around, observations of
large-scale structure and the CMB can be used obtain information about quantum
processes in the primordial universe. Note that the power spectrum depends only
on k. Statistical homogeneity and isotropy of the perturbations, inherited from the
symmetry of the background, is a strong feature of inflation. (I use the word ’feature’
rather than ’prediction’, because it is possible to construct models where, for exam-
ple, space expands anisotropically during inflation. However, that requires untypical
assumptions, such as having a short period of inflation, so that the anisotropy is not
washed away, or inflation driven by something else than a scalar field.)
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describe this small variation with the spectral index n of the primordial spectrum,
defined as4

n(k)− 1 ≡
d lnPR

d ln k
. (10.52)

If the spectral index is independent of k, we say that the spectrum is scale-free. In
this case the primordial spectrum is a power law

PR(k) = A2

(

k

kp

)n−1

, (10.53)

where the“pivot scale” kp is some chosen reference scale and A is the amplitude at
this pivot scale.

If the power spectrum is constant,

PR(k) = const. , (10.54)

corresponding to n = 1, we say that the spectrum is scale- invariant (which is a
special case of a scale-free spectrum.). A scale-invariant spectrum is also called the
Harrison–Zel’dovich spectrum.

If n ≠ 1, the spectrum is called tilted. A tilted spectrum is called red if n < 1
(more power on large scales) and blue if n > 1 (more power on small scales). If
dn/dk ≠ 0, it is said that there is a running spectral index.

Using (10.48) and (10.52), we can calculate the spectral index for slow-roll infla-
tion. Since PR(k) is evaluated from (10.48) when k = aH, we have

d ln k
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=
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dt
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a
+

Ḣ

H
= (1− ε)H ,

where we used the fact that in the slow-roll approximation Ḣ = −εH2 in the last
step. Thus
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. (10.55)

Let us first calculate the scale dependence of the slow-roll parameters:
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)4

−
(

V ′

V

)2 V ′′

V

]

= 4ε2 − 2εη

(10.56)
and, in a similar manner (exercise),

dη

d ln k
= . . . = 2εη − ξ , (10.57)

where we have defined a third slow-roll parameter

ξ ≡ M4
Pl

V ′

V 2
V ′′′ . (10.58)

4The −1 is in the definition for historical reasons, related to other ways of defining the power
spectrum of perturbations.
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If n ≠ 1, the spectrum is called tilted. A tilted spectrum is called red if n < 1
(more power on large scales) and blue if n > 1 (more power on small scales). If
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step. Thus

d

d ln k
=

1

1− ε

1

H

d

dt
=

1

1− ε

ϕ̇

H

d

dϕ
= −

M2
Pl

1− ε

V ′

V

d

dϕ
≈ −M2

Pl

V ′

V

d

dϕ
. (10.55)

Let us first calculate the scale dependence of the slow-roll parameters:

dε

d ln k
= −M2

Pl

V ′

V

d

dϕ

[

M2
Pl

2

(

V ′

V

)2
]

= M4
Pl

[

(

V ′

V

)4

−
(

V ′

V

)2 V ′′

V

]

= 4ε2 − 2εη

(10.56)
and, in a similar manner (exercise),

dη

d ln k
= . . . = 2εη − ξ , (10.57)

where we have defined a third slow-roll parameter

ξ ≡ M4
Pl

V ′

V 2
V ′′′ . (10.58)

4The −1 is in the definition for historical reasons, related to other ways of defining the power
spectrum of perturbations.

10 INFLATION: PERTURBATIONS 163

describe this small variation with the spectral index n of the primordial spectrum,
defined as4

n(k)− 1 ≡
d lnPR

d ln k
. (10.52)

If the spectral index is independent of k, we say that the spectrum is scale-free. In
this case the primordial spectrum is a power law

PR(k) = A2

(

k

kp

)n−1

, (10.53)

where the“pivot scale” kp is some chosen reference scale and A is the amplitude at
this pivot scale.

If the power spectrum is constant,

PR(k) = const. , (10.54)

corresponding to n = 1, we say that the spectrum is scale- invariant (which is a
special case of a scale-free spectrum.). A scale-invariant spectrum is also called the
Harrison–Zel’dovich spectrum.
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dn/dk ≠ 0, it is said that there is a running spectral index.

Using (10.48) and (10.52), we can calculate the spectral index for slow-roll infla-
tion. Since PR(k) is evaluated from (10.48) when k = aH, we have

d ln k

dt
=

d ln(aH)

dt
=

ȧ
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dn/dk ≠ 0, it is said that there is a running spectral index.

Using (10.48) and (10.52), we can calculate the spectral index for slow-roll infla-
tion. Since PR(k) is evaluated from (10.48) when k = aH, we have

d ln k

dt
=

d ln(aH)

dt
=

ȧ
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If n ≠ 1, the spectrum is called tilted. A tilted spectrum is called red if n < 1
(more power on large scales) and blue if n > 1 (more power on small scales). If
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Ḣ

H
= (1− ε)H ,

where we used the fact that in the slow-roll approximation Ḣ = −εH2 in the last
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ȧ

a
+

Ḣ
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spectrum of perturbations.

10 INFLATION: PERTURBATIONS 163

describe this small variation with the spectral index n of the primordial spectrum,
defined as4

n(k)− 1 ≡
d lnPR

d ln k
. (10.52)

If the spectral index is independent of k, we say that the spectrum is scale-free. In
this case the primordial spectrum is a power law

PR(k) = A2

(

k

kp

)n−1

, (10.53)

where the“pivot scale” kp is some chosen reference scale and A is the amplitude at
this pivot scale.

If the power spectrum is constant,

PR(k) = const. , (10.54)

corresponding to n = 1, we say that the spectrum is scale- invariant (which is a
special case of a scale-free spectrum.). A scale-invariant spectrum is also called the
Harrison–Zel’dovich spectrum.
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step. Thus

d

d ln k
=

1

1− ε

1

H

d

dt
=

1

1− ε

ϕ̇

H

d

dϕ
= −

M2
Pl

1− ε

V ′

V

d

dϕ
≈ −M2

Pl

V ′

V

d

dϕ
. (10.55)

Let us first calculate the scale dependence of the slow-roll parameters:

dε

d ln k
= −M2

Pl

V ′

V

d

dϕ

[

M2
Pl

2

(

V ′

V

)2
]

= M4
Pl

[

(

V ′

V

)4

−
(

V ′

V

)2 V ′′

V

]

= 4ε2 − 2εη

(10.56)
and, in a similar manner (exercise),

dη

d ln k
= . . . = 2εη − ξ , (10.57)

where we have defined a third slow-roll parameter

ξ ≡ M4
Pl

V ′

V 2
V ′′′ . (10.58)

4The −1 is in the definition for historical reasons, related to other ways of defining the power
spectrum of perturbations.

10 INFLATION: PERTURBATIONS 163

describe this small variation with the spectral index n of the primordial spectrum,
defined as4

n(k)− 1 ≡
d lnPR

d ln k
. (10.52)

If the spectral index is independent of k, we say that the spectrum is scale-free. In
this case the primordial spectrum is a power law

PR(k) = A2

(

k

kp

)n−1

, (10.53)

where the“pivot scale” kp is some chosen reference scale and A is the amplitude at
this pivot scale.

If the power spectrum is constant,

PR(k) = const. , (10.54)

corresponding to n = 1, we say that the spectrum is scale- invariant (which is a
special case of a scale-free spectrum.). A scale-invariant spectrum is also called the
Harrison–Zel’dovich spectrum.
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Ḣ

H
= (1− ε)H ,

where we used the fact that in the slow-roll approximation Ḣ = −εH2 in the last
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The parameter ξ is typically second-order small in the sense that
√

|ξ| is of the same
order of magnitude as ε and η. (Therefore it is sometimes written as ξ2, although
this can be misleading, as it does not have to be positive.)

We can now calculate the spectral index:
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(10.59)

Slow-roll requires ε ≪ 1 and |η| ≪ 1, so the spectrum is predicted to be close to
scale invariant. This agrees well with observations.

Assuming that at late times the universe is described by the ΛCDM model,
the latest constraint using data from the Planck satellite (and some data from the
WMAP satellite), the spectral index is [1]

n = 0.9603± 0.0073 . (10.60)

This value is model-dependent, and with a different cosmological model (differ-
ent dark energy, added isocurvature perturbations –to which we come in the next
chapter–, added topological defects and so on), the preferred value of the spectral
index can change, but in all but the most exotic models it remains close to scale-
invariant.

From the results of the running of ε and η, we obtain the running of the spectral
index:
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The running is second order in slow-roll parameters, so it’s expected to be even
smaller than the deviation from scale invariance. The observational range is (using
data from Planck, CMB and some ground-based CMB experiments) [1]
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Some inflation models have |n− 1| and |dn/d ln k| larger than this, while others do
not. These observations have ruled out some inflation models, while a zoo of dozens
and dozens of viable models remains [2]. Note how, as in the case of dark matter,
things work out automatically. In order to have negative pressure, a scalar field has
to roll slowly. Once the background evolution is slowly rolling, the perturbations are
close to scale-invariant, without needing to add new ingredients or tune anything.

CMB experiments have measured the CMB anisotropy over a range ∆ ln k ≈ 8.
On scales smaller than this, the CMB anisotropy is expected to be negligible (see
chapter 12 for the reason why!), so there’s nothing more to find. However, it is
possible to probe these smaller scales by observations of large-scale structure. Recall
that for high energy-scale inflation, the number of e-folds until the end of inflation
when the largest observable modes are generated is about 60, so we are only seeing
a small part of inflation.

The above results do not yet allow an independent determination of the two
slow-roll parameters ε and η. However, it turns out that the spectral index of tensor
perturbations produced by inflation is independent of η (it is −2ε). So if tensor
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perturbations are detected (from their signature on the CMB) and their spectrum
is measured, we can get both ε and η. The amplitude of the tensor perturbations
also depends directly on the Hubble parameter on inflation, so it will provide a
measurement of the energy scale of inflation. Typically, large-field inflation models
produce tensor perturbations with much larger amplitude than small-field inflation
models. In the small-field case they may be too small to be detectable in the near
future. It is possible to calculate the spectrum of gravity waves the same way as
we did for the scalar perturbations (the calculation is in fact simpler in the sense
that the gravity waves do not couple to matter, so we don’t have to worry about
the scalar field perturbations and gauges).

Example: Consider the simple inflation model

V (ϕ) =
1

2
m2ϕ2 . (10.63)

In chapter 8 we already calculated the slow-roll parameters for this model:

ε = η = 2
M2

Pl

ϕ2
(10.64)

and we immediately see that ξ = 0. Thus

n = 1− 6ε+ 2η = 1− 8

(

MPl

ϕ

)2

dn

d ln k
= 16εη − 24ε2 − 2ξ = −32

(

MPl

ϕ

)4

. (10.65)

To get the numbers out, we need the values of ϕ when the relevant cosmological
scales left the horizon. We know that the number of inflation e-foldings after that
should be about N ≈ 50 . . . 60. We have

N(ϕ) =
1

M2
Pl

∫ ϕ

ϕend

V
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, (10.66)

and we estimate ϕend from ε(ϕend) = 2M2
Pl
/ϕend

2 = 1 ⇒ ϕend =
√
2MPl to get

ϕ2 = ϕend
2 + 4M2

PlN = 2M2
Pl + 4M2

PlN ≈ 4M2
PlN . (10.67)

Thus
(

MPl

ϕ

)2

=
1

4N
(10.68)

and

n = 1−
2

N
≈ 0.96

dn

d ln k
= −

2

N2
≈ −0.0008 . (10.69)

The energy scale of inflation is determined from (10.48) and (10.49). Putting in
(10.68), we get

m ≈
9

N
1014 GeV ≈ 2× 1013 GeV ≈ 8× 10−6MPl , (10.70)
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for N = 50. We get V 1/4 ≈ 2 × 1016 GeV as the energy scale for the period when
the perturbations seen in the CMB were generated. Potential energy at the end of
inflation is

V 1/4
end

=

(

1

2
m2ϕend

2

)1/4

=

√

m

MPl

MPl ≈ 3× 10−3MPl ≈ 7× 1015 GeV . (10.71)

Because of the high energy scale, the amplitude of tensor perturbations, as quantified
by the tensor-to-scalar ratio r is significant, r ≈ 0.1. As these is not sign of tensor
perturbations in the Planck data, this simple model is slightly disfavoured by the
data. There was an announcement in March 2014 by the BICEP2 telescope team
that inflationary gravity waves would have been detected, but this turned out to be
premature.
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Figure 4: The observed CMB temperature anisotropy gets a contribution from the last
scattering surface, (δT/T )intr = Θ(tdec,xls, n̂) and from along the photon’s journey to us,
(δT/T )jour.

center of this sphere, which extends away from us both in space and in time.
The observed temperature anisotropy is due to two contributions, an intrinsic

temperature variation at the surface of last scattering and a variation in the redshift
the photons have suffered during their journey to us,
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See figure 4. There are two ways to define what we mean by the CMB perturbation
δT . The first way is to just take the angular average of the temperature field and
call this the mean, T̄ ≡ T0 ≡ 1

4π

∫
dΩT , and defined the anisotropy as the difference

from the mean, δT = T − T0. This is the physically most correct way. However, in
the context of perturbed FRW models, it can be simpler to call the temperature in
the background model the mean temperature. The perturbations also contribute to
the mean temperature, so this is a bit misleading, but common. We will also use
the notation δT

T instead of δT
T̄

or δT
T0
, as is common, but it should be understood

that the temperature in the denominator is the mean temperature. (Of course, this
would only make a difference at second order.)

The first term in (12.1),
(
δT
T

)
intr

represents the temperature variation of the
photon gas at t = tdec. (It also includes the Doppler effect from the motion of this
photon gas.) At that time the largest scales we see on the CMB sky were still outside
the horizon. The separation of δT/T into two components is gauge-dependent. If
the time slice t = tdec dips further into the past in some location, it finds a higher
temperature, but the photons from there also have then a longer way to go and suffer
a larger redshift, so the two effects balance each other. We can calculate in any gauge
we want, getting different results for (δT/T )intr and (δT/T )jour depending on the
gauge, but their sum (δT/T )obs is gauge-independent, because it is an observed
quantity.

One might think that (δT/T )intr should be equal to zero, since in our earlier dis-
cussion of recombination and decoupling we identified decoupling with a particular
temperature Tdec ∼ 3000 K. This kind of thinking corresponds to a particular gauge
choice where the t = tdec time slice coincides with the T = Tdec hypersurface. In
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Figure 5: Depending on the gauge, the Tdec = const. surface may, or (usually) may not
coincide with the t = tdec time slice.

this gauge (δT/T )intr = 0, except for the Doppler effect (we are not going to use this
gauge). Anyway, it is not true that all photons have their last scattering exactly
when T = Tdec. Rather they occur during a rather large temperature interval and
time period. The zeroth-order (background) time evolution of the temperature of
the photon distribution is the same before and after last scattering, T ∝ a−1, so it
does not matter how we draw the artificial separation line, the time slice t = tdec
separating the fluid and free particle treatment of the photons. See figure 5.

12.1 Multipole analysis

The CMB temperature anisotropy is a function on a sphere. In analogy with Fourier
expansion in three-dimensional flat space, we separate out the contributions of dif-
ferent angular scales by doing a multipole expansion,

δT

T0
(θ,φ) =

∑
aℓmYℓm(θ,φ) (12.2)

where the sum runs over l = 1, 2, . . .∞ and m = −l, . . . , l, giving 2ℓ+1 values of m
for each ℓ. The functions Yℓm(θ,φ) are the spherical harmonics (see figure 6), which
form an orthonormal set of functions over the sphere, so that we can calculate the
multipole coefficients aℓm from

aℓm =

∫
Y ∗
ℓm(θ,φ)

δT

T
(θ,φ)dΩ . (12.3)

This definition gives dimensionless aℓm. Often they are defined without the T0 =
2.725 K term in (12.2), and then they have the dimension of temperature and are
usually given in units of µK.

The coefficient al0 is real but the other alm are complex, and al,−m = a∗lm. The
sum begins at ℓ = 1, since Y00 = const. and therefore we must have a00 = 0 for
a quantity which represents a deviation from average. The dipole part, ℓ = 1, is
dominated by the Doppler effect due to the motion of the solar system with respect
to the last scattering surface, and it is difficult to separate the cosmological dipole

caused by large scale perturbations. (This was done for the first time with Planck,
though not to great accuracy.) Therefore we are here interested only in the ℓ ≥ 2
part of the expansion.

Another notation for Yℓm(θ,φ) is Yℓm(n̂), where n̂ is a unit vector whose direction
is specified by the angles θ and φ. (The hat denotes unit vector.)

12.1.1 Spherical harmonics

We list here some useful properties of the spherical harmonics. They are orthonormal
functions on the sphere, so

∫
dΩ Yℓm(θ,φ)Y ∗

ℓ′m′(θ,φ) = δℓℓ′δmm′ . (12.4)
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gauge). Anyway, it is not true that all photons have their last scattering exactly
when T = Tdec. Rather they occur during a rather large temperature interval and
time period. The zeroth-order (background) time evolution of the temperature of
the photon distribution is the same before and after last scattering, T ∝ a−1, so it
does not matter how we draw the artificial separation line, the time slice t = tdec
separating the fluid and free particle treatment of the photons. See figure 5.

12.1 Multipole analysis

The CMB temperature anisotropy is a function on a sphere. In analogy with Fourier
expansion in three-dimensional flat space, we separate out the contributions of dif-
ferent angular scales by doing a multipole expansion,

δT

T0
(θ,φ) =

∑
aℓmYℓm(θ,φ) (12.2)

where the sum runs over l = 1, 2, . . .∞ and m = −l, . . . , l, giving 2ℓ+1 values of m
for each ℓ. The functions Yℓm(θ,φ) are the spherical harmonics (see figure 6), which
form an orthonormal set of functions over the sphere, so that we can calculate the
multipole coefficients aℓm from

aℓm =

∫
Y ∗
ℓm(θ,φ)

δT

T
(θ,φ)dΩ . (12.3)

This definition gives dimensionless aℓm. Often they are defined without the T0 =
2.725 K term in (12.2), and then they have the dimension of temperature and are
usually given in units of µK.

The coefficient al0 is real but the other alm are complex, and al,−m = a∗lm. The
sum begins at ℓ = 1, since Y00 = const. and therefore we must have a00 = 0 for
a quantity which represents a deviation from average. The dipole part, ℓ = 1, is
dominated by the Doppler effect due to the motion of the solar system with respect
to the last scattering surface, and it is difficult to separate the cosmological dipole

caused by large scale perturbations. (This was done for the first time with Planck,
though not to great accuracy.) Therefore we are here interested only in the ℓ ≥ 2
part of the expansion.

Another notation for Yℓm(θ,φ) is Yℓm(n̂), where n̂ is a unit vector whose direction
is specified by the angles θ and φ. (The hat denotes unit vector.)
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Summing over the m corresponding to the same multipole number ℓ we have the
closure relation ∑

m

|Yℓm(θ,φ)|2 =
2ℓ+ 1

4π
. (12.5)

We will also use the expansion of a plane wave in terms of spherical harmonics,

eik·x = 4π
∑

ℓm

iℓjℓ(kx)Yℓm(x̂)Y ∗
ℓm(k̂) . (12.6)

Here x̂ and k̂ are the unit vectors in the directions of x and k, and jℓ is the spherical
Bessel function.

12.1.2 The theoretical angular power spectrum

The CMB anisotropy is due to the primordial perturbations, and therefore it reflects
their Gaussian nature. Because we get the values of the aℓm from the other pertur-
bation quantities through linear equations (in first-order perturbation theory), the
aℓm are also (complex) Gaussian random variables. Since they represent deviation
from the average temperature, their expectation value is zero,

⟨aℓm⟩ = 0 , (12.7)

and the quantity we want to calculate from theory is the variance ⟨|aℓm|2⟩ to get a
prediction for the typical size of the aℓm. The isotropic nature of the random process
shows up in the aℓm so that these expectation values depend only on ℓ not m. (The
ℓ are related to the angular size of the anisotropy pattern, whereas the m are related
to “orientation” or “pattern”.) Since ⟨|aℓm|2⟩ is independent of m, we can define

Cℓ ≡ ⟨|aℓm|2⟩ =
1

2ℓ+ 1

∑

m

⟨|aℓm|2⟩ . (12.8)

The aℓm are independent random variables, so

⟨aℓma∗ℓ′m′⟩ = δℓℓ′δmm′Cℓ . (12.9)

This function Cℓ (of integers l ≥ 1) is called the (theoretical) angular power spec-

trum. It is analogous to the power spectrum P(k) of density perturbations. For
Gaussian perturbations, Cℓ contains all the statistical information about the CMB
temperature anisotropy. This is all we can predict from theory. Thus analysis of
the CMB anisotropy consists of calculating the angular power spectrum from the
observed CMB and comparing it to the Cℓ predicted by theory2.

2In addition to the temperature anisotropy, the CMB also has another property, its polarisation.
There are two additional power spectra related to the polarisation, CEE

ℓ and CBB
ℓ , and one related

to the correlation between temperature and polarisation, CTE
ℓ . The spectra CEE

ℓ and CTE
ℓ have

been measured, while there is thus far no detection of a non-zero CBB
ℓ , only an upper bound. A

detection would indicate the presence of primordial gravitational waves. In the simplest inflationary
models, such as the m2ϕ2 model, the amplitude of the gravitational waves produced during inflation
is large enough that it should be seen by Planck. In many other models, the amplitude is too small
to be detected by CMB experiments in the near future.
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x lies somewhere on the last scattering sphere. In the matter-dominated universe
the Newtonian potential remains constant in time, Φ̇ = 04, so we get a contribution
from the integral only from epochs when the contributions of radiation, dark energy
of spatial curvature to the total energy density cannot be ignored.

We can understand the above result as follows. If the potential is constant in
time, the blueshift the photon acquires when falling into a potential well is canceled
by the redshift from climbing up the well. Thus the net redshift/blueshift caused
by gravitational potential perturbations is just the difference between the values of
Φ at the beginning and in the end. However, if the potential is changing while the
photon is traversing the well, this cancellation is not exact, and we get the integral
term to account for this effect.

The value of the potential perturbation at the observing site, Φ(t0,0) is the same
for photons coming from all directions. Thus it does not contribute to the observed
anisotropy. It just produces an overall shift in the observed average temperature.
(Recall the discussion of the two ways of defining the mean temperature at the
beginning of the chapter.) This is included in the observed value T0 = 2.725 K, and
there is no way for us to separate it from the unperturbed value. Thus we will ignore
the monopole. The observer motion vobs causes a dipole (ℓ = 1) pattern in the CMB
anisotropy, from which it is difficult to disentangle the cosmological dipole on the
last scattering sphere. Therefore the dipole is usually removed from the CMB map
before analysing it for cosmological purposes. Accordingly, we ignore this term also.
We will also not consider the effect of gravitational waves. Our final result for the
journey part is therefore

(
δT

T

)

jour

= Φ(tdec,xls) + 2

∫ o

dec
Φ̇dt . (12.41)

The other part,
(
δT
T

)
intr

, comes from the local temperature perturbation at t =
tdec and the Doppler effect, −v · n̂, from the local (baryon+photon) fluid motion at
that time. Since

ργ =
π2

15
T 4 , (12.42)

the local temperature perturbation is directly related to the relative perturbation in
the photon energy density,

(
δT

T

)

intr

=
1

4
δγ − v · n̂ . (12.43)

We can now write the observed temperature anisotropy as
(
δT

T

)

obs

=
1

4
δγ − v · n̂+ Φ(tdec,xls) + 2

∫ o

dec
Φ̇dt . (12.44)

Both the density perturbation δγ and the fluid velocity v are gauge dependent; we
use the longitudinal gauge only.

To make further progress we now

1. consider only adiabatic primordial perturbations and

4In linear perturbation theory. In second and higher order perturbation theory we have Φ̇ ̸= 0
even in a spatially flat matter-dominated universe.



Primordial fluctuations through standard inflationary mechanism: Gaussian spectrum
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is large enough that it should be seen by Planck. In many other models, the amplitude is too small
to be detected by CMB experiments in the near future.
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detection would indicate the presence of primordial gravitational waves. In the simplest inflationary
models, such as the m2ϕ2 model, the amplitude of the gravitational waves produced during inflation
is large enough that it should be seen by Planck. In many other models, the amplitude is too small
to be detected by CMB experiments in the near future.
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and the quantity we want to calculate from theory is the variance ⟨|aℓm|2⟩ to get a
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This function Cℓ (of integers l ≥ 1) is called the (theoretical) angular power spec-

trum. It is analogous to the power spectrum P(k) of density perturbations. For
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Just like the three-dimensional density power spectrum P(k) gives the contri-
bution of scale k to the density variance ⟨δ(x)2⟩, the angular power spectrum Cℓ is
related to the contribution of multipole ℓ to the temperature variance,
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)2
〉
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〈
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Cℓ , (12.10)

where we used (12.9) and the closure relation (12.5).
Thus, if we plot (2ℓ + 1)Cℓ/4π on a linear ℓ scale, or ℓ(2ℓ + 1)Cℓ/4π on a log-

arithmic ℓ scale, the area under the curve gives the temperature variance, i.e. the
expectation value for the squared deviation from the average temperature. It has
become customary to plot the angular power spectrum as ℓ(ℓ + 1)Cℓ/2π, which is
neither of these, but for large ℓ approximates the second case. The reason for this
custom is explained later.

Equation (12.10) represents the expectation value from theory and thus it is the
same for all directions θ,φ. The actual, “realised”, value of course varies from one
direction θ,φ to another. We can imagine an ensemble of universes, each representing
a different realisation of the same random process that produces the primordial
perturbations. Then ⟨ ⟩ represents the average over such an ensemble.

12.1.3 Observed angular power spectrum

Theory predicts expectation values ⟨|aℓm|2⟩ from the random process responsible for
the CMB anisotropy, but we can observe only one realisation of this random process,
the set {aℓm} of our CMB sky. We define the observed angular power spectrum as
the average

Ĉℓ ≡
1

2ℓ+ 1

∑

m

|aℓm|2 (12.11)

of these observed values.

The variance of the observed temperature anisotropy is the average of
(
δT (θ,φ)

T

)2

over the celestial sphere,
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Summing over the m corresponding to the same multipole number ℓ we have the
closure relation ∑

m

|Yℓm(θ,φ)|2 =
2ℓ+ 1

4π
. (12.5)

We will also use the expansion of a plane wave in terms of spherical harmonics,

eik·x = 4π
∑

ℓm

iℓjℓ(kx)Yℓm(x̂)Y ∗
ℓm(k̂) . (12.6)

Here x̂ and k̂ are the unit vectors in the directions of x and k, and jℓ is the spherical
Bessel function.

12.1.2 The theoretical angular power spectrum

The CMB anisotropy is due to the primordial perturbations, and therefore it reflects
their Gaussian nature. Because we get the values of the aℓm from the other pertur-
bation quantities through linear equations (in first-order perturbation theory), the
aℓm are also (complex) Gaussian random variables. Since they represent deviation
from the average temperature, their expectation value is zero,

⟨aℓm⟩ = 0 , (12.7)

and the quantity we want to calculate from theory is the variance ⟨|aℓm|2⟩ to get a
prediction for the typical size of the aℓm. The isotropic nature of the random process
shows up in the aℓm so that these expectation values depend only on ℓ not m. (The
ℓ are related to the angular size of the anisotropy pattern, whereas the m are related
to “orientation” or “pattern”.) Since ⟨|aℓm|2⟩ is independent of m, we can define

Cℓ ≡ ⟨|aℓm|2⟩ =
1

2ℓ+ 1

∑

m

⟨|aℓm|2⟩ . (12.8)

The aℓm are independent random variables, so

⟨aℓma∗ℓ′m′⟩ = δℓℓ′δmm′Cℓ . (12.9)

This function Cℓ (of integers l ≥ 1) is called the (theoretical) angular power spec-

trum. It is analogous to the power spectrum P(k) of density perturbations. For
Gaussian perturbations, Cℓ contains all the statistical information about the CMB
temperature anisotropy. This is all we can predict from theory. Thus analysis of
the CMB anisotropy consists of calculating the angular power spectrum from the
observed CMB and comparing it to the Cℓ predicted by theory2.

2In addition to the temperature anisotropy, the CMB also has another property, its polarisation.
There are two additional power spectra related to the polarisation, CEE

ℓ and CBB
ℓ , and one related

to the correlation between temperature and polarisation, CTE
ℓ . The spectra CEE

ℓ and CTE
ℓ have

been measured, while there is thus far no detection of a non-zero CBB
ℓ , only an upper bound. A

detection would indicate the presence of primordial gravitational waves. In the simplest inflationary
models, such as the m2ϕ2 model, the amplitude of the gravitational waves produced during inflation
is large enough that it should be seen by Planck. In many other models, the amplitude is too small
to be detected by CMB experiments in the near future.
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Figure 7: The observed angular power spectrum Ĉℓ according to the Planck satellite.
The observational results are the data points, with error bars representative of the cosmic
variance. The solid curve is the theoretical Cℓ from the best-fit ΛCDM model, and the gray
band around it represents the cosmic variance corresponding to this Cℓ.

Contrast this with (12.10), which gives the variance of δT/T at an arbitrary location
on the sky over different realisations of the random process which produced the
primordial perturbations; whereas equation (12.12) gives the variance of δT/T of
our given sky over the celestial sphere.

12.1.4 Cosmic variance

The expectation value of the observed spectrum Ĉℓ is equal to Cℓ, the theoretical

spectrum (12.8), i.e.
⟨Ĉℓ⟩ = Cℓ ⇒ ⟨Ĉℓ − Cℓ⟩ = 0 , (12.13)

but its actual, realised, value is not, although we expect it to be close. The expected
squared difference between Ĉℓ and Cℓ is called the cosmic variance. We can calculate
it using the properties of (complex) Gaussian random variables (exercise). The
answer is

⟨(Ĉℓ −Cℓ)
2⟩ =

2

2ℓ+ 1
C2
ℓ . (12.14)

We see that the expected relative difference between Ĉℓ and Cℓ is smaller for
higher ℓ. This is because we have a larger (size 2ℓ + 1) statistical sample of aℓm
available for calculating the Ĉℓ.

The cosmic variance limits the accuracy of comparison of CMB observations with
theory, especially for large scales (low ℓ).

12.2 Multipoles and scales

12.2.1 Rough correspondence

The different multipole numbers ℓ correspond to different angular scales, low ℓ to
large scales and high ℓ to small scales. Examination of the functions Yℓm(θ,φ) reveals
that they have an oscillatory pattern on the sphere, so that there are typically ℓ
“wavelengths” of oscillation around a full great circle of the sphere. See figure 8.
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The cosmic variance limits the accuracy of comparison of CMB observations with
theory, especially for large scales (low ℓ).

12.2 Multipoles and scales

12.2.1 Rough correspondence

The different multipole numbers ℓ correspond to different angular scales, low ℓ to
large scales and high ℓ to small scales. Examination of the functions Yℓm(θ,φ) reveals
that they have an oscillatory pattern on the sphere, so that there are typically ℓ
“wavelengths” of oscillation around a full great circle of the sphere. See figure 8.

12 COSMIC MICROWAVE BACKGROUND 197

Figure 7: The observed angular power spectrum Ĉℓ according to the Planck satellite.
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The cosmic variance limits the accuracy of comparison of CMB observations with
theory, especially for large scales (low ℓ).

12.2 Multipoles and scales

12.2.1 Rough correspondence

The different multipole numbers ℓ correspond to different angular scales, low ℓ to
large scales and high ℓ to small scales. Examination of the functions Yℓm(θ,φ) reveals
that they have an oscillatory pattern on the sphere, so that there are typically ℓ
“wavelengths” of oscillation around a full great circle of the sphere. See figure 8.

12 COSMIC MICROWAVE BACKGROUND 197

Figure 7: The observed angular power spectrum Ĉℓ according to the Planck satellite.
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⟨(Ĉℓ −Cℓ)
2⟩ =

2

2ℓ+ 1
C2
ℓ . (12.14)

We see that the expected relative difference between Ĉℓ and Cℓ is smaller for
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⟨(Ĉℓ −Cℓ)
2⟩ =

2

2ℓ+ 1
C2
ℓ . (12.14)

We see that the expected relative difference between Ĉℓ and Cℓ is smaller for
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Thus the angle corresponding to this wavelength is

θλ =
2π

ℓ
=

360◦

ℓ
. (12.15)

See figure 9. The angle corresponding to a “half-wavelength”, i.e. the separation
between a neighbouring minimum and maximum is then

θres =
π

ℓ
=

180◦

ℓ
. (12.16)

This is the angular resolution required of the microwave detector for it to be able to
resolve the angular power spectrum up to this ℓ.

For example, COBE had an angular resolution of 7◦ allowing a measurement up
to ℓ = 180/7 = 26, WMAP had resolution 0.23◦ reaching to ℓ = 180/0.23 = 783,
and the European Planck satellite has resolution 5′, which allows to measure Cℓ up
to ℓ = 21603.

The angles on the sky are related to actual physical or comoving distances via the
angular diameter distance dA, defined as the ratio of the physical length (transverse
to the line of sight) and the angle it covers, as discussed in chapter 3,

dA ≡
λphys
θ

. (12.17)

Likewise, we defined the comoving angular diameter distance dcA by

dcA ≡
λc

θ
(12.18)

where λc = (1/a)λphys = (1 + z)λphys is the corresponding comoving length. Thus
dcA = (1/a)dA = (1 + z)dA. See figure 10.

Consider now the Fourier modes of our earlier perturbation theory discussion.
A mode with comoving wavenumber k has comoving wavelength λc = 2π/k. Thus
this mode should show up as a pattern on the CMB sky with angular size

θλ =
λc

dcA
=

2π

kdcA
=

2π

ℓ
. (12.19)

For the last equality we used the relation (12.15). From it we get that the modes
with wavenumber k contribute mostly to multipoles around

ℓ = kdcA . (12.20)

12.2.2 Exact treatment

The above matching of wavenumbers with multipoles is rather naive, for two reasons:

1. The description of a spherical harmonic Yℓm having an “angular wavelength”
of 2π/ℓ is just a crude characterisation. See figure 8.

2. The modes k are not wrapped around the sphere of last scattering, but the
wave vector forms a different angle with the sphere at different places.

3In reality, there is no sharp cut-off at a particular ℓ, the observational error bars just blow up.
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Consider now the Fourier modes of our earlier perturbation theory discussion.
A mode with comoving wavenumber k has comoving wavelength λc = 2π/k. Thus
this mode should show up as a pattern on the CMB sky with angular size

θλ =
λc

dcA
=

2π

kdcA
=

2π

ℓ
. (12.19)

For the last equality we used the relation (12.15). From it we get that the modes
with wavenumber k contribute mostly to multipoles around

ℓ = kdcA . (12.20)

12.2.2 Exact treatment

The above matching of wavenumbers with multipoles is rather naive, for two reasons:

1. The description of a spherical harmonic Yℓm having an “angular wavelength”
of 2π/ℓ is just a crude characterisation. See figure 8.

2. The modes k are not wrapped around the sphere of last scattering, but the
wave vector forms a different angle with the sphere at different places.

3In reality, there is no sharp cut-off at a particular ℓ, the observational error bars just blow up.
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and the European Planck satellite has resolution 5′, which allows to measure Cℓ up
to ℓ = 21603.

The angles on the sky are related to actual physical or comoving distances via the
angular diameter distance dA, defined as the ratio of the physical length (transverse
to the line of sight) and the angle it covers, as discussed in chapter 3,

dA ≡
λphys
θ

. (12.17)

Likewise, we defined the comoving angular diameter distance dcA by

dcA ≡
λc

θ
(12.18)

where λc = (1/a)λphys = (1 + z)λphys is the corresponding comoving length. Thus
dcA = (1/a)dA = (1 + z)dA. See figure 10.

Consider now the Fourier modes of our earlier perturbation theory discussion.
A mode with comoving wavenumber k has comoving wavelength λc = 2π/k. Thus
this mode should show up as a pattern on the CMB sky with angular size

θλ =
λc

dcA
=

2π

kdcA
=

2π

ℓ
. (12.19)

For the last equality we used the relation (12.15). From it we get that the modes
with wavenumber k contribute mostly to multipoles around

ℓ = kdcA . (12.20)

12.2.2 Exact treatment

The above matching of wavenumbers with multipoles is rather naive, for two reasons:

1. The description of a spherical harmonic Yℓm having an “angular wavelength”
of 2π/ℓ is just a crude characterisation. See figure 8.

2. The modes k are not wrapped around the sphere of last scattering, but the
wave vector forms a different angle with the sphere at different places.

3In reality, there is no sharp cut-off at a particular ℓ, the observational error bars just blow up.

12 COSMIC MICROWAVE BACKGROUND 198

Thus the angle corresponding to this wavelength is

θλ =
2π

ℓ
=

360◦

ℓ
. (12.15)

See figure 9. The angle corresponding to a “half-wavelength”, i.e. the separation
between a neighbouring minimum and maximum is then

θres =
π

ℓ
=

180◦

ℓ
. (12.16)

This is the angular resolution required of the microwave detector for it to be able to
resolve the angular power spectrum up to this ℓ.

For example, COBE had an angular resolution of 7◦ allowing a measurement up
to ℓ = 180/7 = 26, WMAP had resolution 0.23◦ reaching to ℓ = 180/0.23 = 783,
and the European Planck satellite has resolution 5′, which allows to measure Cℓ up
to ℓ = 21603.

The angles on the sky are related to actual physical or comoving distances via the
angular diameter distance dA, defined as the ratio of the physical length (transverse
to the line of sight) and the angle it covers, as discussed in chapter 3,

dA ≡
λphys
θ

. (12.17)

Likewise, we defined the comoving angular diameter distance dcA by

dcA ≡
λc

θ
(12.18)

where λc = (1/a)λphys = (1 + z)λphys is the corresponding comoving length. Thus
dcA = (1/a)dA = (1 + z)dA. See figure 10.

Consider now the Fourier modes of our earlier perturbation theory discussion.
A mode with comoving wavenumber k has comoving wavelength λc = 2π/k. Thus
this mode should show up as a pattern on the CMB sky with angular size

θλ =
λc

dcA
=

2π

kdcA
=

2π

ℓ
. (12.19)

For the last equality we used the relation (12.15). From it we get that the modes
with wavenumber k contribute mostly to multipoles around

ℓ = kdcA . (12.20)

12.2.2 Exact treatment

The above matching of wavenumbers with multipoles is rather naive, for two reasons:

1. The description of a spherical harmonic Yℓm having an “angular wavelength”
of 2π/ℓ is just a crude characterisation. See figure 8.

2. The modes k are not wrapped around the sphere of last scattering, but the
wave vector forms a different angle with the sphere at different places.

3In reality, there is no sharp cut-off at a particular ℓ, the observational error bars just blow up.



12 COSMIC MICROWAVE BACKGROUND 205

and the corresponding multipole number on the last scattering sphere is

ℓH ≡ kdecd
c
A = (1 + zdec)

1/2
√
Ωm0 ×

{
2/Ωm0 = 66.0 Ω−0.5

m0 (ΩΛ = 0)
2/Ω0.4

m0 = 66.0 Ω0.1
m0 (Ω0 = 1)

(12.35)
The angle subtended by a half-wavelength π/k of this mode on the last scattering
sphere is

θH ≡
π

ℓH
=

180◦

ℓH
=

{
2.7◦Ω0.5

m0

2.7◦Ω−0.1
m0 .

(12.36)

For the open model with Ωm0 = 0.3, we get 1.5◦, and for the spatially flat ΛCDM
model with Ωm0 = 0.3, we get ∼ 3◦.

Another important scale is keq, the scale which enters at the time of matter-
radiation equality teq, since the transfer function T (k) is bent at that point. Pertur-
bations for scales k ≪ keq essentially maintain their primordial spectrum, whereas
scales k ≫ keq have lost relative power between their horizon entry and teq. With a
calculation similar to kdec (taking into account that ρtot(teq) = 2ρm(teq)), we get

k−1
eq = (aeqHeq)

−1 ≈ 14ω−1
m Mpc = 4.7× 10−3Ω−1

m0h
−1H−1

0 . (12.37)

For ωm = 0.14 we have keq = 100 Mpc. The corresponding multipole number is

ℓeq = keqd
c
A = 214Ωm0h×

{
2/Ωm0 = 430h (ΩΛ = 0)
2/Ω0.4

m0 ≈ 430h Ω0.6
m0 (Ω0 = 1) .

(12.38)

12.4 CMB anisotropy from perturbation theory

We began this chapter with the observation (12.1), that the CMB temperature
anisotropy is a sum of two parts,

(
δT

T

)

obs

=

(
δT

T

)

intr

+

(
δT

T

)

jour

, (12.39)

and that this separation is gauge dependent. We shall consider this in the longi-
tudinal gauge, since the second part,

(
δT
T

)
jour

, the integrated redshift perturbation
along the line of sight, is easiest to calculate in this gauge. The calculation requires
more general relativity tools than we have available, so we just give the result.
(
δT

T

)

jour

= −
∫ o

dec
dΦ+ vobs · n̂+

∫ o

dec
dt

(
Φ̇+ Ψ̇−

1

2
ḣij n̂

in̂j

)

= Φ(tdec,xls)− Φ(t0, 0) + vobs · n̂+

∫ o

dec
dt
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Φ̇+ Ψ̇−

1

2
ḣijn̂
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)

Ψ≈Φ
= Φ(tdec,xls)− Φ(t0, 0) + vobs · n̂+ 2

∫ o

dec
dtΦ̇−

1

2
n̂in̂j

∫ o

dec
dtḣij ,

(12.40)

where the integral is from (tdec,xls) to (t0, 0) along the path of the photon (a null
geodesic) and n̂ is a unit vector pointing in the direction the observer is looking
at. The observer’s location has been chosen as the origin 0. The term vobs · n̂
is the Doppler effect from the observer’s motion (which is assumed nonrelativistic,
|vobs| ≪ 1), where vobs is the observer’s velocity. The subscript ls in xls indicates that
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where the integral is from (tdec,xls) to (t0, 0) along the path of the photon (a null
geodesic) and n̂ is a unit vector pointing in the direction the observer is looking
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x lies somewhere on the last scattering sphere. In the matter-dominated universe
the Newtonian potential remains constant in time, Φ̇ = 04, so we get a contribution
from the integral only from epochs when the contributions of radiation, dark energy
of spatial curvature to the total energy density cannot be ignored.

We can understand the above result as follows. If the potential is constant in
time, the blueshift the photon acquires when falling into a potential well is canceled
by the redshift from climbing up the well. Thus the net redshift/blueshift caused
by gravitational potential perturbations is just the difference between the values of
Φ at the beginning and in the end. However, if the potential is changing while the
photon is traversing the well, this cancellation is not exact, and we get the integral
term to account for this effect.

The value of the potential perturbation at the observing site, Φ(t0,0) is the same
for photons coming from all directions. Thus it does not contribute to the observed
anisotropy. It just produces an overall shift in the observed average temperature.
(Recall the discussion of the two ways of defining the mean temperature at the
beginning of the chapter.) This is included in the observed value T0 = 2.725 K, and
there is no way for us to separate it from the unperturbed value. Thus we will ignore
the monopole. The observer motion vobs causes a dipole (ℓ = 1) pattern in the CMB
anisotropy, from which it is difficult to disentangle the cosmological dipole on the
last scattering sphere. Therefore the dipole is usually removed from the CMB map
before analysing it for cosmological purposes. Accordingly, we ignore this term also.
We will also not consider the effect of gravitational waves. Our final result for the
journey part is therefore

(
δT

T

)

jour

= Φ(tdec,xls) + 2

∫ o

dec
Φ̇dt . (12.41)

The other part,
(
δT
T

)
intr

, comes from the local temperature perturbation at t =
tdec and the Doppler effect, −v · n̂, from the local (baryon+photon) fluid motion at
that time. Since

ργ =
π2

15
T 4 , (12.42)

the local temperature perturbation is directly related to the relative perturbation in
the photon energy density,

(
δT

T

)

intr

=
1

4
δγ − v · n̂ . (12.43)

We can now write the observed temperature anisotropy as
(
δT

T

)

obs

=
1

4
δγ − v · n̂+ Φ(tdec,xls) + 2

∫ o

dec
Φ̇dt . (12.44)

Both the density perturbation δγ and the fluid velocity v are gauge dependent; we
use the longitudinal gauge only.

To make further progress we now

1. consider only adiabatic primordial perturbations and

4In linear perturbation theory. In second and higher order perturbation theory we have Φ̇ ̸= 0
even in a spatially flat matter-dominated universe.
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from the integral only from epochs when the contributions of radiation, dark energy
of spatial curvature to the total energy density cannot be ignored.

We can understand the above result as follows. If the potential is constant in
time, the blueshift the photon acquires when falling into a potential well is canceled
by the redshift from climbing up the well. Thus the net redshift/blueshift caused
by gravitational potential perturbations is just the difference between the values of
Φ at the beginning and in the end. However, if the potential is changing while the
photon is traversing the well, this cancellation is not exact, and we get the integral
term to account for this effect.

The value of the potential perturbation at the observing site, Φ(t0,0) is the same
for photons coming from all directions. Thus it does not contribute to the observed
anisotropy. It just produces an overall shift in the observed average temperature.
(Recall the discussion of the two ways of defining the mean temperature at the
beginning of the chapter.) This is included in the observed value T0 = 2.725 K, and
there is no way for us to separate it from the unperturbed value. Thus we will ignore
the monopole. The observer motion vobs causes a dipole (ℓ = 1) pattern in the CMB
anisotropy, from which it is difficult to disentangle the cosmological dipole on the
last scattering sphere. Therefore the dipole is usually removed from the CMB map
before analysing it for cosmological purposes. Accordingly, we ignore this term also.
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This part of the CMB anisotropy is called the Sachs–Wolfe effect. The first part,
1
3Φ(tdec,xls), is called the ordinary Sachs–Wolfe effect, and the second part, 2

∫
Φ̇dt,

is called the integrated Sachs-Wolfe effect (ISW), since it involves integrating along
the line of sight. There are two contributions to the integrated Sachs–Wolfe effect,
the early Sachs–Wolfe effect and the late Sachs–Wolfe effect. The first is caused by
the effect of radiation at last scattering. In our approximation where we assume
that the universe is completely matter-dominated at t = tdec, this term is absent.
When dark energy becomes important at times close to today, Φ starts to evolve
again, which leads to the late ISW effect, which shows up as a rise in the smallest ℓ
of the angular power spectrum Cℓ. However, it is difficult to detect this effect due to
the large cosmic variance at small ℓ. The late ISW effect also leads to a correlation
between the CMB anisotropies and the galaxy distribution, which makes it easier to
detect its presence. The late ISW effect has been detected this way, from the cross-
correlation of the CMB and large scale structure. We shall now for a while ignore
the ISW, which for ℓ≪ ℓH is expected to be smaller than the ordinary Sachs–Wolfe
effect.

12.5.1 Angular power spectrum from the ordinary Sachs–Wolfe effect

We now calculate the contribution from the ordinary Sachs–Wolfe effect,
(
δT

T

)

SW

=
1

3
Φ(tdec,xls) , (12.51)

to the angular power spectrum Cℓ. This is the dominant effect for ℓ≪ ℓH .
Since Φ is evaluated at the last scattering sphere, we have from (12.23),

aℓm = 4πiℓ
∑

k

1

3
Φkjℓ(kx)Y

∗
ℓm(k̂) , (12.52)

In the matter-dominated epoch,

Φ = −
3

5
R , (12.53)

so that we have

aℓm = −
4π

5
iℓ
∑

k

Rkjℓ(kx)Y
∗
ℓm(k̂) . (12.54)

The coefficient aℓm is thus a linear combination of the independent random
variables Rk, i.e. it is of the form

∑

k

bkRk , (12.55)

For any such linear combination, the expectation value of its absolute value squared
is

〈∣∣∣∣∣
∑

k

bkRk

∣∣∣∣∣

2〉

=
∑

k

∑

k′

bkb
∗
k′ ⟨RkR∗

k′⟩

=

(
2π

L

)3 ∑

k

1

4πk3
PR(k) |bk|2 , (12.56)

12 COSMIC MICROWAVE BACKGROUND 208

This part of the CMB anisotropy is called the Sachs–Wolfe effect. The first part,
1
3Φ(tdec,xls), is called the ordinary Sachs–Wolfe effect, and the second part, 2

∫
Φ̇dt,

is called the integrated Sachs-Wolfe effect (ISW), since it involves integrating along
the line of sight. There are two contributions to the integrated Sachs–Wolfe effect,
the early Sachs–Wolfe effect and the late Sachs–Wolfe effect. The first is caused by
the effect of radiation at last scattering. In our approximation where we assume
that the universe is completely matter-dominated at t = tdec, this term is absent.
When dark energy becomes important at times close to today, Φ starts to evolve
again, which leads to the late ISW effect, which shows up as a rise in the smallest ℓ
of the angular power spectrum Cℓ. However, it is difficult to detect this effect due to
the large cosmic variance at small ℓ. The late ISW effect also leads to a correlation
between the CMB anisotropies and the galaxy distribution, which makes it easier to
detect its presence. The late ISW effect has been detected this way, from the cross-
correlation of the CMB and large scale structure. We shall now for a while ignore
the ISW, which for ℓ≪ ℓH is expected to be smaller than the ordinary Sachs–Wolfe
effect.

12.5.1 Angular power spectrum from the ordinary Sachs–Wolfe effect

We now calculate the contribution from the ordinary Sachs–Wolfe effect,
(
δT

T

)

SW

=
1

3
Φ(tdec,xls) , (12.51)

to the angular power spectrum Cℓ. This is the dominant effect for ℓ≪ ℓH .
Since Φ is evaluated at the last scattering sphere, we have from (12.23),

aℓm = 4πiℓ
∑

k

1

3
Φkjℓ(kx)Y

∗
ℓm(k̂) , (12.52)

In the matter-dominated epoch,

Φ = −
3

5
R , (12.53)

so that we have

aℓm = −
4π

5
iℓ
∑

k

Rkjℓ(kx)Y
∗
ℓm(k̂) . (12.54)

The coefficient aℓm is thus a linear combination of the independent random
variables Rk, i.e. it is of the form

∑

k

bkRk , (12.55)

For any such linear combination, the expectation value of its absolute value squared
is

〈∣∣∣∣∣
∑

k

bkRk

∣∣∣∣∣

2〉

=
∑

k

∑

k′

bkb
∗
k′ ⟨RkR∗

k′⟩

=

(
2π

L

)3 ∑

k

1

4πk3
PR(k) |bk|2 , (12.56)

Choose gauge and select initial conditions (adiabatic versus isocurvature)
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where the bar corresponds to the homogeneous (unperturbed) quantity.
The adiabatic mode is defined as a perturbation affecting all the cosmological species such that the relative ratios in the

number densities remain unperturbed, i.e., such that

δ(nX/nY ) = 0. (2)

It is associated with a curvature perturbation, via Einstein’s equations, since there is a global perturbation of the matter content.
This is why the adiabatic perturbation is also called curvature perturbation. In terms of the energy density contrasts, defined by

δX ≡ δρX

ρX
, (3)

the adiabatic perturbation is characterized by the relations

1
4
δγ = 1

4
δν = 1

3
δb = 1

3
δc. (4)

They follow directly from the prescription (2), each coefficient depending on the equation of state of the particuler species.
Since there are several cosmological species, it is also possible to perturb the matter components without perturbing the

geometry. This corresponds to isocurvature perturbations, characterized by variations in the particle number ratios but with
vanishing curvature perturbation. The variation in the relative particle number densities between two species can be quantified
by the so-called entropy perturbation

SA,B ≡ δnA

nA
− δnB

nB
. (5)

When the equation of state for a given species is such that w ≡ p/ρ = Const, then one can re-express the entropy perturbation
in terms of the density contrast, in the form

SA,B ≡ δA

1+ wA
− δB

1+ wB
. (6)

It is convenient to choose a species of reference, for instance the photons, and to define the entropy perturbations of the other
species relative to it:

Sb ≡ δb − 3
4
δγ , (7)

Sc ≡ δc − 3
4
δγ , (8)

Sν ≡ 3
4
δν − 3

4
δγ , (9)

thus define respectively the baryon isocurvature mode, the CDM isocurvature mode, and the neutrino isocurvature mode. In
terms of the entropy perturbations, the adiabatic mode is obviously characterized by Sb = Sc = Sν = 0.
In summary, we can decompose a general perturbation, described by four density contrasts, into one adiabatic mode and

three isocurvature modes. In fact, the problem is slightly more complicated because the evolution of cosmological perturbations
is governed by second order differential equations and a perturbed (perfect) fluid is described locally by its density contrast
and by its velocity field. The ‘primordial’ perturbations are constrained by the requirement that the perturbations do not diverge
when going backwards in time deep in the radiation era. With this prescription, there remains one arbitrary relative velocity
between the species, which gives an additional mode, usually named the neutrino isocurvature velocity perturbation.
At this stage, it is worth warning the non-expert reader about the somewhat loose terminology used in the literature. One

usually refers to an isocurvature mode with the meaning that this mode was ‘initially’ an isocurvature mode, i.e., deep in
the radiation era. But this ‘primordial’ isocurvature mode, when considered at later times, for instance at last scattering or
today, can have an adiabatic component, because the decomposition between adiabatic and isocurvature is not time-invariant.
A ‘primordial’ pure isocurvature perturbation can generate later an adiabatic contribution if the energy densities of the various
species evolve differently so that the balance that ensured an unpertubed total energy density is lost.
The CMB is a powerful way to study isocurvature perturbations because (primordial) adiabatic and isocurvature

perturbations produce very distinctive features on the CMB anisotropies. Whereas an adiabatic initial perturbation generates
a cosine oscillatory mode in the photon–baryon fluid, leading to an acoustic peak at ℓ ≃ 220 (for a flat universe), a pure
isocurvature initial perturbation generates a sine oscillatory mode resulting in a first peak at ℓ ≃ 330.
The unambiguous observation of the first peak at ℓ ≃ 220 has eliminated the possibility of a dominant isocurvature

perturbation. The recent observation by WMAP of the CMB polarization has also confirmed that the initial perturbation is
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thus define respectively the baryon isocurvature mode, the CDM isocurvature mode, and the neutrino isocurvature mode. In
terms of the entropy perturbations, the adiabatic mode is obviously characterized by Sb = Sc = Sν = 0.
In summary, we can decompose a general perturbation, described by four density contrasts, into one adiabatic mode and

three isocurvature modes. In fact, the problem is slightly more complicated because the evolution of cosmological perturbations
is governed by second order differential equations and a perturbed (perfect) fluid is described locally by its density contrast
and by its velocity field. The ‘primordial’ perturbations are constrained by the requirement that the perturbations do not diverge
when going backwards in time deep in the radiation era. With this prescription, there remains one arbitrary relative velocity
between the species, which gives an additional mode, usually named the neutrino isocurvature velocity perturbation.
At this stage, it is worth warning the non-expert reader about the somewhat loose terminology used in the literature. One

usually refers to an isocurvature mode with the meaning that this mode was ‘initially’ an isocurvature mode, i.e., deep in
the radiation era. But this ‘primordial’ isocurvature mode, when considered at later times, for instance at last scattering or
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A ‘primordial’ pure isocurvature perturbation can generate later an adiabatic contribution if the energy densities of the various
species evolve differently so that the balance that ensured an unpertubed total energy density is lost.
The CMB is a powerful way to study isocurvature perturbations because (primordial) adiabatic and isocurvature

perturbations produce very distinctive features on the CMB anisotropies. Whereas an adiabatic initial perturbation generates
a cosine oscillatory mode in the photon–baryon fluid, leading to an acoustic peak at ℓ ≃ 220 (for a flat universe), a pure
isocurvature initial perturbation generates a sine oscillatory mode resulting in a first peak at ℓ ≃ 330.
The unambiguous observation of the first peak at ℓ ≃ 220 has eliminated the possibility of a dominant isocurvature

perturbation. The recent observation by WMAP of the CMB polarization has also confirmed that the initial perturbation is
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thus define respectively the baryon isocurvature mode, the CDM isocurvature mode, and the neutrino isocurvature mode. In
terms of the entropy perturbations, the adiabatic mode is obviously characterized by Sb = Sc = Sν = 0.
In summary, we can decompose a general perturbation, described by four density contrasts, into one adiabatic mode and

three isocurvature modes. In fact, the problem is slightly more complicated because the evolution of cosmological perturbations
is governed by second order differential equations and a perturbed (perfect) fluid is described locally by its density contrast
and by its velocity field. The ‘primordial’ perturbations are constrained by the requirement that the perturbations do not diverge
when going backwards in time deep in the radiation era. With this prescription, there remains one arbitrary relative velocity
between the species, which gives an additional mode, usually named the neutrino isocurvature velocity perturbation.
At this stage, it is worth warning the non-expert reader about the somewhat loose terminology used in the literature. One

usually refers to an isocurvature mode with the meaning that this mode was ‘initially’ an isocurvature mode, i.e., deep in
the radiation era. But this ‘primordial’ isocurvature mode, when considered at later times, for instance at last scattering or
today, can have an adiabatic component, because the decomposition between adiabatic and isocurvature is not time-invariant.
A ‘primordial’ pure isocurvature perturbation can generate later an adiabatic contribution if the energy densities of the various
species evolve differently so that the balance that ensured an unpertubed total energy density is lost.
The CMB is a powerful way to study isocurvature perturbations because (primordial) adiabatic and isocurvature

perturbations produce very distinctive features on the CMB anisotropies. Whereas an adiabatic initial perturbation generates
a cosine oscillatory mode in the photon–baryon fluid, leading to an acoustic peak at ℓ ≃ 220 (for a flat universe), a pure
isocurvature initial perturbation generates a sine oscillatory mode resulting in a first peak at ℓ ≃ 330.
The unambiguous observation of the first peak at ℓ ≃ 220 has eliminated the possibility of a dominant isocurvature

perturbation. The recent observation by WMAP of the CMB polarization has also confirmed that the initial perturbation is
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This is why the adiabatic perturbation is also called curvature perturbation. In terms of the energy density contrasts, defined by

δX ≡ δρX

ρX
, (3)

the adiabatic perturbation is characterized by the relations

1
4
δγ = 1

4
δν = 1

3
δb = 1

3
δc. (4)

They follow directly from the prescription (2), each coefficient depending on the equation of state of the particuler species.
Since there are several cosmological species, it is also possible to perturb the matter components without perturbing the

geometry. This corresponds to isocurvature perturbations, characterized by variations in the particle number ratios but with
vanishing curvature perturbation. The variation in the relative particle number densities between two species can be quantified
by the so-called entropy perturbation

SA,B ≡ δnA

nA
− δnB

nB
. (5)

When the equation of state for a given species is such that w ≡ p/ρ = Const, then one can re-express the entropy perturbation
in terms of the density contrast, in the form

SA,B ≡ δA

1+ wA
− δB

1+ wB
. (6)

It is convenient to choose a species of reference, for instance the photons, and to define the entropy perturbations of the other
species relative to it:

Sb ≡ δb − 3
4
δγ , (7)

Sc ≡ δc − 3
4
δγ , (8)

Sν ≡ 3
4
δν − 3

4
δγ , (9)

thus define respectively the baryon isocurvature mode, the CDM isocurvature mode, and the neutrino isocurvature mode. In
terms of the entropy perturbations, the adiabatic mode is obviously characterized by Sb = Sc = Sν = 0.
In summary, we can decompose a general perturbation, described by four density contrasts, into one adiabatic mode and

three isocurvature modes. In fact, the problem is slightly more complicated because the evolution of cosmological perturbations
is governed by second order differential equations and a perturbed (perfect) fluid is described locally by its density contrast
and by its velocity field. The ‘primordial’ perturbations are constrained by the requirement that the perturbations do not diverge
when going backwards in time deep in the radiation era. With this prescription, there remains one arbitrary relative velocity
between the species, which gives an additional mode, usually named the neutrino isocurvature velocity perturbation.
At this stage, it is worth warning the non-expert reader about the somewhat loose terminology used in the literature. One

usually refers to an isocurvature mode with the meaning that this mode was ‘initially’ an isocurvature mode, i.e., deep in
the radiation era. But this ‘primordial’ isocurvature mode, when considered at later times, for instance at last scattering or
today, can have an adiabatic component, because the decomposition between adiabatic and isocurvature is not time-invariant.
A ‘primordial’ pure isocurvature perturbation can generate later an adiabatic contribution if the energy densities of the various
species evolve differently so that the balance that ensured an unpertubed total energy density is lost.
The CMB is a powerful way to study isocurvature perturbations because (primordial) adiabatic and isocurvature

perturbations produce very distinctive features on the CMB anisotropies. Whereas an adiabatic initial perturbation generates
a cosine oscillatory mode in the photon–baryon fluid, leading to an acoustic peak at ℓ ≃ 220 (for a flat universe), a pure
isocurvature initial perturbation generates a sine oscillatory mode resulting in a first peak at ℓ ≃ 330.
The unambiguous observation of the first peak at ℓ ≃ 220 has eliminated the possibility of a dominant isocurvature

perturbation. The recent observation by WMAP of the CMB polarization has also confirmed that the initial perturbation is


