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Lecture |II



Linear perturbation theory



first order perturbation theory,

all quantities are written as a sum of the background value, corresponding to the homogeneous and isotropic model, and a perturbation, which
is the deviation from the background value.

The perturbed metric

. | . ds? — Gagdz® da? Jap is the background metric FLRW
ine elemen S
= (Jap + 0gap)dzda” Japda®da® = —dt* + a*(t)8;;da’da?
0gap is a perturbation, which we take to be small
consider spatially flat backgrounds

assume that we have chosen an appropriate coordinate system such that the metric perturbations are small, so we can neglect all terms which are
second order or higher in the metric perturbations.

most general linear perturbation around the gng d32 —

Ja 5d:1:adxﬁ

' = Gapdr®da’ + §gapda®da’
density &, ¥, B and F are scalars Jap i 9ap |
perturbation o - , = —(1 + 2@)dt + 2a(t) (B,i _ Sz)dilfzdt
rotation S;, F; are vectors fi=0f)oc ; -
+a(t)”[(1 = 20)dij + 2B + Fij + Fj; + hyj| dz'da?

GWs hi; is a tensor

vector perturbations are transverse.  §¥ g, ;= SYU F; ;=0

tensor perturbation is transverse and traceless, 6 h;; = 0,h;;; = 0




Since we drop all non-linear terms, the scalar, vector and tensor perturbations evolve independently.

The vector perturbations decay with the expansion, and are expected to be negligible in the linear regime, so we put them to zero, S; = F; = 0.

For the metric perturbation, we have 10 functions dg,3(t, ). However, four of them are not physical degrees of freedom,

they just correspondi to the freedom of choosing the four coordinates. So there are 6 physical degrees of freedom.

There are thus different coordinate systems (also called different gauges) which describe the same physics.

longitudinal gauge and also as the conformal Newtonian gauge.

E=B=0 doing so fixes the coordinate system completely

ds? = gagdxadxﬁ two scalar degrees of freedom
= ga[jdxadﬂfﬁ + 5ga5dxo‘dmﬁ one transverse traceless symmetric tensor,
= —(1+ 2@)dt2 4+ a(t)2 [(1— 2‘11)5ij 4 hij] dazids? which has two independent degrees of freedom

metric perturbations @ (¢, &) and W(t,x)  Bardeen potentials

The evolution of the metric perturbations is determined by the Einstein equa-
tion, which couples the metric to the matter content as described by the energy-
momentum tensor.



The perturbed equations of motion

Einstein equation Gaop = 8TGNTp
Top = (p+ p)uqug + Pgas

p(t,x) = p(t) +op(t,x)

four-velocity is normalised  gagu®u’ = —1 _
Y @ p(t,x) = p(t)+ op(t,x)

) du’ = —@® in linear theory w(t, @) = 590 4 Su(t, z)
for the background 3H?> = 8rGnp ) . )
3(H + H?) = —4xGx(5+ 3p) d/a=H+H
AnGNOp = aizv%y —3H(V + H®)
For the perturbations G (p+ P)ou; = —(U + H®),
V2 = 5100, ATGNOpdi; = |(2H +3H*)® + HO + U +3HT + %%VQD] 8ij D;j =0 for all i # j.
11 D = A(t, B(t, C(t, 2).
D=d-1. ~5 5D | (t,x) + B(t,y) + C(t, 2)

N . 1, no preferred coordinate axes,D = D(t)
0 = hij+3Hhi — —V2hy; | , .
it 7 a? J o=y - D(t) = 0 without loss of generality.



notation:

dp _
0= — w = p/p
p ,
density contrast background equation of state

.. . 1 .
0 = O+ H(4+30°)® — v’ 5 V?® + 2H + (34 30°)H?|®
a

2 1 1.
5 = = V20 —2—® — 28
3 (aH)? H
. 1 .
out = ——0;(®+ HOD)
a’H

. . 1
0 = hy+3Hh; — ﬁv%j :

The procedure for solving the perturbed equations is the following.
1) Give the matter model, i.e. give w and v?.
2) Solve for the evolution of the background and obtain a(t).

3) Solve the perturbation equations.

v = op/dp

the metric perturbation

- ® is non-zero only if there is matter

So ¢ is generated directly by matter sources,

J in particular by the density perturbations.

In contrast, the tensor perturbation h;;
can be non-zero even if the space is empty:
they correspond to gravity waves



Since the equations are linear, they are easily solved in terms of a Fourier transformation

B(t,z) = W / Bhdy(1)ek

and dp, u}c and hy;; are defined in the same way.

the variable k the comoving momentum or comoving wavenumber
the physical momentum k/a

0 = (.I.)k + H(4 + 31)2)(i)k + U2/€—;q)k + [ZH —+ (3 + 3@2)H2](I)k give the time evolution of the Fourier components, but
9 12 1 a . the spatial dependence (i.e. dependence on k)
k= |kl O, = —gmék — 2E¢)k — 20, is left unconstrained

9 The spatial dependence is fixed by the initial conditions

0 = h]m'j + 3Hhk¢j + ?hkij ,

we drop the equation for the velocity



Inflationary perturbations

p(t,x) = (t) + op(t, @)

equation of motion for the scalar field Lau(. /=g9g" D) — V'(p) =0
vV—9g

. . 1
Spatially flat FLRW metric @Y+ 3H(p — EV%O + V/(QO) =0 in Minkowski space reduces to 90 . V2(,0 + V/(QD) —0

For perturbed FLRW metric in . . 1 B B . S\ .
longitudinal gauge 0p +3Hop + (—;W + V"(g@)) Sp = =20V (p) + (<I> + 3\11) %

Making a Fourier transformation 0Pk + 3HOOp +

m?(g) = V" ()

<§>2 + mz(gp)] S = =20,V (p) + (q)k + 3\1%) @

equation of motion of the inflaton perturbations during slow-roll inflation

5@k + 3HSQk +

(2)2 + m2(90)] Jpp =0



5@k + 3HSQk +

(§>2 + mz(w)] Spp, = 0

During inflation, H and m? change slowly = ——» treat them as constants
eneral solution dpg(t) = a~3/2 ApJ i + By J, i
& k " \aH "\ aH
J, is the Bessel function of order v o _m n
V=1\l-— —
v 4 H?
time dependence of the scale factor for constant H a(t) oc eHt L = 3
2
m2 "
If the slow-roll approximation is valid, the inflaton has negligible mass, m? < H?, 7= 3M1%17 =K1
‘ solution S0y, (t) = Apwy (t) + Bkw;; (t) Well before horizon exit, k > aH, the argument of the exponent is large,
ok ik solution oscillates rapidly.
wi(t) = (Z T ﬁ) eXp (ﬁ) After horizon exit, k < aH, the solution stops oscillating

and approaches the constant value i(Ag — Bg)



comoving curvature perturbation R in the longitudinal gauge

we should calculate the inflaton field perturbation some time after horizon exit, when it has settled to a constant value,

calculate R with g, . . .
R =—-H ? gauge-independent and conserved outside the horizon
2
inflation generates primordial perturbations Ry with the power spectrum Pr(k) = ( E E )
© 2T ) y—k
slow-roll inflation
1% , ,
H? = ETvES and 3Hp=-V 1
Pr(k) = 1 1 v 1 1V
R T o2 M8 V2 T 24n2 MA e
observations of CMB and large-scale structure, pR(k;)l/? ~5x107° on cosmological scales.

1/4
constraint on inflation <V> / ~ 2414 /7\/5 x 105 Mp; ~ 0.028 Mp, = 6.8 x 1016 Gey | UpPper limit on the energy scale of inflatior v < 0.028 Mpy
5

H < 10 GeV
H? = V/(3M3
e L 1 /( Pl) - H-!'> 1073



slow-roll inflation —,  expect Pr(k) to be a slowly varying function of k

describe this small variation with the spectral index n of the primordial spectrum |n(k) —1=

If the spectral index is independent of k, we say that the spectrum is scale-free.

n—1
——— : the primordial spectrum is a power law Pr(k) = A2 ( k )
kp

the“pivot scale” k), is some chosen reference scale

A is the amplitude at this pivot scale.

If Pr(k) = const. the spectrum is scale- invariant
n =1 Harrison—Zel dovich spectrun

If n # 1, the spectrum is called tilted. red if n < 1 (more power on large scales)

blue if n > 1 (more power on small scales).

dn/dk # 0 running spectral index



Pr(k) is evaluated when k = aH dink  dln(aH)
dt — dt

a H
— 2L —(1-e)H
ot (1—-¢)

d 1 1d_ 1 iﬁd:_MI%lV’d% A2y d
dlnk  1—ecHdt 1—eHdy 1—eVdp PLy dy

scale dependence of the slow-roll parameters

de V' d [ M2 (V2 VY VNV
= Mz —— |2 = = M3 — (=) —=| =4¢2-2
dink PIV 4o | 2 (v) PLI\ VY v) Vv =
dn
=...=2en—
dInk n—4
spectral index ho1_ L dPr e d (VN _1dV 1 .de
Prdlnk Vdlnk \ ¢ Vdlnk edlnk the spectrum is predicted to be close to
B 1 and |77| <‘<‘1 — _M? K/ ) id_V 4e 42 = —6e+2n ~ scale invariant.




Example Vip) = §m290

M2

¥

M 2
n =1—-6e+2n = 1—8(i>
¥

1 L 74 1 %) 1

N<90>_—/ —dso——/—dgo— (¢* = Pena?) N ~50...60
Mgy Joua VIO My J 20T AMg,

5(80end) = 2Mf2>1/90end2 =1 = Pend = \/§MP1
2 2 2 2 2 y ) Mer)®_ 1
2
n = 1——=0.96
9 N
m~ NlOM GeV ~ 2 x 10" GeV ~ 8 x 1075Mp,
for N = 50.

1 1/4
energy scale of inflation Veln/f = <§m2<,0end2> = MiMPl ~ 3 x 1073 Mp; ~ 7 x 10" GeV
Pl



Cosmic Microwave Background
Temperature Anisotropies



The observed temperature anisotropy is due to two contributions, an intrinsic

oT oT oT
temperature variation at the surface of last scattering and a variation in the redshift il =\ 77 +\

. .. T obs T intr T jour
the photons have suffered during their journey to us,

(0T'/T)intr and (8T/T)jour depending on the gauge,

— but their sum (07'/1)obs 1s gauge-independent,
angular average of the temperature field T =Ty = - f dQT mean
0T =T — T() anisotropy
Ty = 2.725 K
The CMB temperature anisotropy is a function on a sphere. In analogy with Fourier
expansion in three-dimensional flat space, we separate out the contributions of dif- 5_T(0 ) = Z agmYem (0, B)
. - m m
ferent angular scales by doing a multipole expansion, Ty "’ ’

[=1,2,...0coand m = —1[,...,[,
functions Yy, (6, ¢) are the spherical harmonics

orthonormal functions on the sphere
unctions on the sp / 02 Y (0, 6) Vi (6. 6) = 500 6rums

. 2 1
closure relation Z|ng(9 ))? = £+

2¢ 4+ 1 values of m for each /¢

im = [ Yin(6,9)

multipole coefficients azy,



The theoretical angular power spectrum

Primordial fluctuations through standard inflationary mechanism: Gaussian spectrum
Qym  Gaussian random variables <a£m> =0

they represent deviation from the average temperature

1 The ay, are independent random variables, so

the (theoretical) angular power spec trum Cy = <‘a€m|2> — %—H Z<|a€m|2>

. (agma}/m/> = 5ggf5mm/Cg
independent of m m

C, contains all the statistical information about the CMB temperature anisotropy. This is all we can predict from theory.

the angular power spectrum C is related to the contribution of multipole ¢ to the temperature variance,

2
(m) = Z aﬁmnm(97 ¢) Z aZ’m’YTm’(97 (b)

Im O'm/!
Z |)/ém(9,¢)|2 — 264"7’; 1 = % Z] nm(97 ¢)Y7m/(9, ¢) <agmazlm,>

2+ 1
(@t @) = 565t C DRSS C,



Observed angular power spectrum

Theory predicts expectation values (|ay,,|?) from the random process responsible for
the CMB anisotropy, but we can observe only one realisation of this random process, Z a |2
Qgm

zz—

the set {ag,} of our CMB sky. 20+ 1

observed angular power spectrum

the average of these observed values.

2
The variance of the observed temperature anisotropy is the average of (%)

over the celestial sphere,

1 5T(0,9)]> 1
E l T ] dQ} = 47‘(‘ df) Z agm)/gm E/Z:/ Clglm/}/g/m/ (9 )
= Z D Gy / Yom (0, 0) Y,/ (8, )d2
el / -~~~ >l
Oppr 0!

1
5 5 3
YA m
(2£+1)6g

20+1 4
n ; 47 Ce.




Cosmic variance

The expectation value of the observed spectrum ég is equal to Cy, the theoretical spectrum
(Co)=Cr = (Cr—Cp=0

but its actual, realised, value is not, although we expect it to be close. The expected squared difference between

Cy and (Y is called the cosmic variance.

2

(Co — Cp)?) = ST

57 1C0

We see that the expected relative difference between ég and C} is smaller for
higher ¢. This is because we have a larger (size 2¢ + 1) statistical sample of agy,
available for calculating the 6g.

The cosmic variance limits the accuracy of comparison of CMB observations with
theory, especially for large scales (low /).



Relation between angular scales and multipole moments

T 180°
eres - 5 =
14 14

the angular resolution required of the microwave detector for it to be able to
resolve the angular power spectrum up to this /.
For example, COBE had an angular resolution of 7° allowing a measurement up

to £ = 180/7 = 26, WMAP had resolution 0.23° reaching to ¢ = 180/0.23 = 783,
and the European Planck satellite has resolution 5, which allows to measure Cy up

to £ = 2160
Angular scale
90° 2° 0.5° 0.2°
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Ol 4 v vy il . . .
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CMB anisotropy from perturbation theory

(

ol

T

ST\ _(oTN  (oT
T obs a T intr T jour

0 R o . . 1. . .
) — _ / dd + VUobs * T + / d¢ ((I) + U — _hijnzn]) Effect of GWs, usually
jour dec dec 2 not considered
o . . 1. .
= (I)<tdec> wls) T (I)(t()a O) T Uobs n + / dt ((I) + Vv — §hijﬁlﬁ]>
dec

v D(Ldec, T1s) — ‘+2/ dtd —
dec

0]
n 77;7 / dthz j
Same for photons coming from all dec

directions, so it does not contribute to  poppler effect from observer’s motion, it causes a dipole
observed anisotropy pattern in the CMB, usually removed from CMB maps

where the integral is from (tgec, 1s) to (fo,0) along the path of the photon (a null
geodesic) and n is a unit vector pointing in the direction the observer is lookmg
at. The observer’s location has been chosen as the origin 0. The term wvgg -

is the Danbler effect from the observer’s motion (which is assumed nonrelatlwstlc,
|vobs| < 1), where v, is the observer’s velocity.



2 the local temperature perturbation is directly related to the relative perturbation in

15 the photon energy density,

0T 15 . P
E— = — —v-n.
T intr 4 !

5T 1 7
(—) = —(57 —v-n + (I)(tdeca wls) + 2/ Pdt
T obs 4 dec

ordinary Sachs—Wolfe effect
integrated Sachs-Wolfe effect (ISW)

Both the density perturbation 4, and the fluid velocity v are gauge dependent

Choose gauge and select initial conditions (adiabatic versus isocurvature)



The adiabatic mode i1s defined as a perturbation affecting all the cosmological species such that the relative ratios in the
number densities remain unperturbed, i.e., such that
6(ny/ny)=0.

It is associated with a curvature perturbation, via Einstein’s equations, since there is a global perturbation of the matter content.
This is why the adiabatic perturbation is also called curvature perturbation. In terms of the energy density contrasts, defined by

Sy = 8'O_X the adiabatic perturbation is characterized by the relations 1 1 1 1

PX 28)/ == 151) == g(Sb = g(sc

Since there are several cosmological species, it is also possible to perturb the matter components without perturbing the
geometry. This corresponds to isocurvature perturbations, characterized by variations in the particle number ratios but with
vanishing curvature perturbation. The variation in the relative particle number densities between two species can be quantified
by the so-called entropy perturbation Sna dnp

When the equation of state for a given species is such that w = p/p = Const, then one can re-express the entropy perturbation

in terms of the density contrast, in the form 54 Sp
Sy p= _
AB=T1was  1+uwp
choose a species of reference, for instance the photons, Sp=46p — 15)/, > baryon isocurvature mode
Se =0c 467’ CDM isocurvature mode Sy = Z(Sv — 15;/ neutrino isocurvature mode

In terms of the entropy perturbations, the adiabatic mode is Sp=8-=8,=0



