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Lecture II



Phase transitions, Spontaneously Broken Symmetries,  
Topological Defects 
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The concept of Spontaneous Symmetry Breaking (SSB) has its 
origin in condensed matter physics 

 

In field theory (FT), the role of the order parameter is played by 
scalar fields, the Higgs fields 

 

The symmetry is said to be spontaneously broken if the 
ground state is characterised by a nonzero expectation 
value of the Higgs field and does not exhibit the full 
symmetry of the Hamiltonian  
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The Goldstone model 

a complex scalar field with classical Lagrangian density: 

and potential: 

positive constants 

Mexican hat 

The Goldstone model is invariant under the U(1) group of global 
phase transformations 

constant (independent 
of spacetime) 

The minima of the potential lie on a            
circle with fixed radius 

The ground state is characterised by: 6=0

arbitrary phase 
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The phase transformation leads to the change 

            the vacuum state         is not invariant under the phase 
transformation; spontaneously broken symmetry  

The state of unbroken symmetry with                         is a local 
maximum of the Mexican hat potential 

All broken symmetry vacua, each with a different value of the 
phase      are equivalent 

137 

Note: At the classical level, the vacuum can be obtained by demanding the 
energy (the Hamiltonian) to be a minimum. 

The minimal energy is reached when the field is invariant w.r.t. space-time 
transformations                

Furthermore, the V should minimised  
þç = rþ = 0

þö(þöþ à ñ2) = 0
þ = 0

local maximum 
jþj = ñ

absolute minimum 
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If we select the vacuum with             , the complex scalar field          
can be written in terms of two real scalar fields                  with                 
zero vacuum expectation values as: 

Lagrangian density: 

interaction term; it includes 
cubic and higher order terms in 
the real scalar fields 

massive particle with 
mass 

massless scalar 
particle; the 
Goldstone boson 

The appearance of Goldstone bosons is a generic feature of 
models with spontaneously broken global symmetries 138 
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Note: 

We considered a purely classical potential to determine expectation 
value of Higgs field 

However, the Higgs field is a quantum field which interacts with 
itself, as well as with other quantum fields 

           the classical potential should be modified by radiative 
corrections, leading to an effective potential; it can be calculated 
perturbatively as an expansion in powers of coupling constants: 

 

 

 

There are models for which radiative corrections can be neglected, 
while there are others for which they play an important role 

classical potential contribution of Feyman 
diagrams with n closed loops 
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The Abelian-Higgs model 

Simplest gauge theory with spontaneously broken symmetry 

Lagrangian density: 

complex scalar field with 
mexican hat potential  

field strength tensor 

covariant 
derivative 

gauge coupling 
constant gauge field 
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local gauge transformations 

real single-valued function  

The minima of the Mexican hat potential lie on a circle of 
fixed radius                    , so the symmetry is spontaneously 
broken and the complex scalar field      acquires a nonzero 
vacuum expectation value  
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chose to represent          as:   

Lagrangian density: 

The particle spectrum contains a scalar particle (Higgs boson) 
with mass                        and a vector field (gauge boson) with 
mass 

Breaking of a gauge symmetry does not imply a massless 
Goldstone boson  
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� in analogy to condensed matter systems, a SSB at low 
temperatures can be restored at higher temperatures 

� in field theory, the expectation value of Higgs field can be 
considered as a Bose condensate of Higgs particles 

� if temperature T is nonzero , consider a thermal distribution of 
particles/antiparticles, in addition to the condensate 

� the equilibrium value of Higgs field is obtained by minimising the 
free energy  F = E – T S 

� only at high T the free energy is effectively temperature-
dependent; at low T the free energy is minimised by the ordered 
state of the minimum energy  
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Phase Transitions 

� if the Higgs field becomes smaller, the particle masses 
decrease, the available phase space  becomes larger, and the 
entropy grows 

 

                  there is a tendency for the Higgs field to decrease as 
a function of temperature and to vanish completely above some 
critical temperature Tc

If      is the characteristic energy scale of symmetry breaking and 
the couplings of the Higgs are not too small        on dimensional 
grounds:  

Tc ø ñ

ñ
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Hot Big Bang model: 

Universe starts at a very high T, so initial equilibrium value of 
Higgs field is at  

 

As the universe expands and cools down, it undergoes a phase 
transition at         , when symmetry is spontaneously broken 

 

A GUT model with a sequence of symmetry breakings 

 

predicts a series of phase transitions in the early universe with 
critical temperatures related to corresponding symmetry 
breaking scales  

Tc
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To describe high-T symmetry restoration, we need the free 
energy as a function of Higgs field and temperature 

free energy per unit volume effective potential 
To lowest order in coupling constants, thermal particles can 
be considered to be non-interacting, so: 

zero-T effective potential summation over particle spin states 

Free energy 
contribution of 
different spin states 

bosons 

fermions 
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� for                  , the free energy       is exponentially small and 
can be neglected 

� for bosons at high temperatures              : 

 

 

while for fermions 

 

� often, symmetry restoration occurs at a T much higher than 
all relevant mass thresholds, then   

number of bosonic and 
fermionic spin states 
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example:  Goldstone model (2nd order pt) 

High temperature effective potential: 

+ 

Effective mass squared of field      
in symmetric state 

This effective mass is equal to zero 
at the critical temperature: 

calculated using perturbation theory and the leading 
contribution comes from one-loop Feymnam diagrams 

for a scalar theory, the main effect is a T-dependent 
quadratic contribution  
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T > Tc� for                   then 

 

 

� for                  then             

   the symmetric state becomes unstable and the Higgs field 
develops a non-zero expectation value: 

m2(T) > 0

minimum of          at               , so symmetry restoration Veff þ = 0

T < Tc m2(T) < 0

The defining feature of 2nd order PT is that the order parameter           
grows continuously from zero as the T is decreasing below  Tc

jþj
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� when the universe cools through critical temperature, the field 
develops an nonzero expectation value 

� but the phase       of      , is not determined only by local physics; 
its choice depends on random fluctuations, and takes different 
values in different regions in space 

� since the free energy is minimised by a homogeneous  field     , 
the spatial variations in     will gradually die out 

� thermal fluctuations have a Gaussian distribution, so they can be 
characterised by a 2-point correlation function, which typically 
decays exponentially with a decay rate characterised by the 
correlation length  

� above          the values of      are uncorrelated    

þ

þ

ò

ò

ò

ø(t)

ø(t)
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The rate at which the correlation length grows depends on 
details of the relaxation process which are involved, but         
 should satisfy the causality bound ø(t)

causal horizon: the distance travelled by light 
during the lifetime of the universe 

for a power law expansion: 
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2.2. Topological Classification of Defects 7

arises as a possible way to unify all the four fundamental forces of nature in a
single one (this unification is often called as Theory of Everything) [Kib97].

As we have mentioned before, the ideas of the GUT are generally speak-
ing based on the notion of SSB phase transitions: a system represented by a
high symmetric group G is spontaneously broken to a subgroup H with less
symmetry,

G æ H æ · · ·SU(3)◊SU(2)◊U(1) æ SU(3)◊U(1)em.

That happens always the system cools down to a critical temperature T =
Tc defined by symmetry breaking scales [Vil85]. Thus, the symmetries of the
system are no longer determined by the group G, but by the smaller group H
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also because the scalar field is not topologically constrained to the vacuum man-
ifold [VS94; Kib97]. Texture-like objects also appear in superfluid 3He, some
LCs phases and quantum chromodynamics. They could be three, two and one
dimensional objects, and also point-like defects (the Skyrmions in three dimen-
sions [Sky61]) [Chu+91; VS94].

Although textures can exist as stable objects, they may also be unstable and
they can collapse. The collapse of textures can lead to strong gravitational fields
which are very di�erent from those with collapse of ordinary matter [VS94]. The
solution for the Einstein equations from a spherically symmetric collapse shows
that the spacetime geometry depends on a deficit angle which is time and space
dependent, see Nötzold [Nöt91] for example. Besides, if massive objects have no
angular momentum with respect to the texture origin, there are no gravitational
force acting on them.

Interestingly, textures could survive to the inflation period because of their
massless forming feature. Then, they are expected to be observed at present.
Indeed, Cruz et al [Cru+07] have detected features from the CMB consistent
with existence of cosmic textures. However, five years later a work by Feeney
et al [Fee+12] which considers a more extensive data showed no evidence of
textures.

In the Table 2.1, we have summarized the di�erent types of possible cosmic
topological defects.

Table 2.1: Summary of defects according topology and dimension.

Topological defect Dimension Classification Non trivial mappings in M

Domain walls 2 fi0(M) Disconnected

Cosmic strings 1 fi1(M) Non-contractible loops

Monopoles 0 fi2(M) Non-contractible S2 spheres

Textures - fi3(M) Non-contractible S3 spheres

In the next section we show how cosmic strings can be formed in the Abelian
field theory based on the U(1) group, which contains string-like solutions.

2.3 Cosmic Strings
The theoretical justifications are more favorable for the existence of cosmic
strings “nowadays”, since there exist some models where they have been formed
during late stages of the inflation period. Because of that and their incredible
cosmological consequences, cosmic strings have dominated the subject (cosmic
topological defects) in the literature during the past years [Kib97]. To realize
the importance of cosmic strings, it is enough to remind that they have been
considered as seeds for formation of galaxies [Zel80; Vil85], for quite some time
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mass of matter within the present horizon by many orders of magnitude. 

Such a domain wall would lead to unacceptably large CMB fluctuations. 

Therefore, domain walls are cosmologically admissible only if the coupling 
constant        and the symmetry breaking scale        are unjustifiably small. 
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wavelength of the Higgs                and gauge boson 
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Going around any closed path      in physical space, the phase     
of the Higgs field       develops a nontrivial winding,    

This closed path can be shrunk continuously to a point, only if 
the field       is lifted to the top of its potential where it takes  the 
value                                                    

                                                                                                               
Within a closed path for which the total                                
change of the Higgs field      is        ,a                                                 
string is trapped                                                                                                       
A string must be either a closed loop or an infinitely long                 
(no ends) string; otherwise one could deform the closed path      
and avoid to cross a string    
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The Goldstone model is an example of a second-order phase 
transition leading to the formation of global strings, vortices  



Lorentz gauge: 

The Higgs field has the same form as in  the case of a 
global string at large distances from the string core: 

integer denoting the 
string winding number 

The gauge field asymptotically approaches: 

Far from the string core:  
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   far from string core: energy density vanishes exponentially, 
while the total energy per unit length is finite  

String linear mass density for 
a local (gauge) cosmic string: 

Global U(1) string: there is no gauge field to compensate  variation 
of phase at large distances for string core, so the linear mass 
density diverges at long distances from string   
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There are long-range interactions between global u(1) 
string segments, with a force 

R could be the curvature radius of the string, or the distance 
to the nearest string segment in the case of a string network 
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local/global defects 

spontaneous broken Local (gauge)/global symmetry may lead 
to local/global defects 

textures are only relevant for theories with global symmetry 
(all energy in spatial gradients, so for a local theory the gauge fields can re-
orient themselves such as to cancel energy)  

local/global strings, local/global monopoles, global textures 

global defects can decay through long-range interactions, so 
they do not contradict observations 

Local defects may be undesirable for cosmology 

local defects have a well defined core outside of which the field 
contains no energy density in spite of nonvanishing gradients 

Global defects have long range density fields and forces 

169 



cosmic string dynamics 

170 

� the world history of the string can be exprssed by a 2-
dim surface in 4-dim space-time: the string world-sheet 

the world-sheet coordinates           are arbitrary parameters: 
timelike and                spacelike 

� the string eqs. of motion, in the limit of zero thickness 
string are derived from the Goto-Nambu (GN) effective 
action which, up to an overall factor, corresponds to the 
surface area swept out by the sring in space-time 

2-dim world-
sheet metric  

171 

� the world history of the string can be exprssed by a 2-
dim surface in 4-dim space-time: the string world-sheet 

the world-sheet coordinates           are arbitrary parameters: 
timelike and                spacelike 

� the string eqs. of motion, in the limit of zero thickness 
string are derived from the Goto-Nambu (GN) effective 
action which, up to an overall factor, corresponds to the 
surface area swept out by the sring in space-time 

2-dim world-
sheet metric  

171 

� the world history of the string can be exprssed by a 2-
dim surface in 4-dim space-time: the string world-sheet 

the world-sheet coordinates           are arbitrary parameters: 
timelike and                spacelike 

� the string eqs. of motion, in the limit of zero thickness 
string are derived from the Goto-Nambu (GN) effective 
action which, up to an overall factor, corresponds to the 
surface area swept out by the sring in space-time 

2-dim world-
sheet metric  

171 

� the world history of the string can be exprssed by a 2-
dim surface in 4-dim space-time: the string world-sheet 

the world-sheet coordinates           are arbitrary parameters: 
timelike and                spacelike 

� the string eqs. of motion, in the limit of zero thickness 
string are derived from the Goto-Nambu (GN) effective 
action which, up to an overall factor, corresponds to the 
surface area swept out by the sring in space-time 

2-dim world-
sheet metric  

171 

� the world history of the string can be exprssed by a 2-
dim surface in 4-dim space-time: the string world-sheet 

the world-sheet coordinates           are arbitrary parameters: 
timelike and                spacelike 

� the string eqs. of motion, in the limit of zero thickness 
string are derived from the Goto-Nambu (GN) effective 
action which, up to an overall factor, corresponds to the 
surface area swept out by the sring in space-time 

2-dim world-
sheet metric  

171 

vary GN action w.r.t.               & use  

string equations of motion: 

4-dim Christoffel symbol 

covariant 
laplacian 
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cosmic strings in flat space-time 

 string e.o.m. in flat space-time:  

impose conformal gauge:  

overdot are derivatives wrt      and prime are derivatives wrt  

string e.o.m is a 2-dim 
wave equation: 

to fix entirely the gauge, also impose: 

which allows us to write the string trajectory as the 3-dim 
vector                      

the space-like parameter along string 173 

cosmic strings in flat space-time 

 string e.o.m. in flat space-time:  

impose conformal gauge:  

overdot are derivatives wrt      and prime are derivatives wrt  

string e.o.m is a 2-dim 
wave equation: 

to fix entirely the gauge, also impose: 

which allows us to write the string trajectory as the 3-dim 
vector                      

the space-like parameter along string 173 

cosmic strings in flat space-time 

 string e.o.m. in flat space-time:  

impose conformal gauge:  

overdot are derivatives wrt      and prime are derivatives wrt  

string e.o.m is a 2-dim 
wave equation: 

to fix entirely the gauge, also impose: 

which allows us to write the string trajectory as the 3-dim 
vector                      

the space-like parameter along string 173 

cosmic strings in flat space-time 

 string e.o.m. in flat space-time:  

impose conformal gauge:  

overdot are derivatives wrt      and prime are derivatives wrt  

string e.o.m is a 2-dim 
wave equation: 

to fix entirely the gauge, also impose: 

which allows us to write the string trajectory as the 3-dim 
vector                      

the space-like parameter along string 173 

cosmic strings in flat space-time 

 string e.o.m. in flat space-time:  

impose conformal gauge:  

overdot are derivatives wrt      and prime are derivatives wrt  

string e.o.m is a 2-dim 
wave equation: 

to fix entirely the gauge, also impose: 

which allows us to write the string trajectory as the 3-dim 
vector                      

the space-like parameter along string 173 

cosmic strings in flat space-time 

 string e.o.m. in flat space-time:  

impose conformal gauge:  

overdot are derivatives wrt      and prime are derivatives wrt  

string e.o.m is a 2-dim 
wave equation: 

to fix entirely the gauge, also impose: 

which allows us to write the string trajectory as the 3-dim 
vector                      

the space-like parameter along string 173 

cosmic strings in flat space-time 

 string e.o.m. in flat space-time:  

impose conformal gauge:  

overdot are derivatives wrt      and prime are derivatives wrt  

string e.o.m is a 2-dim 
wave equation: 

to fix entirely the gauge, also impose: 

which allows us to write the string trajectory as the 3-dim 
vector                      

the space-like parameter along string 173 

cosmic strings in flat space-time 

 string e.o.m. in flat space-time:  

impose conformal gauge:  

overdot are derivatives wrt      and prime are derivatives wrt  

string e.o.m is a 2-dim 
wave equation: 

to fix entirely the gauge, also impose: 

which allows us to write the string trajectory as the 3-dim 
vector                      

the space-like parameter along string 173 

cosmic strings in flat space-time 

 string e.o.m. in flat space-time:  

impose conformal gauge:  

overdot are derivatives wrt      and prime are derivatives wrt  

string e.o.m is a 2-dim 
wave equation: 

to fix entirely the gauge, also impose: 

which allows us to write the string trajectory as the 3-dim 
vector                      

the space-like parameter along string 173 

cosmic strings in flat space-time 

 string e.o.m. in flat space-time:  

impose conformal gauge:  

overdot are derivatives wrt      and prime are derivatives wrt  

string e.o.m is a 2-dim 
wave equation: 

to fix entirely the gauge, also impose: 

which allows us to write the string trajectory as the 3-dim 
vector                      

the space-like parameter along string 173 

cosmic strings in flat space-time 

 string e.o.m. in flat space-time:  

impose conformal gauge:  

overdot are derivatives wrt      and prime are derivatives wrt  

string e.o.m is a 2-dim 
wave equation: 

to fix entirely the gauge, also impose: 

which allows us to write the string trajectory as the 3-dim 
vector                      

the space-like parameter along string 173 

constraint equations and string equations of motion: 

� string moves perpendicular to itself with velocity 

�       is proportional to the string energy 

� string acceleration in the string rest frame is inversely 
proportional to the local string curvature radius  

a curved string segment tends to straighten itself, 
resulting to string oscillations              174 
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general solution to string e.o.m. in flat space-time: 

continuous arbitrary functions which satisfy: 

so,        is the length parameter along the 3-dim curves   
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an interesting property of loop solutions is that particular points 
along the string can reach the velocity of light during each period 

  

the vectors              and                 describe closed curves  on a 
units sphere as       runs from 0  to L  

a0(û)

xç 2(û; t) = 4
1[a0(ûà t)àb0(û+ t)]2

à b0(û)
û

these functions should satisfy 

 

but otherwise are arbitrary 

R
0
La0dû =

R
0
Lb0dû = 0

if the two curves intersect then: xç 2(û; t) = 1

smooth loops will in general have such luminal points: cusps 

cusps 
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string inter-commutations   
GN action describes to a good approximation cosmic 
string segments which are separated, but it leaves 
unanswered what happens when strings cross 

reconnection 
no interaction 

entaglement 
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numerical simulations have shown that strings 
exchange partners, inter-commute, with probability 
(almost) equal to 1 

string-string and self-string intersections lead to the 
formation of new long strings and loops 
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string inter-commutations lead to discontinuities in           
and         on the new string segments at the intersection point 

these discontinuities, kinks, are composed of right- and left-
moving pieces travelling along the string at the speed of light 

loops with kinks are described by discontinuous functions       
and     , leading to gaps in the two curves on the unit sphere, 
and like that it is much easier to avoid intersections of         
and -      

as a result the number of cups per loop oscillation in an actual 
network of cosmic strings will be diminished 

the number of cusps remain still an unknown number, to be 
evaluated by numerical experiments with string networks      

kinks 
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the geometry around straight cosmic string is locally identical 
to that of flat spacetime 

however, this geometry is not globally Euclidean:                         
the angle       varies in  the range       

the effect of the string is to introduce an azimuthal 
deficit angle 

implying that a surface of constant t and z has the 
geometry of a cone rather that of a plane 
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Strings and gravity 

the dimensionless parameter           plays an important 
role in the physics of cosmic strings 

since symmetry 
breaking scale at 
string formation 
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propagation of particles and light 
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describes a conical space, i.e. a flat space with a wedge of angular 
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� double images 

double images of light sources located behind the string 

the angle that the string 
makes with the plane 

if                and              
then for                    the 
angular separation (a+b) 
between the two images is: 
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gravitational radiation from a loop 

the lifetime of a non-intersecting loop depends upon the rate at 
which it radiates away its energy 

the gravitational radiation power from a loop of length L can be 
roughly estimated using the quadrupole formula: 

quadrupole 
moment 

loop’s mass characteristic 
frequency 
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