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Lecture I



Standard Cosmology



Einstein’s equations 

Get second order equations for the metric tensor          : thus the Lagrangian 
depends on the metric and its first order derivatives only 

Einstein-Hilbert action: 

K : a coefficient to be obtained by requiring the theory to reduce to the 
Newtonian gravity in the weak-field approximation; this is the only free 
parameter of the theory 

cosmological constant matter Lagrangian 
Ricci scalar 
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(anything not the 
gravitational field) 



Vary the Einstein-Hilbert action: 

Expanding, we get: 

Using: 
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Principle of extremal action     (S should be extremum wrt the choice of 
geometry,               for arbitrary îS = 0 îgö÷

if                  is an even permutation of  
if                  is an odd permutation of  

0     otherwise 
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Using all previous results, we thus get: 

Eisntein’s equations 

Bianchi identities imply: 

Moreover, 

Energy conservation 

satisfied by total 
energy-momentum 
tensor (all matter 
components) 

To solve Einstein’s eqs. you need to define the background geometry. 

The variation of the term in       : 

Hence, 

Einstein tensor: conserved tensor 
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Combining the first and third terms 
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Cosmological principle: 

The Universe is homogeneous and isotropic on large scales. 

Homogeneity:The physical conditions are the same at every point of 
any given hypersurface. 

Isotropy: The physical conditions are identical in all directions when 
viewed from a given point on the hypersurface. 

Isotropy at every point automatically enforces homogeneity. 

Homogeneity does not necessarily imply isotropy. 
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The Friedmann-Lemaître-Robertson-Walker (FLRW) metric 

The only way to preserve the homogeneity and isotropy of space and 
incorporate time evolution is to allow the curvature scale, characterised 
by the scale factor     , to be time dependent, 

The scale factor           completely describes the time evolution of a 
homogeneous and isotropic universe. 

In relativistic theory, there is no absolute time  and spatial distances are 
not invariant w.r.t. coordinate transformations.                                  
Instead, the infinitessimal space-time interval between events is invariant. 
There exist preferred coordinate systems in which the symmetries of the 
universe are clearly manifest. 
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General space-time interval: 
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The spatial coordinates introduced before are comoving: every object with 
zero peculiar velocity has constant coordinates               . 

The coordinate       is the proper time measured by a comoving observer. 

The distance between two comoving observers at a particular moment of 
time is: 

Isotropy of space:  g0i = 0 Otherwise there is a particular direction in space 
related to the 3vector       with components vi g0i

In the coordinate system of fundamental observers for whom the Universe 
appears homogeneous and isotropic, we use the proper time of clocks 
carried by the observers to label space-like surfaces g00 = 1

Increases or decreases in proportion to the scale factor 
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gijdxidxj

We have to determine the 3metric          of a 3space which, at any 
instant of time, is homogeneous and isotropic. 

gij

Isotropy                   spherical symmetry                      line interval: 

[õ2(r)dr2 + r2dÒ2]

dÒ2 = dò2 + sin2òdþ2

The scalar curvature for this 3dim space is: 

3R = 2a2r3
3

dr
d [r2(1à õ2

1 )]
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Homogeneity: all geometrical properties are independent of radial coordinate 
3R must be constant 

Hence, integrating you get: r2(1à õ2
1 ) = c1r4 + c2

constants 
To avoid a singularity at  r=0, we set c2 = 0

Thus, õ2 = (1à c1r2)à1

When                  , we can rescale r and make  c16=0 c1 = 1 or à 1
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Conformal time 

To treat spatial and time coordinates on equal footing, you may  
replace the physical (cosmological) time      by conformal time  

so that 

Then the metric becomes: 

ds2 = a2(ñ)[dñ2à dÿ2à f2(ÿ)dÒ2]

sinÿ (for k = + 1)
ÿ (for k = 0)

sinhÿ (for k = à 1)
f(ÿ) =

Conformal to 
Minkowski metric 
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In GR, the dynamical variables characterising the gravitational field are the 
components of the metric               and they obey the Einstein equations: 

Ricci tensor 

Christoffel symbols 

The unit tensor  i.e.,  

scalar curvature 

Cosmological term (constant) 
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Geometrical quantities 

For a FLRW metric: 

all other components of the Christoffel symbols are zero 

they refer to the 
spatial metric H ñ a

aç Hubble parameter 

ç ñ dt
dwhere 

spatial curvature 

(3)Rij = 2kgij
(3)R = 6k
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Hence, the only non-vanishing components of the Ricci tensor are: 

 
R00 = à 3a

a• Rij = (2H2 + a
a• + 2a2

k )a2gijand 

Thus, the scalar curvature is R= 6(H2 + a
a• + a2

k )

and the non-vanishing components of the Einstein tensor are: 

G00 = 3(H2 + a2
k ) Gij = à (H2 + 2a

a• + a2
k )a2gijand 
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Geometrical quantities 

For a FLRW metric: 

all other components of the Christoffel symbols are zero 

they refer to the 
spatial metric H ñ a

aç Hubble parameter 

ç ñ dt
dwhere 

spatial curvature 

(3)Rij = 2kgij
(3)R = 6k

The Hubble parameter relates how fast the 
most distant galaxies are receding from us to 
their distance from us via Hubble’s law

Figure 2.2: Hubble diagrams (as replotted in [17]) showing the relationship between reces-
sional velocities of distant galaxies and their distances. The left plot shows the original data
of Hubble [18] (and a rather unconvincing straight-line fit through it). To reassure you, the
right plot shows much more recent data [19], using significantly more distant galaxies (note
difference in scale).

Applying this to (7) yields

ds2 = a2(τ)

[

−dτ 2 +
dr2

1 − kr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

, (10)

where we have written a(τ) ≡ a[t(τ)] as is conventional. The conformal time does not
measure the proper time for any particular observer, but it does simplify some calculations.

A particularly useful quantity to define from the scale factor is the Hubble parameter
(sometimes called the Hubble constant), given by

H ≡
ȧ

a
. (11)

The Hubble parameter relates how fast the most distant galaxies are receding from us to
their distance from us via Hubble’s law,

v ≃ Hd. (12)

This is the relationship that was discovered by Edwin Hubble, and has been verified to high
accuracy by modern observational methods (see figure 2.2).
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38 

Matter is incorporated in Einstein’s equations through the energy 
momentum tensor            of rank 2 

symmetric tensor  

Since the Bianchi identities are satisfied by the Einstein tensor, i.e. 

these terms account for 
the gravitational field 

The energy-momentum tensor 

The possible forms that this tensor can take are reduced by the space-time 
symmetries, namely the r.h.s. of Einstein’s equations must obey the same 
symmetries as the l.h.s. one.  
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On large scales (so that we can assume homogeneity and isotropy), 
matter can be approximated as a perfect fluid characterised by 
energy density      , pressure  p  and 4-velocity ú

ú

they depend only on time 

Usually, we will consider ú

constant 

For ultra-relativistic gas: 



2.2 Dynamics: The Friedmann Equations

As mentioned, the RW metric is a purely kinematic consequence of requiring homogeneity
and isotropy of our spatial sections. We next turn to dynamics, in the form of differential
equations governing the evolution of the scale factor a(t). These will come from applying
Einstein’s equation,

Rµν −
1

2
Rgµν = 8πGTµν (13)

to the RW metric.
Before diving right in, it is useful to consider the types of energy-momentum tensors Tµν

we will typically encounter in cosmology. For simplicity, and because it is consistent with
much we have observed about the universe, it is often useful to adopt the perfect fluid form
for the energy-momentum tensor of cosmological matter. This form is

Tµν = (ρ + p)UµUν + pgµν , (14)

where Uµ is the fluid four-velocity, ρ is the energy density in the rest frame of the fluid and p
is the pressure in that same frame. The pressure is necessarily isotropic, for consistency with
the RW metric. Similarly, fluid elements will be comoving in the cosmological rest frame, so
that the normalized four-velocity in the coordinates of (7) will be

Uµ = (1, 0, 0, 0) . (15)

The energy-momentum tensor thus takes the form

Tµν =

⎛

⎜

⎜

⎜

⎝

ρ

pgij

⎞

⎟

⎟

⎟

⎠

, (16)

where gij represents the spatial metric (including the factor of a2).
Armed with this simplified description for matter, we are now ready to apply Einstein’s

equation (13) to cosmology. Using (7) and (14), one obtains two equations. The first is
known as the Friedmann equation,

H2 ≡
(

ȧ

a

)2

=
8πG

3

∑

i

ρi −
k

a2
, (17)

where an overdot denotes a derivative with respect to cosmic time t and i indexes all different
possible types of energy in the universe. This equation is a constraint equation, in the sense
that we are not allowed to freely specify the time derivative ȧ; it is determined in terms of
the energy density and curvature. The second equation, which is an evolution equation, is

ä

a
+

1

2

(

ȧ

a

)2

= −4πG
∑

i

pi −
k

2a2
. (18)
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It is often useful to combine (17) and (18) to obtain the acceleration equation

ä

a
= −

4πG

3

∑

i

(ρi + 3pi) . (19)

In fact, if we know the magnitudes and evolutions of the different energy density compo-
nents ρi, the Friedmann equation (17) is sufficient to solve for the evolution uniquely. The
acceleration equation is conceptually useful, but rarely invoked in calculations.

The Friedmann equation relates the rate of increase of the scale factor, as encoded by
the Hubble parameter, to the total energy density of all matter in the universe. We may use
the Friedmann equation to define, at any given time, a critical energy density,

ρc ≡
3H2

8πG
, (20)

for which the spatial sections must be precisely flat (k = 0). We then define the density
parameter

Ωtotal ≡
ρ

ρc
, (21)

which allows us to relate the total energy density in the universe to its local geometry via

Ωtotal > 1 ⇔ k = +1

Ωtotal = 1 ⇔ k = 0 (22)

Ωtotal < 1 ⇔ k = −1 .

It is often convenient to define the fractions of the critical energy density in each different
component by

Ωi =
ρi

ρc
. (23)

Energy conservation is expressed in GR by the vanishing of the covariant divergence of
the energy-momentum tensor,

∇µT
µν = 0 . (24)

Applying this to our assumptions – the RW metric (7) and perfect-fluid energy-momentum
tensor (14) – yields a single energy-conservation equation,

ρ̇ + 3H(ρ + p) = 0 . (25)

This equation is actually not independent of the Friedmann and acceleration equations, but
is required for consistency. It implies that the expansion of the universe (as specified by H)
can lead to local changes in the energy density. Note that there is no notion of conservation
of “total energy,” as energy can be interchanged between matter and the spacetime geometry.

One final piece of information is required before we can think about solving our cosmo-
logical equations: how the pressure and energy density are related to each other. Within the
fluid approximation used here, we may assume that the pressure is a single-valued function of

9
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Substitute the FLRW metric and the energy-momentum tensor into 
the Eisntein’s equations 

ú

Friedmann equation 

Conservation equation ú

(We have included     in    ) Ë ú

Acceleration equation 

These three 
equations are not 
independent; this is 
a consequence of 
the Bianchi identities 

 2 independent eqs. 
for 3 unknown 

Eq. of state 

For               ,   the magnitude of the scale factor         has 
a geometrical interpretation as the radius of curvature. 
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the energy density p = p(ρ). It is often convenient to define an equation of state parameter,
w, by

p = wρ . (26)

This should be thought of as the instantaneous definition of the parameter w; it need repre-
sent the full equation of state, which would be required to calculate the behavior of fluctu-
ations. Nevertheless, many useful cosmological matter sources do obey this relation with a
constant value of w. For example, w = 0 corresponds to pressureless matter, or dust – any
collection of massive non-relativistic particles would qualify. Similarly, w = 1/3 corresponds
to a gas of radiation, whether it be actual photons or other highly relativistic species.

A constant w leads to a great simplification in solving our equations. In particular,
using (25), we see that the energy density evolves with the scale factor according to

ρ(a) ∝
1

a(t)3(1+w)
. (27)

Note that the behaviors of dust (w = 0) and radiation (w = 1/3) are consistent with what
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It is often useful to combine (17) and (18) to obtain the acceleration equation

ä

a
= −

4πG

3

∑

i

(ρi + 3pi) . (19)

In fact, if we know the magnitudes and evolutions of the different energy density compo-
nents ρi, the Friedmann equation (17) is sufficient to solve for the evolution uniquely. The
acceleration equation is conceptually useful, but rarely invoked in calculations.

The Friedmann equation relates the rate of increase of the scale factor, as encoded by
the Hubble parameter, to the total energy density of all matter in the universe. We may use
the Friedmann equation to define, at any given time, a critical energy density,

ρc ≡
3H2

8πG
, (20)

for which the spatial sections must be precisely flat (k = 0). We then define the density
parameter

Ωtotal ≡
ρ

ρc
, (21)

which allows us to relate the total energy density in the universe to its local geometry via

Ωtotal > 1 ⇔ k = +1

Ωtotal = 1 ⇔ k = 0 (22)

Ωtotal < 1 ⇔ k = −1 .

It is often convenient to define the fractions of the critical energy density in each different
component by

Ωi =
ρi

ρc
. (23)

Energy conservation is expressed in GR by the vanishing of the covariant divergence of
the energy-momentum tensor,

∇µT
µν = 0 . (24)

Applying this to our assumptions – the RW metric (7) and perfect-fluid energy-momentum
tensor (14) – yields a single energy-conservation equation,

ρ̇ + 3H(ρ + p) = 0 . (25)

This equation is actually not independent of the Friedmann and acceleration equations, but
is required for consistency. It implies that the expansion of the universe (as specified by H)
can lead to local changes in the energy density. Note that there is no notion of conservation
of “total energy,” as energy can be interchanged between matter and the spacetime geometry.

One final piece of information is required before we can think about solving our cosmo-
logical equations: how the pressure and energy density are related to each other. Within the
fluid approximation used here, we may assume that the pressure is a single-valued function of
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the energy density p = p(ρ). It is often convenient to define an equation of state parameter,
w, by

p = wρ . (26)

This should be thought of as the instantaneous definition of the parameter w; it need repre-
sent the full equation of state, which would be required to calculate the behavior of fluctu-
ations. Nevertheless, many useful cosmological matter sources do obey this relation with a
constant value of w. For example, w = 0 corresponds to pressureless matter, or dust – any
collection of massive non-relativistic particles would qualify. Similarly, w = 1/3 corresponds
to a gas of radiation, whether it be actual photons or other highly relativistic species.

A constant w leads to a great simplification in solving our equations. In particular,
using (25), we see that the energy density evolves with the scale factor according to

ρ(a) ∝
1

a(t)3(1+w)
. (27)

Note that the behaviors of dust (w = 0) and radiation (w = 1/3) are consistent with what
we would have obtained by more heuristic reasoning. Consider a fixed comoving volume of
the universe - i.e. a volume specified by fixed values of the coordinates, from which one may
obtain the physical volume at a given time t by multiplying by a(t)3. Given a fixed number
of dust particles (of mass m) within this comoving volume, the energy density will then scale
just as the physical volume, i.e. as a(t)−3, in agreement with (27), with w = 0.

To make a similar argument for radiation, first note that the expansion of the universe
(the increase of a(t) with time) results in a shift to longer wavelength λ, or a redshift, of
photons propagating in this background. A photon emitted with wavelength λe at a time te,
at which the scale factor is ae ≡ a(te) is observed today (t = t0, with scale factor a0 ≡ a(t0))
at wavelength λo, obeying

λo

λe
=

a0

ae
≡ 1 + z . (28)

The redshift z is often used in place of the scale factor. Because of the redshift, the energy
density in a fixed number of photons in a fixed comoving volume drops with the physical
volume (as for dust) and by an extra factor of the scale factor as the expansion of the universe
stretches the wavelengths of light. Thus, the energy density of radiation will scale as a(t)−4,
once again in agreement with (27), with w = 1/3.

Thus far, we have not included a cosmological constant Λ in the gravitational equations.
This is because it is equivalent to treat any cosmological constant as a component of the
energy density in the universe. In fact, adding a cosmological constant Λ to Einstein’s
equation is equivalent to including an energy-momentum tensor of the form

Tµν = −
Λ

8πG
gµν . (29)

This is simply a perfect fluid with energy-momentum tensor (14) with

ρΛ =
Λ

8πG
pΛ = −ρΛ , (30)

10

the energy density p = p(ρ). It is often convenient to define an equation of state parameter,
w, by

p = wρ . (26)

This should be thought of as the instantaneous definition of the parameter w; it need repre-
sent the full equation of state, which would be required to calculate the behavior of fluctu-
ations. Nevertheless, many useful cosmological matter sources do obey this relation with a
constant value of w. For example, w = 0 corresponds to pressureless matter, or dust – any
collection of massive non-relativistic particles would qualify. Similarly, w = 1/3 corresponds
to a gas of radiation, whether it be actual photons or other highly relativistic species.

A constant w leads to a great simplification in solving our equations. In particular,
using (25), we see that the energy density evolves with the scale factor according to

ρ(a) ∝
1

a(t)3(1+w)
. (27)

Note that the behaviors of dust (w = 0) and radiation (w = 1/3) are consistent with what
we would have obtained by more heuristic reasoning. Consider a fixed comoving volume of
the universe - i.e. a volume specified by fixed values of the coordinates, from which one may
obtain the physical volume at a given time t by multiplying by a(t)3. Given a fixed number
of dust particles (of mass m) within this comoving volume, the energy density will then scale
just as the physical volume, i.e. as a(t)−3, in agreement with (27), with w = 0.

To make a similar argument for radiation, first note that the expansion of the universe
(the increase of a(t) with time) results in a shift to longer wavelength λ, or a redshift, of
photons propagating in this background. A photon emitted with wavelength λe at a time te,
at which the scale factor is ae ≡ a(te) is observed today (t = t0, with scale factor a0 ≡ a(t0))
at wavelength λo, obeying

λo

λe
=

a0

ae
≡ 1 + z . (28)

The redshift z is often used in place of the scale factor. Because of the redshift, the energy
density in a fixed number of photons in a fixed comoving volume drops with the physical
volume (as for dust) and by an extra factor of the scale factor as the expansion of the universe
stretches the wavelengths of light. Thus, the energy density of radiation will scale as a(t)−4,
once again in agreement with (27), with w = 1/3.

Thus far, we have not included a cosmological constant Λ in the gravitational equations.
This is because it is equivalent to treat any cosmological constant as a component of the
energy density in the universe. In fact, adding a cosmological constant Λ to Einstein’s
equation is equivalent to including an energy-momentum tensor of the form

Tµν = −
Λ

8πG
gµν . (29)

This is simply a perfect fluid with energy-momentum tensor (14) with

ρΛ =
Λ

8πG
pΛ = −ρΛ , (30)

10

the energy density p = p(ρ). It is often convenient to define an equation of state parameter,
w, by

p = wρ . (26)

This should be thought of as the instantaneous definition of the parameter w; it need repre-
sent the full equation of state, which would be required to calculate the behavior of fluctu-
ations. Nevertheless, many useful cosmological matter sources do obey this relation with a
constant value of w. For example, w = 0 corresponds to pressureless matter, or dust – any
collection of massive non-relativistic particles would qualify. Similarly, w = 1/3 corresponds
to a gas of radiation, whether it be actual photons or other highly relativistic species.

A constant w leads to a great simplification in solving our equations. In particular,
using (25), we see that the energy density evolves with the scale factor according to

ρ(a) ∝
1

a(t)3(1+w)
. (27)

Note that the behaviors of dust (w = 0) and radiation (w = 1/3) are consistent with what
we would have obtained by more heuristic reasoning. Consider a fixed comoving volume of
the universe - i.e. a volume specified by fixed values of the coordinates, from which one may
obtain the physical volume at a given time t by multiplying by a(t)3. Given a fixed number
of dust particles (of mass m) within this comoving volume, the energy density will then scale
just as the physical volume, i.e. as a(t)−3, in agreement with (27), with w = 0.

To make a similar argument for radiation, first note that the expansion of the universe
(the increase of a(t) with time) results in a shift to longer wavelength λ, or a redshift, of
photons propagating in this background. A photon emitted with wavelength λe at a time te,
at which the scale factor is ae ≡ a(te) is observed today (t = t0, with scale factor a0 ≡ a(t0))
at wavelength λo, obeying

λo

λe
=

a0

ae
≡ 1 + z . (28)

The redshift z is often used in place of the scale factor. Because of the redshift, the energy
density in a fixed number of photons in a fixed comoving volume drops with the physical
volume (as for dust) and by an extra factor of the scale factor as the expansion of the universe
stretches the wavelengths of light. Thus, the energy density of radiation will scale as a(t)−4,
once again in agreement with (27), with w = 1/3.

Thus far, we have not included a cosmological constant Λ in the gravitational equations.
This is because it is equivalent to treat any cosmological constant as a component of the
energy density in the universe. In fact, adding a cosmological constant Λ to Einstein’s
equation is equivalent to including an energy-momentum tensor of the form

Tµν = −
Λ

8πG
gµν . (29)

This is simply a perfect fluid with energy-momentum tensor (14) with

ρΛ =
Λ

8πG
pΛ = −ρΛ , (30)

10

It is often useful to combine (17) and (18) to obtain the acceleration equation

ä
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so that the equation-of-state parameter is

wΛ = −1 . (31)

This implies that the energy density is constant,

ρΛ = constant . (32)

Thus, this energy is constant throughout spacetime; we say that the cosmological constant
is equivalent to vacuum energy.

Similarly, it is sometimes useful to think of any nonzero spatial curvature as yet another
component of the cosmological energy budget, obeying

ρcurv = −
3k

8πGa2

pcurv =
k

8πGa2
, (33)

so that
wcurv = −1/3 . (34)

It is not an energy density, of course; ρcurv is simply a convenient way to keep track of how
much energy density is lacking, in comparison to a flat universe.

2.3 Flat Universes

It is much easier to find exact solutions to cosmological equations of motion when k = 0.
Fortunately for us, nowadays we are able to appeal to more than mathematical simplicity to
make this choice. Indeed, as we shall see in later lectures, modern cosmological observations,
in particular precision measurements of the cosmic microwave background, show the universe
today to be extremely spatially flat.

In the case of flat spatial sections and a constant equation of state parameter w, we may
exactly solve the Friedmann equation (27) to obtain

a(t) = a0

(

t

t0

)2/3(1+w)

, (35)

where a0 is the scale factor today, unless w = −1, in which case one obtains a(t) ∝ eHt.
Applying this result to some of our favorite energy density sources yields table 1.

Note that the matter- and radiation-dominated flat universes begin with a = 0; this is a
singularity, known as the Big Bang. We can easily calculate the age of such a universe:

t0 =
∫ 1

0

da

aH(a)
=

2

3(1 + w)H0
. (36)

Unless w is close to −1, it is often useful to approximate this answer by

t0 ∼ H−1
0 . (37)

It is for this reason that the quantity H−1
0 is known as the Hubble time, and provides a useful

estimate of the time scale for which the universe has been around.
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using (25), we see that the energy density evolves with the scale factor according to

ρ(a) ∝
1

a(t)3(1+w)
. (27)

Note that the behaviors of dust (w = 0) and radiation (w = 1/3) are consistent with what
we would have obtained by more heuristic reasoning. Consider a fixed comoving volume of
the universe - i.e. a volume specified by fixed values of the coordinates, from which one may
obtain the physical volume at a given time t by multiplying by a(t)3. Given a fixed number
of dust particles (of mass m) within this comoving volume, the energy density will then scale
just as the physical volume, i.e. as a(t)−3, in agreement with (27), with w = 0.

To make a similar argument for radiation, first note that the expansion of the universe
(the increase of a(t) with time) results in a shift to longer wavelength λ, or a redshift, of
photons propagating in this background. A photon emitted with wavelength λe at a time te,
at which the scale factor is ae ≡ a(te) is observed today (t = t0, with scale factor a0 ≡ a(t0))
at wavelength λo, obeying
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The redshift z is often used in place of the scale factor. Because of the redshift, the energy
density in a fixed number of photons in a fixed comoving volume drops with the physical
volume (as for dust) and by an extra factor of the scale factor as the expansion of the universe
stretches the wavelengths of light. Thus, the energy density of radiation will scale as a(t)−4,
once again in agreement with (27), with w = 1/3.

Thus far, we have not included a cosmological constant Λ in the gravitational equations.
This is because it is equivalent to treat any cosmological constant as a component of the
energy density in the universe. In fact, adding a cosmological constant Λ to Einstein’s
equation is equivalent to including an energy-momentum tensor of the form

Tµν = −
Λ

8πG
gµν . (29)

This is simply a perfect fluid with energy-momentum tensor (14) with

ρΛ =
Λ

8πG
pΛ = −ρΛ , (30)

10

the energy density p = p(ρ). It is often convenient to define an equation of state parameter,
w, by

p = wρ . (26)

This should be thought of as the instantaneous definition of the parameter w; it need repre-
sent the full equation of state, which would be required to calculate the behavior of fluctu-
ations. Nevertheless, many useful cosmological matter sources do obey this relation with a
constant value of w. For example, w = 0 corresponds to pressureless matter, or dust – any
collection of massive non-relativistic particles would qualify. Similarly, w = 1/3 corresponds
to a gas of radiation, whether it be actual photons or other highly relativistic species.

A constant w leads to a great simplification in solving our equations. In particular,
using (25), we see that the energy density evolves with the scale factor according to

ρ(a) ∝
1

a(t)3(1+w)
. (27)

Note that the behaviors of dust (w = 0) and radiation (w = 1/3) are consistent with what
we would have obtained by more heuristic reasoning. Consider a fixed comoving volume of
the universe - i.e. a volume specified by fixed values of the coordinates, from which one may
obtain the physical volume at a given time t by multiplying by a(t)3. Given a fixed number
of dust particles (of mass m) within this comoving volume, the energy density will then scale
just as the physical volume, i.e. as a(t)−3, in agreement with (27), with w = 0.

To make a similar argument for radiation, first note that the expansion of the universe
(the increase of a(t) with time) results in a shift to longer wavelength λ, or a redshift, of
photons propagating in this background. A photon emitted with wavelength λe at a time te,
at which the scale factor is ae ≡ a(te) is observed today (t = t0, with scale factor a0 ≡ a(t0))
at wavelength λo, obeying

λo

λe
=

a0

ae
≡ 1 + z . (28)

The redshift z is often used in place of the scale factor. Because of the redshift, the energy
density in a fixed number of photons in a fixed comoving volume drops with the physical
volume (as for dust) and by an extra factor of the scale factor as the expansion of the universe
stretches the wavelengths of light. Thus, the energy density of radiation will scale as a(t)−4,
once again in agreement with (27), with w = 1/3.

Thus far, we have not included a cosmological constant Λ in the gravitational equations.
This is because it is equivalent to treat any cosmological constant as a component of the
energy density in the universe. In fact, adding a cosmological constant Λ to Einstein’s
equation is equivalent to including an energy-momentum tensor of the form

Tµν = −
Λ

8πG
gµν . (29)

This is simply a perfect fluid with energy-momentum tensor (14) with

ρΛ =
Λ

8πG
pΛ = −ρΛ , (30)

10



so that the equation-of-state parameter is

wΛ = −1 . (31)

This implies that the energy density is constant,

ρΛ = constant . (32)

Thus, this energy is constant throughout spacetime; we say that the cosmological constant
is equivalent to vacuum energy.

Similarly, it is sometimes useful to think of any nonzero spatial curvature as yet another
component of the cosmological energy budget, obeying

ρcurv = −
3k

8πGa2

pcurv =
k

8πGa2
, (33)

so that
wcurv = −1/3 . (34)

It is not an energy density, of course; ρcurv is simply a convenient way to keep track of how
much energy density is lacking, in comparison to a flat universe.

2.3 Flat Universes

It is much easier to find exact solutions to cosmological equations of motion when k = 0.
Fortunately for us, nowadays we are able to appeal to more than mathematical simplicity to
make this choice. Indeed, as we shall see in later lectures, modern cosmological observations,
in particular precision measurements of the cosmic microwave background, show the universe
today to be extremely spatially flat.

In the case of flat spatial sections and a constant equation of state parameter w, we may
exactly solve the Friedmann equation (27) to obtain

a(t) = a0

(

t

t0

)2/3(1+w)

, (35)

where a0 is the scale factor today, unless w = −1, in which case one obtains a(t) ∝ eHt.
Applying this result to some of our favorite energy density sources yields table 1.

Note that the matter- and radiation-dominated flat universes begin with a = 0; this is a
singularity, known as the Big Bang. We can easily calculate the age of such a universe:

t0 =
∫ 1

0

da

aH(a)
=

2

3(1 + w)H0
. (36)

Unless w is close to −1, it is often useful to approximate this answer by

t0 ∼ H−1
0 . (37)

It is for this reason that the quantity H−1
0 is known as the Hubble time, and provides a useful

estimate of the time scale for which the universe has been around.
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estimate of the time scale for which the universe has been around.
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Type of Energy ρ(a) a(t)
Dust a−3 t2/3

Radiation a−4 t1/2

Cosmological Constant constant eHt

Table 1: A summary of the behaviors of the most important sources of energy density in
cosmology. The behavior of the scale factor applies to the case of a flat universe; the behavior
of the energy densities is perfectly general.

2.4 Including Curvature
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Since we include this mainly for illustration we will focus on the separate cases of dust-filled
and radiation-filled FRW models with zero cosmological constant. This calculation is an
example of one that is made much easier by working in terms of conformal time τ .

Let us first consider models in which the energy density is dominated by matter (w = 0).
In terms of conformal time the Einstein equations become

3(k + h2) = 8πGρa2

k + h2 + 2h′ = 0 , (38)

where a prime denotes a derivative with respect to conformal time and h(τ) ≡ a′/a. These
equations are then easily solved for h(τ) giving

h(τ) =

⎧

⎪

⎨

⎪

⎩

cot(τ/2) k = 1
2/τ k = 0
coth(τ/2) k = −1

. (39)

This then yields

a(τ) ∝

⎧

⎪

⎨

⎪

⎩

1 − cos(τ) k = 1
τ 2/2 k = 0
cosh(τ) − 1 k = −1

. (40)

One may use this to derive the connection between cosmic time and conformal time,
which here is

t(τ) ∝

⎧

⎪

⎨

⎪

⎩

τ − sin(τ) k = 1
τ 3/6 k = 0
sinh(τ) − τ k = −1

. (41)

Next we consider models dominated by radiation (w = 1/3). In terms of conformal time
the Einstein equations become

3(k + h2) = 8πGρa2

k + h2 + 2h′ = −
8πGρ

3
a2 . (42)
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with physical meaning illustrated in figure 2.4.
These horizon distances may be converted to proper horizon distances at cosmic time t,

for example

dH ≡ a(τ)rph = a(τ)(τ − τ̄e) = a(t)
∫ t

te

dt′

a(t′)
. (49)

Just as the Hubble time H−1
0 provides a rough guide for the age of the universe, the Hubble

distance cH−1
0 provides a rough estimate of the horizon distance in a matter- or radiation-

dominated universe.

2.6 Geometry, Destiny and Dark Energy

In subsequent lectures we will use what we have learned here to extrapolate back to some of
the earliest times in the universe. We will discuss the thermodynamics of the early universe,
and the resulting interdependency between particle physics and cosmology. However, before
that, we would like to explore some implications for the future of the universe.

For a long time in cosmology, it was quite commonplace to refer to the three possible
geometries consistent with homogeneity and isotropy as closed (k = 1), open (k = −1) and
flat (k = 0). There were two reasons for this. First, if one considered only the universal
covering spaces, then a positively curved universe would be a 3-sphere, which has finite
volume and hence is closed, while a negatively curved universe would be the hyperbolic
3-manifold H3, which has infinite volume and hence is open.

Second, with dust and radiation as sources of energy density, universes with greater than
the critical density would ultimately collapse, while those with less than the critical density
would expand forever, with flat universes lying on the border between the two. for the case
of pure dust-filled universes this is easily seen from (40) and (44).

As we have already mentioned, GR is a local theory, so the first of these points was never
really valid. For example, there exist perfectly good compact hyperbolic manifolds, of finite
volume, which are consistent with all our cosmological assumptions. However, the connection
between geometry and destiny implied by the second point above was quite reasonable as
long as dust and radiation were the only types of energy density relevant in the late universe.

In recent years it has become clear that the dominant component of energy density in the
present universe is neither dust nor radiation, but rather is dark energy. This component
is characterized by an equation of state parameter w < −1/3. We will have a lot more to
say about this component (including the observational evidence for it) in the next lecture,
but for now we would just like to focus on the way in which it has completely separated our
concepts of geometry and destiny.

For simplicity, let’s focus on what happens if the only energy density in the universe is
a cosmological constant, with w = −1. In this case, the Friedmann equation may be solved
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for any value of the spatial curvature parameter k. If Λ > 0 then the solutions are

a(t)

a0
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

cosh
(
√

Λ
3 t
)

k = +1

exp
(
√

Λ
3 t
)

k = 0

sinh
(
√

Λ
3 t
)

k = −1

, (50)

where we have encountered the k = 0 case earlier. It is immediately clear that, in the
t → ∞ limit, all solutions expand exponentially, independently of the spatial curvature. In
fact, these solutions are all exactly the same spacetime - de Sitter space - just in different
coordinate systems. These features of de Sitter space will resurface crucially when we discuss
inflation. However, the point here is that the universe clearly expands forever in these
spacetimes, irrespective of the value of the spatial curvature. Note, however, that not all of
the solutions in (50) actually cover all of de Sitter space; the k = 0 and k = −1 solutions
represent coordinate patches which only cover part of the manifold.

For completeness, let us complete the description of spaces with a cosmological constant
by considering the case Λ < 0. This spacetime is called Anti-de Sitter space (AdS) and it
should be clear from the Friedmann equation that such a spacetime can only exist in a space
with spatial curvature k = −1. The corresponding solution for the scale factor is

a(t) = a0 sin

⎛

⎝

√

−
Λ

3
t

⎞

⎠ . (51)

Once again, this solution does not cover all of AdS; for a more complete discussion, see [20].

3 Our Universe Today and Dark Energy

In the previous lecture we set up the tools required to analyze the kinematics and dynamics
of homogeneous and isotropic cosmologies in general relativity. In this lecture we turn to the
actual universe in which we live, and discuss the remarkable properties cosmologists have
discovered in the last ten years. Most remarkable among them is the fact that the universe
is dominated by a uniformly-distributed and slowly-varying source of “dark energy,” which
may be a vacuum energy (cosmological constant), a dynamical field, or something even more
dramatic.

3.1 Matter: Ordinary and Dark

In the years before we knew that dark energy was an important constituent of the universe,
and before observations of galaxy distributions and CMB anisotropies had revolutionized the
study of structure in the universe, observational cosmology sought to measure two numbers:
the Hubble constant H0 and the matter density parameter ΩM. Both of these quantities
remain undeniably important, even though we have greatly broadened the scope of what we
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Light geodesics 

In SR: space-time interval along trajectory of massless particle propagating 
with speed of light is 

 

In GR: it also holds in every local inertial coordinate frame. 

            But since the interval is invariant  

             
is valid along the light geodesic in any curved space-time 

constraint on our ability to comprehend the entire universe.  
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From 

beginning of the universe 
In a universe with an initial singularity, we can always set  

Particle horizon: If the universe has a finite age, then the light travels only 
a finite distance in that time and the volume of space from which we can 
receive information at a given moment of time is limited.  
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Physical size of particle horizon 

Physical size of particle horizon

The max comoving distance that light can propagate
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Matter content of the universe

hope to measure. The Hubble constant is often parameterized in terms of a dimensionless
quantity h as

H0 = 100h km/sec/Mpc . (52)

After years of effort, determinations of this number seem to have zeroed in on a largely
agreed-upon value; the Hubble Space Telescope Key Project on the extragalactic distance
scale [21] finds

h = 0.71 ± 0.06 , (53)

which is consistent with other methods [22], and what we will assume henceforth.
For years, determinations of ΩM based on dynamics of galaxies and clusters have yielded

values between approximately 0.1 and 0.4, noticeably smaller than the critical density. The
last several years have witnessed a number of new methods being brought to bear on the
question; here we sketch some of the most important ones.

The traditional method to estimate the mass density of the universe is to “weigh” a cluster
of galaxies, divide by its luminosity, and extrapolate the result to the universe as a whole.
Although clusters are not representative samples of the universe, they are sufficiently large
that such a procedure has a chance of working. Studies applying the virial theorem to cluster
dynamics have typically obtained values ΩM = 0.2± 0.1 [23, 24, 25]. Although it is possible
that the global value of M/L differs appreciably from its value in clusters, extrapolations
from small scales do not seem to reach the critical density [26]. New techniques to weigh the
clusters, including gravitational lensing of background galaxies [27] and temperature profiles
of the X-ray gas [28], while not yet in perfect agreement with each other, reach essentially
similar conclusions.

Rather than measuring the mass relative to the luminosity density, which may be different
inside and outside clusters, we can also measure it with respect to the baryon density [29],
which is very likely to have the same value in clusters as elsewhere in the universe, simply
because there is no way to segregate the baryons from the dark matter on such large scales.
Most of the baryonic mass is in the hot intracluster gas [30], and the fraction fgas of total
mass in this form can be measured either by direct observation of X-rays from the gas [31]
or by distortions of the microwave background by scattering off hot electrons (the Sunyaev-
Zeldovich effect) [32], typically yielding 0.1 ≤ fgas ≤ 0.2. Since primordial nucleosynthesis
provides a determination of ΩB ∼ 0.04, these measurements imply

ΩM = ΩB/fgas = 0.3 ± 0.1 , (54)

consistent with the value determined from mass to light ratios.
Another handle on the density parameter in matter comes from properties of clusters

at high redshift. The very existence of massive clusters has been used to argue in favor of
ΩM ∼ 0.2 [33], and the lack of appreciable evolution of clusters from high redshifts to the
present [34, 35] provides additional evidence that ΩM < 1.0. On the other hand, a recent
measurement of the relationship between the temperature and luminosity of X-ray clusters
measured with the XMM-Newton satellite [36] has been interpreted as evidence for ΩM near
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unity. This last result seems at odds with a variety of other determinations, so we should
keep a careful watch for further developments in this kind of study.

The story of large-scale motions is more ambiguous. The peculiar velocities of galaxies are
sensitive to the underlying mass density, and thus to ΩM, but also to the “bias” describing
the relative amplitude of fluctuations in galaxies and mass [24, 37]. Nevertheless, recent
advances in very large redshift surveys have led to relatively firm determinations of the mass
density; the 2df survey, for example, finds 0.1 ≤ ΩM ≤ 0.4 [38].

Finally, the matter density parameter can be extracted from measurements of the power
spectrum of density fluctuations (see for example [39]). As with the CMB, predicting the
power spectrum requires both an assumption of the correct theory and a specification of a
number of cosmological parameters. In simple models (e.g., with only cold dark matter and
baryons, no massive neutrinos), the spectrum can be fit (once the amplitude is normalized) by
a single “shape parameter”, which is found to be equal to Γ = ΩMh. (For more complicated
models see [40].) Observations then yield Γ ∼ 0.25, or ΩM ∼ 0.36. For a more careful
comparison between models and observations, see [41, 42, 43, 44].

Thus, we have a remarkable convergence on values for the density parameter in matter:

0.1 ≤ ΩM ≤ 0.4 . (55)

As we will see below, this value is in excellent agreement with that which we would determine
indirectly from combinations of other measurements.

As you are undoubtedly aware, however, matter comes in different forms; the matter we
infer from its gravitational influence need not be the same kind of ordinary matter we are
familiar with from our experience on Earth. By “ordinary matter” we mean anything made
from atoms and their constituents (protons, neutrons, and electrons); this would include all
of the stars, planets, gas and dust in the universe, immediately visible or otherwise. Occa-
sionally such matter is referred to as “baryonic matter”, where “baryons” include protons,
neutrons, and related particles (strongly interacting particles carrying a conserved quantum
number known as “baryon number”). Of course electrons are conceptually an important
part of ordinary matter, but by mass they are negligible compared to protons and neutrons;
the mass of ordinary matter comes overwhelmingly from baryons.

Ordinary baryonic matter, it turns out, is not nearly enough to account for the observed
matter density. Our current best estimates for the baryon density [45, 46] yield

Ωb = 0.04 ± 0.02 , (56)

where these error bars are conservative by most standards. This determination comes from
a variety of methods: direct counting of baryons (the least precise method), consistency
with the CMB power spectrum (discussed later in this lecture), and agreement with the
predictions of the abundances of light elements for Big-Bang nucleosynthesis (discussed in
the next lecture). Most of the matter density must therefore be in the form of non-baryonic
dark matter, which we will abbreviate to simply “dark matter”. (Baryons can be dark,
but it is increasingly common to reserve the terminology for the non-baryonic component.)
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ΩM ∼ 0.2 [33], and the lack of appreciable evolution of clusters from high redshifts to the
present [34, 35] provides additional evidence that ΩM < 1.0. On the other hand, a recent
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unity. This last result seems at odds with a variety of other determinations, so we should
keep a careful watch for further developments in this kind of study.

The story of large-scale motions is more ambiguous. The peculiar velocities of galaxies are
sensitive to the underlying mass density, and thus to ΩM, but also to the “bias” describing
the relative amplitude of fluctuations in galaxies and mass [24, 37]. Nevertheless, recent
advances in very large redshift surveys have led to relatively firm determinations of the mass
density; the 2df survey, for example, finds 0.1 ≤ ΩM ≤ 0.4 [38].

Finally, the matter density parameter can be extracted from measurements of the power
spectrum of density fluctuations (see for example [39]). As with the CMB, predicting the
power spectrum requires both an assumption of the correct theory and a specification of a
number of cosmological parameters. In simple models (e.g., with only cold dark matter and
baryons, no massive neutrinos), the spectrum can be fit (once the amplitude is normalized) by
a single “shape parameter”, which is found to be equal to Γ = ΩMh. (For more complicated
models see [40].) Observations then yield Γ ∼ 0.25, or ΩM ∼ 0.36. For a more careful
comparison between models and observations, see [41, 42, 43, 44].

Thus, we have a remarkable convergence on values for the density parameter in matter:

0.1 ≤ ΩM ≤ 0.4 . (55)

As we will see below, this value is in excellent agreement with that which we would determine
indirectly from combinations of other measurements.

As you are undoubtedly aware, however, matter comes in different forms; the matter we
infer from its gravitational influence need not be the same kind of ordinary matter we are
familiar with from our experience on Earth. By “ordinary matter” we mean anything made
from atoms and their constituents (protons, neutrons, and electrons); this would include all
of the stars, planets, gas and dust in the universe, immediately visible or otherwise. Occa-
sionally such matter is referred to as “baryonic matter”, where “baryons” include protons,
neutrons, and related particles (strongly interacting particles carrying a conserved quantum
number known as “baryon number”). Of course electrons are conceptually an important
part of ordinary matter, but by mass they are negligible compared to protons and neutrons;
the mass of ordinary matter comes overwhelmingly from baryons.

Ordinary baryonic matter, it turns out, is not nearly enough to account for the observed
matter density. Our current best estimates for the baryon density [45, 46] yield

Ωb = 0.04 ± 0.02 , (56)

where these error bars are conservative by most standards. This determination comes from
a variety of methods: direct counting of baryons (the least precise method), consistency
with the CMB power spectrum (discussed later in this lecture), and agreement with the
predictions of the abundances of light elements for Big-Bang nucleosynthesis (discussed in
the next lecture). Most of the matter density must therefore be in the form of non-baryonic
dark matter, which we will abbreviate to simply “dark matter”. (Baryons can be dark,
but it is increasingly common to reserve the terminology for the non-baryonic component.)
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Currently there are 2 preferred candidates: primordial black holes and pseudo-scalar (axion-like) particles
Modifications to Newton’s law (Modified Newtonian Dynamics – MOND) and its relativistic extension (Tensor-Vector-
Scalar –TeVeS) have been proposed but they seem to fail: MOND in addressing the DM issue in all scales and TeVeS
in explaining both flat rotation curves and gravitational lensing with the same choice of parameters, while to explain 
the CMB data it needs contribution from massive neutrinos



Supernovae and the accelerating universe

Essentially every known particle in the Standard Model of particle physics has been ruled out
as a candidate for this dark matter. One of the few things we know about the dark matter
is that is must be “cold” — not only is it non-relativistic today, but it must have been that
way for a very long time. If the dark matter were “hot”, it would have free-streamed out
of overdense regions, suppressing the formation of galaxies. The other thing we know about
cold dark matter (CDM) is that it should interact very weakly with ordinary matter, so as to
have escaped detection thus far. In the next lecture we will discuss some currently popular
candidates for cold dark matter.

3.2 Supernovae and the Accelerating Universe

The great story of fin de siecle cosmology was the discovery that matter does not domi-
nate the universe; we need some form of dark energy to explain a variety of observations.
The first direct evidence for this finding came from studies using Type Ia supernovae as
“standardizable candles,” which we now examine. For more detailed discussion of both the
observational situation and the attendant theoretical problems, see [48, 49, 8, 50, 51, 15].

Supernovae are rare — perhaps a few per century in a Milky-Way-sized galaxy — but
modern telescopes allow observers to probe very deeply into small regions of the sky, covering
a very large number of galaxies in a single observing run. Supernovae are also bright,
and Type Ia’s in particular all seem to be of nearly uniform intrinsic luminosity (absolute
magnitude M ∼ −19.5, typically comparable to the brightness of the entire host galaxy in
which they appear) [52]. They can therefore be detected at high redshifts (z ∼ 1), allowing
in principle a good handle on cosmological effects [53, 54].

The fact that all SNe Ia are of similar intrinsic luminosities fits well with our under-
standing of these events as explosions which occur when a white dwarf, onto which mass is
gradually accreting from a companion star, crosses the Chandrasekhar limit and explodes.
(It should be noted that our understanding of supernova explosions is in a state of develop-
ment, and theoretical models are not yet able to accurately reproduce all of the important
features of the observed events. See [55, 56, 57] for some recent work.) The Chandrasekhar
limit is a nearly-universal quantity, so it is not a surprise that the resulting explosions are of
nearly-constant luminosity. However, there is still a scatter of approximately 40% in the peak
brightness observed in nearby supernovae, which can presumably be traced to differences in
the composition of the white dwarf atmospheres. Even if we could collect enough data that
statistical errors could be reduced to a minimum, the existence of such an uncertainty would
cast doubt on any attempts to study cosmology using SNe Ia as standard candles.

Fortunately, the observed differences in peak luminosities of SNe Ia are very closely
correlated with observed differences in the shapes of their light curves: dimmer SNe decline
more rapidly after maximum brightness, while brighter SNe decline more slowly [58, 59, 60].
There is thus a one-parameter family of events, and measuring the behavior of the light curve
along with the apparent luminosity allows us to largely correct for the intrinsic differences
in brightness, reducing the scatter from 40% to less than 15% — sufficient precision to
distinguish between cosmological models. (It seems likely that the single parameter can
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ment, and theoretical models are not yet able to accurately reproduce all of the important
features of the observed events. See [55, 56, 57] for some recent work.) The Chandrasekhar
limit is a nearly-universal quantity, so it is not a surprise that the resulting explosions are of
nearly-constant luminosity. However, there is still a scatter of approximately 40% in the peak
brightness observed in nearby supernovae, which can presumably be traced to differences in
the composition of the white dwarf atmospheres. Even if we could collect enough data that
statistical errors could be reduced to a minimum, the existence of such an uncertainty would
cast doubt on any attempts to study cosmology using SNe Ia as standard candles.

Fortunately, the observed differences in peak luminosities of SNe Ia are very closely
correlated with observed differences in the shapes of their light curves: dimmer SNe decline
more rapidly after maximum brightness, while brighter SNe decline more slowly [58, 59, 60].
There is thus a one-parameter family of events, and measuring the behavior of the light curve
along with the apparent luminosity allows us to largely correct for the intrinsic differences
in brightness, reducing the scatter from 40% to less than 15% — sufficient precision to
distinguish between cosmological models. (It seems likely that the single parameter can
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Essentially every known particle in the Standard Model of particle physics has been ruled out
as a candidate for this dark matter. One of the few things we know about the dark matter
is that is must be “cold” — not only is it non-relativistic today, but it must have been that
way for a very long time. If the dark matter were “hot”, it would have free-streamed out
of overdense regions, suppressing the formation of galaxies. The other thing we know about
cold dark matter (CDM) is that it should interact very weakly with ordinary matter, so as to
have escaped detection thus far. In the next lecture we will discuss some currently popular
candidates for cold dark matter.

3.2 Supernovae and the Accelerating Universe

The great story of fin de siecle cosmology was the discovery that matter does not domi-
nate the universe; we need some form of dark energy to explain a variety of observations.
The first direct evidence for this finding came from studies using Type Ia supernovae as
“standardizable candles,” which we now examine. For more detailed discussion of both the
observational situation and the attendant theoretical problems, see [48, 49, 8, 50, 51, 15].

Supernovae are rare — perhaps a few per century in a Milky-Way-sized galaxy — but
modern telescopes allow observers to probe very deeply into small regions of the sky, covering
a very large number of galaxies in a single observing run. Supernovae are also bright,
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Figure 3.5: Hubble diagram from the Supernova Cosmology Project, as of 2003 [70].

be traced to the amount of 56Ni produced in the supernova explosion; more nickel implies
both a higher peak luminosity and a higher temperature and thus opacity, leading to a slower
decline. It would be an exaggeration, however, to claim that this behavior is well-understood
theoretically.)

Following pioneering work reported in [61], two independent groups undertook searches
for distant supernovae in order to measure cosmological parameters: the High-Z Supernova
Team [62, 63, 64, 65, 66], and the Supernova Cosmology Project [67, 68, 69, 70]. A plot of
redshift vs. corrected apparent magnitude from the original SCP data is shown in Figure 3.5.
The data are much better fit by a universe dominated by a cosmological constant than by a
flat matter-dominated model. In fact the supernova results alone allow a substantial range
of possible values of ΩM and ΩΛ; however, if we think we know something about one of these
parameters, the other will be tightly constrained. In particular, if ΩM ∼ 0.3, we obtain

ΩΛ ∼ 0.7 . (57)
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This corresponds to a vacuum energy density

ρΛ ∼ 10−8 erg/cm3 ∼ (10−3 eV)4 . (58)

Thus, the supernova studies have provided direct evidence for a nonzero value for Einstein’s
cosmological constant.

Given the significance of these results, it is natural to ask what level of confidence we
should have in them. There are a number of potential sources of systematic error which
have been considered by the two teams; see the original papers [63, 64, 69] for a thorough
discussion. Most impressively, the universe implied by combining the supernova results with
direct determinations of the matter density is spectacularly confirmed by measurements
of the cosmic microwave background, as we discuss in the next section. Needless to say,
however, it would be very useful to have a better understanding of both the theoretical basis
for Type Ia luminosities, and experimental constraints on possible systematic errors. Future
experiments, including a proposed satellite dedicated to supernova cosmology [71], will both
help us improve our understanding of the physics of supernovae and allow a determination
of the distance/redshift relation to sufficient precision to distinguish between the effects of
a cosmological constant and those of more mundane astrophysical phenomena.

3.3 The Cosmic Microwave Background

Most of the radiation we observe in the universe today is in the form of an almost isotropic
blackbody spectrum, with temperature approximately 2.7K, known as the Cosmic Microwave
Background (CMB). The small angular fluctuations in temperature of the CMB reveal a great
deal about the constituents of the universe, as we now discuss.

We have mentioned several times the way in which a radiation gas evolves in and sources
the evolution of an expanding FRW universe. It should be clear from the differing evolution
laws for radiation and dust that as one considers earlier and earlier times in the universe,
with smaller and smaller scale factors, the ratio of the energy density in radiation to that in
matter grows proportionally to 1/a(t). Furthermore, even particles which are now massive
and contribute to matter used to be hotter, and at sufficiently early times were relativistic,
and thus contributed to radiation. Therefore, the early universe was dominated by radiation.

At early times the CMB photons were easily energetic enough to ionize hydrogen atoms
and therefore the universe was filled with a charged plasma (and hence was opaque). This
phase lasted until the photons redshifted enough to allow protons and electrons to combine,
during the era of recombination. Shortly after this time, the photons decoupled from the
now-neutral plasma and free-streamed through the universe.

In fact, the concept of an expanding universe provides us with a clear explanation of the
origin of the CMB. Blackbody radiation is emitted by bodies in thermal equilibrium. The
present universe is certainly not in this state, and so without an evolving spacetime we would
have no explanation for the origin of this radiation. However, at early times, the density and
energy densities in the universe were high enough that matter was in approximate thermal
equilibrium at each point in space, yielding a blackbody spectrum at early times.
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The cosmological constant problem3.4 The Cosmological Constant Problem(s)

In classical general relativity the cosmological constant Λ is a completely free parameter. It
has dimensions of [length]−2 (while the energy density ρΛ has units [energy/volume]), and
hence defines a scale, while general relativity is otherwise scale-free. Indeed, from purely
classical considerations, we can’t even say whether a specific value of Λ is “large” or “small”;
it is simply a constant of nature we should go out and determine through experiment.

The introduction of quantum mechanics changes this story somewhat. For one thing,
Planck’s constant allows us to define the reduced Planck mass Mp ∼ 1018 GeV, as well as
the reduced Planck length

LP = (8πG)1/2 ∼ 10−32 cm . (65)

Hence, there is a natural expectation for the scale of the cosmological constant, namely

Λ(guess) ∼ L−2
P , (66)

or, phrased as an energy density,

ρ(guess)
vac ∼ M4

P ∼ (1018 GeV)4 ∼ 10112 erg/cm3 . (67)

We can partially justify this guess by thinking about quantum fluctuations in the vacuum.
At all energies probed by experiment to date, the world is accurately described as a set of
quantum fields (at higher energies it may become strings or something else). If we take
the Fourier transform of a free quantum field, each mode of fixed wavelength behaves like a
simple harmonic oscillator. (“Free” means “noninteracting”; for our purposes this is a very
good approximation.) As we know from elementary quantum mechanics, the ground-state
or zero-point energy of an harmonic oscillator with potential V (x) = 1

2ω
2x2 is E0 = 1

2 h̄ω.
Thus, each mode of a quantum field contributes to the vacuum energy, and the net result
should be an integral over all of the modes. Unfortunately this integral diverges, so the
vacuum energy appears to be infinite. However, the infinity arises from the contribution of
modes with very small wavelengths; perhaps it was a mistake to include such modes, since
we don’t really know what might happen at such scales. To account for our ignorance, we
could introduce a cutoff energy, above which ignore any potential contributions, and hope
that a more complete theory will eventually provide a physical justification for doing so. If
this cutoff is at the Planck scale, we recover the estimate (67).

The strategy of decomposing a free field into individual modes and assigning a zero-
point energy to each one really only makes sense in a flat spacetime background. In curved
spacetime we can still “renormalize” the vacuum energy, relating the classical parameter to
the quantum value by an infinite constant. After renormalization, the vacuum energy is
completely arbitrary, just as it was in the original classical theory. But when we use general
relativity we are really using an effective field theory to describe a certain limit of quantum
gravity. In the context of effective field theory, if a parameter has dimensions [mass]n, we
expect the corresponding mass parameter to be driven up to the scale at which the effective
description breaks down. Hence, if we believe classical general relativity up to the Planck
scale, we would expect the vacuum energy to be given by our original guess (67).
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description breaks down. Hence, if we believe classical general relativity up to the Planck
scale, we would expect the vacuum energy to be given by our original guess (67).
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In classical general relativity the cosmological constant Λ is a completely free parameter. It
has dimensions of [length]−2 (while the energy density ρΛ has units [energy/volume]), and
hence defines a scale, while general relativity is otherwise scale-free. Indeed, from purely
classical considerations, we can’t even say whether a specific value of Λ is “large” or “small”;
it is simply a constant of nature we should go out and determine through experiment.

The introduction of quantum mechanics changes this story somewhat. For one thing,
Planck’s constant allows us to define the reduced Planck mass Mp ∼ 1018 GeV, as well as
the reduced Planck length

LP = (8πG)1/2 ∼ 10−32 cm . (65)

Hence, there is a natural expectation for the scale of the cosmological constant, namely

Λ(guess) ∼ L−2
P , (66)

or, phrased as an energy density,

ρ(guess)
vac ∼ M4

P ∼ (1018 GeV)4 ∼ 10112 erg/cm3 . (67)

We can partially justify this guess by thinking about quantum fluctuations in the vacuum.
At all energies probed by experiment to date, the world is accurately described as a set of
quantum fields (at higher energies it may become strings or something else). If we take
the Fourier transform of a free quantum field, each mode of fixed wavelength behaves like a
simple harmonic oscillator. (“Free” means “noninteracting”; for our purposes this is a very
good approximation.) As we know from elementary quantum mechanics, the ground-state
or zero-point energy of an harmonic oscillator with potential V (x) = 1

2ω
2x2 is E0 = 1

2 h̄ω.
Thus, each mode of a quantum field contributes to the vacuum energy, and the net result
should be an integral over all of the modes. Unfortunately this integral diverges, so the
vacuum energy appears to be infinite. However, the infinity arises from the contribution of
modes with very small wavelengths; perhaps it was a mistake to include such modes, since
we don’t really know what might happen at such scales. To account for our ignorance, we
could introduce a cutoff energy, above which ignore any potential contributions, and hope
that a more complete theory will eventually provide a physical justification for doing so. If
this cutoff is at the Planck scale, we recover the estimate (67).

The strategy of decomposing a free field into individual modes and assigning a zero-
point energy to each one really only makes sense in a flat spacetime background. In curved
spacetime we can still “renormalize” the vacuum energy, relating the classical parameter to
the quantum value by an infinite constant. After renormalization, the vacuum energy is
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However, we claim to have measured the vacuum energy (58). The observed value is
somewhat discrepant with our theoretical estimate:

ρ(obs)
vac ∼ 10−120ρ(guess)

vac . (68)

This is the famous 120-orders-of-magnitude discrepancy that makes the cosmological con-
stant problem such a glaring embarrassment. Of course, it is a little unfair to emphasize the
factor of 10120, which depends on the fact that energy density has units of [energy]4. We can
express the vacuum energy in terms of a mass scale,

ρvac = M4
vac , (69)

so our observational result is
M (obs)

vac ∼ 10−3 eV . (70)

The discrepancy is thus
M (obs)

vac ∼ 10−30M (guess)
vac . (71)

We should think of the cosmological constant problem as a discrepancy of 30 orders of
magnitude in energy scale.

In addition to the fact that it is very small compared to its natural value, the vacuum
energy presents an additional puzzle: the coincidence between the observed vacuum energy
and the current matter density. Our best-fit universe (64) features vacuum and matter
densities of the same order of magnitude, but the ratio of these quantities changes rapidly
as the universe expands:

ΩΛ

ΩM
=

ρΛ

ρM
∝ a3 . (72)

As a consequence, at early times the vacuum energy was negligible in comparison to matter
and radiation, while at late times matter and radiation are negligible. There is only a brief
epoch of the universe’s history during which it would be possible to witness the transition
from domination by one type of component to another.

To date, there are not any especially promising approaches to calculating the vacuum
energy and getting the right answer; it is nevertheless instructive to consider the example of
supersymmetry, which relates to the cosmological constant problem in an interesting way.
Supersymmetry posits that for each fermionic degree of freedom there is a matching bosonic
degree of freedom, and vice-versa. By “matching” we mean, for example, that the spin-1/2
electron must be accompanied by a spin-0 “selectron” with the same mass and charge. The
good news is that, while bosonic fields contribute a positive vacuum energy, for fermions the
contribution is negative. Hence, if degrees of freedom exactly match, the net vacuum energy
sums to zero. Supersymmetry is thus an example of a theory, other than gravity, where the
absolute zero-point of energy is a meaningful concept. (This can be traced to the fact that
supersymmetry is a spacetime symmetry, relating particles of different spins.)

We do not, however, live in a supersymmetric state; there is no selectron with the same
mass and charge as an electron, or we would have noticed it long ago. If supersymmetry exists
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densities of the same order of magnitude, but the ratio of these quantities changes rapidly
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As a consequence, at early times the vacuum energy was negligible in comparison to matter
and radiation, while at late times matter and radiation are negligible. There is only a brief
epoch of the universe’s history during which it would be possible to witness the transition
from domination by one type of component to another.

To date, there are not any especially promising approaches to calculating the vacuum
energy and getting the right answer; it is nevertheless instructive to consider the example of
supersymmetry, which relates to the cosmological constant problem in an interesting way.
Supersymmetry posits that for each fermionic degree of freedom there is a matching bosonic
degree of freedom, and vice-versa. By “matching” we mean, for example, that the spin-1/2
electron must be accompanied by a spin-0 “selectron” with the same mass and charge. The
good news is that, while bosonic fields contribute a positive vacuum energy, for fermions the
contribution is negative. Hence, if degrees of freedom exactly match, the net vacuum energy
sums to zero. Supersymmetry is thus an example of a theory, other than gravity, where the
absolute zero-point of energy is a meaningful concept. (This can be traced to the fact that
supersymmetry is a spacetime symmetry, relating particles of different spins.)

We do not, however, live in a supersymmetric state; there is no selectron with the same
mass and charge as an electron, or we would have noticed it long ago. If supersymmetry exists
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However, at the time of their decoupling, different photons were released from regions of
space with slightly different gravitational potentials. Since photons redshift as they climb
out of gravitational potentials, photons from some regions redshift slightly more than those
from other regions, giving rise to a small temperature anisotropy in the CMB observed
today. On smaller scales, the evolution of the plasma has led to intrinsic differences in the
temperature from point to point. In this sense the CMB carries with it a fingerprint of the
initial conditions that ultimately gave rise to structure in the universe.

One very important piece of data that the CMB fluctuations give us is the value of Ωtotal.
Consider an overdense region of size R, which therefore contracts under self-gravity over a
timescale R (recall c = 1). If R ≫ H−1

CMB then the region will not have had time to collapse
over the lifetime of the universe at last scattering. If R ≪ H−1

CMB then collapse will be well
underway at last scattering, matter will have had time to fall into the resulting potential
well and cause a resulting rise in temperature which, in turn, gives rise to a restoring force
from photon pressure, which acts to damps out the inhomogeneity.

Clearly, therefore, the maximum anisotropy will be on a scale which has had just enough
time to collapse, but not had enough time to equilibrate - R ∼ H−1

CMB. This means that
we expect to see a peak in the CMB power spectrum at an angular size corresponding to
the horizon size at last scattering. Since we know the physical size of the horizon at last
scattering, this provides us with a ruler on the sky. The corresponding angular scale will
then depend on the spatial geometry of the universe. For a flat universe (k = 0, Ωtotal = 1)
we expect a peak at l ≃ 220 and, as can be seen in figure (3.6), this is in excellent agreement
with observations.

Beyond this simple heuristic description, careful analysis of all of the features of the CMB
power spectrum (the positions and heights of each peak and trough) provide constraints on
essentially all of the cosmological parameters. As an example we consider the results from
WMAP [73]. For the total density of the universe they find

0.98 ≤ Ωtotal ≤ 1.08 (63)

at 95% confidence – as mentioned, strong evidence for a flat universe. Nevertheless, there
is still some degeneracy in the parameters, and much tighter constraints on the remaining
values can be derived by assuming either an exactly flat universe, or a reasonable value of
the Hubble constant. When for example we assume a flat universe, we can derive values for
the Hubble constant, matter density (which then implies the vacuum energy density), and
baryon density:

h = 0.72 ± 0.05

ΩM = 1 − ΩΛ = 0.29 ± 0.07

ΩB = 0.047 ± 0.006 .

If we instead assume that the Hubble constant is given by the value determined by the HST
key project (53), we can derive separate tight constraints on ΩM and ΩΛ; these are shown
graphically in Figure 3.7, along with constraints from the supernova experiments.
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However, we claim to have measured the vacuum energy (58). The observed value is
somewhat discrepant with our theoretical estimate:

ρ(obs)
vac ∼ 10−120ρ(guess)

vac . (68)

This is the famous 120-orders-of-magnitude discrepancy that makes the cosmological con-
stant problem such a glaring embarrassment. Of course, it is a little unfair to emphasize the
factor of 10120, which depends on the fact that energy density has units of [energy]4. We can
express the vacuum energy in terms of a mass scale,

ρvac = M4
vac , (69)

so our observational result is
M (obs)

vac ∼ 10−3 eV . (70)

The discrepancy is thus
M (obs)

vac ∼ 10−30M (guess)
vac . (71)

We should think of the cosmological constant problem as a discrepancy of 30 orders of
magnitude in energy scale.

In addition to the fact that it is very small compared to its natural value, the vacuum
energy presents an additional puzzle: the coincidence between the observed vacuum energy
and the current matter density. Our best-fit universe (64) features vacuum and matter
densities of the same order of magnitude, but the ratio of these quantities changes rapidly
as the universe expands:

ΩΛ

ΩM
=

ρΛ

ρM
∝ a3 . (72)

As a consequence, at early times the vacuum energy was negligible in comparison to matter
and radiation, while at late times matter and radiation are negligible. There is only a brief
epoch of the universe’s history during which it would be possible to witness the transition
from domination by one type of component to another.

To date, there are not any especially promising approaches to calculating the vacuum
energy and getting the right answer; it is nevertheless instructive to consider the example of
supersymmetry, which relates to the cosmological constant problem in an interesting way.
Supersymmetry posits that for each fermionic degree of freedom there is a matching bosonic
degree of freedom, and vice-versa. By “matching” we mean, for example, that the spin-1/2
electron must be accompanied by a spin-0 “selectron” with the same mass and charge. The
good news is that, while bosonic fields contribute a positive vacuum energy, for fermions the
contribution is negative. Hence, if degrees of freedom exactly match, the net vacuum energy
sums to zero. Supersymmetry is thus an example of a theory, other than gravity, where the
absolute zero-point of energy is a meaningful concept. (This can be traced to the fact that
supersymmetry is a spacetime symmetry, relating particles of different spins.)

We do not, however, live in a supersymmetric state; there is no selectron with the same
mass and charge as an electron, or we would have noticed it long ago. If supersymmetry exists
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universe may be separated by inflating regions from other “universes” which have landed in
different vacuum states; this is precisely what is needed to empower the idea of environmental
selection.

Nevertheless, it seems extravagant to imagine a fantastic number of separate regions of
the universe, outside the boundary of what we can ever possibly observe, just so that we may
understand the value of the vacuum energy in our region. But again, this doesn’t mean it
isn’t true. To decide once and for all will be extremely difficult, and will at the least require
a much better understanding of how both string theory (or some alternative) and inflation
operate – an understanding that we will undoubtedly require a great deal of experimental
input to achieve.

3.5 Dark Energy, or Worse?

If general relativity is correct, cosmic acceleration implies there must be a dark energy density
which diminishes relatively slowly as the universe expands. This can be seen directly from
the Friedmann equation (17), which implies

ȧ2 ∝ a2ρ + constant . (77)

From this relation, it is clear that the only way to get acceleration (ȧ increasing) in an
expanding universe is if ρ falls off more slowly than a−2; neither matter (ρM ∝ a−3) nor
radiation (ρR ∝ a−4) will do the trick. Vacuum energy is, of course, strictly constant; but
the data are consistent with smoothly-distributed sources of dark energy that vary slowly
with time.

There are good reasons to consider dynamical dark energy as an alternative to an honest
cosmological constant. First, a dynamical energy density can be evolving slowly to zero, al-
lowing for a solution to the cosmological constant problem which makes the ultimate vacuum
energy vanish exactly. Second, it poses an interesting and challenging observational prob-
lem to study the evolution of the dark energy, from which we might learn something about
the underlying physical mechanism. Perhaps most intriguingly, allowing the dark energy to
evolve opens the possibility of finding a dynamical solution to the coincidence problem, if
the dynamics are such as to trigger a recent takeover by the dark energy (independently of,
or at least for a wide range of, the parameters in the theory). To date this hope has not
quite been met, but dynamical mechanisms at least allow for the possibility (unlike a true
cosmological constant).

The simplest possibility along these lines involves the same kind of source typically in-
voked in models of inflation in the very early universe: a scalar field φ rolling slowly in a
potential, sometimes known as “quintessence” [92, 93, 94, 95, 96, 97]. The energy density of
a scalar field is a sum of kinetic, gradient, and potential energies,

ρφ =
1

2
φ̇2 +

1

2
(∇φ)2 + V (φ) . (78)
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ȧ2 ∝ a2ρ + constant . (77)

From this relation, it is clear that the only way to get acceleration (ȧ increasing) in an
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However, we claim to have measured the vacuum energy (58). The observed value is
somewhat discrepant with our theoretical estimate:

ρ(obs)
vac ∼ 10−120ρ(guess)

vac . (68)

This is the famous 120-orders-of-magnitude discrepancy that makes the cosmological con-
stant problem such a glaring embarrassment. Of course, it is a little unfair to emphasize the
factor of 10120, which depends on the fact that energy density has units of [energy]4. We can
express the vacuum energy in terms of a mass scale,

ρvac = M4
vac , (69)

so our observational result is
M (obs)

vac ∼ 10−3 eV . (70)

The discrepancy is thus
M (obs)

vac ∼ 10−30M (guess)
vac . (71)

We should think of the cosmological constant problem as a discrepancy of 30 orders of
magnitude in energy scale.

In addition to the fact that it is very small compared to its natural value, the vacuum
energy presents an additional puzzle: the coincidence between the observed vacuum energy
and the current matter density. Our best-fit universe (64) features vacuum and matter
densities of the same order of magnitude, but the ratio of these quantities changes rapidly
as the universe expands:

ΩΛ

ΩM
=

ρΛ

ρM
∝ a3 . (72)

As a consequence, at early times the vacuum energy was negligible in comparison to matter
and radiation, while at late times matter and radiation are negligible. There is only a brief
epoch of the universe’s history during which it would be possible to witness the transition
from domination by one type of component to another.

To date, there are not any especially promising approaches to calculating the vacuum
energy and getting the right answer; it is nevertheless instructive to consider the example of
supersymmetry, which relates to the cosmological constant problem in an interesting way.
Supersymmetry posits that for each fermionic degree of freedom there is a matching bosonic
degree of freedom, and vice-versa. By “matching” we mean, for example, that the spin-1/2
electron must be accompanied by a spin-0 “selectron” with the same mass and charge. The
good news is that, while bosonic fields contribute a positive vacuum energy, for fermions the
contribution is negative. Hence, if degrees of freedom exactly match, the net vacuum energy
sums to zero. Supersymmetry is thus an example of a theory, other than gravity, where the
absolute zero-point of energy is a meaningful concept. (This can be traced to the fact that
supersymmetry is a spacetime symmetry, relating particles of different spins.)

We do not, however, live in a supersymmetric state; there is no selectron with the same
mass and charge as an electron, or we would have noticed it long ago. If supersymmetry exists
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Thermodynamics of the early universe

dynamical tests. We have chosen the coupling constant µ to be very small, but we have
also introduced a new light degree of freedom. Chiba [114] has pointed out that the model
with n = 1 is equivalent to Brans-Dicke theory with ω = 0 in the approximation where the
potential was neglected, and would therefore be inconsistent with experiment. It is not yet
clear whether including the potential, or considering extensions of the original model, could
alter this conclusion.

4 Early Times in the Standard Cosmology

In the first lecture we described the kinematics and dynamics of homogeneous and isotropic
cosmologies in general relativity, while in the second we discussed the situation in our cur-
rent universe. In this lecture we wind the clock back, using what we know of the laws of
physics and the universe today to infer conditions in the early universe. Early times were
characterized by very high temperatures and densities, with many particle species kept in
(approximate) thermal equilibrium by rapid interactions. We will therefore have to move
beyond a simple description of non-interacting “matter” and “radiation,” and discuss how
thermodynamics works in an expanding universe.

4.1 Describing Matter

In the first lecture we discussed how to describe matter as a perfect fluid, described by an
energy-momentum tensor

Tµν = (ρ + p)UµUν + pgµν , (87)

where Uµ is the fluid four-velocity, ρ is the energy density in the rest frame of the fluid and p
is the pressure in that same frame. The energy-momentum tensor is covariantly conserved,

∇µT µν = 0 . (88)

In a more complete description, a fluid will be characterized by quantities in addition
to the energy density and pressure. Many fluids have a conserved quantity associated with
them and so we will also introduce a number flux density Nµ, which is also conserved

∇µN
µ = 0 . (89)

For non-tachyonic matter Nµ is a timelike 4-vector and therefore we may decompose it as

Nµ = nUµ . (90)

We can also introduce an entropy flux density Sµ. This quantity is not conserved, but rather
obeys a covariant version of the second law of thermodynamics

∇µSµ ≥ 0 . (91)
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It is often useful to combine (17) and (18) to obtain the acceleration equation

ä

a
= −

4πG

3

∑

i

(ρi + 3pi) . (19)

In fact, if we know the magnitudes and evolutions of the different energy density compo-
nents ρi, the Friedmann equation (17) is sufficient to solve for the evolution uniquely. The
acceleration equation is conceptually useful, but rarely invoked in calculations.

The Friedmann equation relates the rate of increase of the scale factor, as encoded by
the Hubble parameter, to the total energy density of all matter in the universe. We may use
the Friedmann equation to define, at any given time, a critical energy density,

ρc ≡
3H2

8πG
, (20)

for which the spatial sections must be precisely flat (k = 0). We then define the density
parameter

Ωtotal ≡
ρ

ρc
, (21)

which allows us to relate the total energy density in the universe to its local geometry via

Ωtotal > 1 ⇔ k = +1

Ωtotal = 1 ⇔ k = 0 (22)

Ωtotal < 1 ⇔ k = −1 .

It is often convenient to define the fractions of the critical energy density in each different
component by

Ωi =
ρi

ρc
. (23)

Energy conservation is expressed in GR by the vanishing of the covariant divergence of
the energy-momentum tensor,

∇µT
µν = 0 . (24)

Applying this to our assumptions – the RW metric (7) and perfect-fluid energy-momentum
tensor (14) – yields a single energy-conservation equation,

ρ̇ + 3H(ρ + p) = 0 . (25)

This equation is actually not independent of the Friedmann and acceleration equations, but
is required for consistency. It implies that the expansion of the universe (as specified by H)
can lead to local changes in the energy density. Note that there is no notion of conservation
of “total energy,” as energy can be interchanged between matter and the spacetime geometry.

One final piece of information is required before we can think about solving our cosmo-
logical equations: how the pressure and energy density are related to each other. Within the
fluid approximation used here, we may assume that the pressure is a single-valued function of

9

Not all phenomena are successfully described in terms of such a local entropy vector (e.g.,
black holes); fortunately, it suffices for a wide variety of fluids relevant to cosmology.

The conservation law for the energy-momentum tensor yields, most importantly, equa-
tion (25), which can be thought of as the first law of thermodynamics

dU = TdS − pdV , (92)

with dS = 0.
It is useful to resolve Sµ into components parallel and perpendicular to the fluid 4-velocity

Sµ = sUµ + sµ , (93)

where sµUµ = 0. The scalar s is the rest-frame entropy density which, up to an additive
constant (that we can consistently set to zero), can be written as

s =
ρ + p

T
. (94)

In addition to all these quantities, we must specify an equation of state, and we typically do
this in such a way as to treat n and s as independent variables.

4.2 Particles in Equilibrium

The various particles inhabiting the early universe can be usefully characterized according to
three criteria: in equilibrium vs. out of equilibrium (decoupled), bosonic vs. fermionic, and
relativistic (velocities near c) vs. non-relativistic. In this section we consider species which
are in equilibrium with the surrounding thermal bath.

Let us begin by discussing the conditions under which a particle species will be in equilib-
rium with the surrounding thermal plasma. A given species remains in thermal equilibrium
as long as its interaction rate is larger than the expansion rate of the universe. Roughly
speaking, equilibrium requires it to be possible for the products of a given reaction have
the opportunity to recombine in the reverse reaction and if the expansion of the universe
is rapid enough this won’t happen. A particle species for which the interaction rates have
fallen below the expansion rate of the universe is said to have frozen out or decoupled. If
the interaction rate of some particle with the background plasma is Γ, it will be decoupled
whenever

Γ ≪ H , (95)

where the Hubble constant H sets the cosmological timescale.
As a good rule of thumb, the expansion rate in the early universe is “slow,” and particles

tend to be in thermal equilibrium (unless they are very weakly coupled). This can be seen
from the Friedmann equation when the energy density is dominated by a plasma with ρ ∼ T 4;
we then have

H ∼
(

T

Mp

)

T . (96)
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as long as its interaction rate is larger than the expansion rate of the universe. Roughly
speaking, equilibrium requires it to be possible for the products of a given reaction have
the opportunity to recombine in the reverse reaction and if the expansion of the universe
is rapid enough this won’t happen. A particle species for which the interaction rates have
fallen below the expansion rate of the universe is said to have frozen out or decoupled. If
the interaction rate of some particle with the background plasma is Γ, it will be decoupled
whenever

Γ ≪ H , (95)

where the Hubble constant H sets the cosmological timescale.
As a good rule of thumb, the expansion rate in the early universe is “slow,” and particles

tend to be in thermal equilibrium (unless they are very weakly coupled). This can be seen
from the Friedmann equation when the energy density is dominated by a plasma with ρ ∼ T 4;
we then have

H ∼
(

T

Mp

)
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Not all phenomena are successfully described in terms of such a local entropy vector (e.g.,
black holes); fortunately, it suffices for a wide variety of fluids relevant to cosmology.

The conservation law for the energy-momentum tensor yields, most importantly, equa-
tion (25), which can be thought of as the first law of thermodynamics

dU = TdS − pdV , (92)

with dS = 0.
It is useful to resolve Sµ into components parallel and perpendicular to the fluid 4-velocity

Sµ = sUµ + sµ , (93)

where sµUµ = 0. The scalar s is the rest-frame entropy density which, up to an additive
constant (that we can consistently set to zero), can be written as

s =
ρ + p

T
. (94)

In addition to all these quantities, we must specify an equation of state, and we typically do
this in such a way as to treat n and s as independent variables.
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Thus, the Hubble parameter is suppressed with respect to the temperature by a factor of
T/Mp. At extremely early times (near the Planck era, for example), the universe may
be expanding so quickly that no species are in equilibrium; as the expansion rate slows,
equilibrium becomes possible. However, the interaction rate Γ for a particle with cross-
section σ is typically of the form

Γ = n⟨σv⟩ , (97)

where n is the number density and v a typical particle velocity. Since n ∝ a−3, the density
of particles will eventually dip so low that equilibrium can once again no longer be main-
tained. In our current universe, no species are in equilibrium with the background plasma
(represented by the CMB photons).

Now let us focus on particles in equilibrium. For a gas of weakly-interacting particles, we
can describe the state in terms of a distribution function f(p), where the three-momentum
p satisfies

E2(p) = m2 + |p|2 . (98)

The distribution function characterizes the density of particles in a given momentum bin.
(In general it will also be a function of the spatial position x, but we suppress that here.)
The number density, energy density, and pressure of some species labeled i are given by

ni =
gi

(2π)3

∫

fi(p)d3p

ρi =
gi

(2π)3

∫

E(p)fi(p)d3p

pi =
gi

(2π)3

∫ |p|2

3E(p)
fi(p)d3p , (99)

where gi is the number of spin states of the particles. For massless photons we have gγ = 2,
while for a massive vector boson such as the Z we have gZ = 3. In the usual accounting,
particles and antiparticles are treated as separate species; thus, for spin-1/2 electrons and
positrons we have ge− = ge+ = 2. In thermal equilibrium at a temperature T the particles
will be in either Fermi-Dirac or Bose-Einstein distributions,

f(p) =
1

eE(p)/T ± 1
, (100)

where the plus sign is for fermions and the minus sign for bosons.
We can do the integrals over the distribution functions in two opposite limits: particles

which are highly relativistic (T ≫ m) or highly non-relativistic (T ≪ m). The results are
shown in table 2, in which ζ is the Riemann zeta function, and ζ(3) ≈ 1.202.

From this table we can extract several pieces of relevant information. Relativistic parti-
cles, whether bosons or fermions, remain in approximately equal abundances in equilibrium.
Once they become non-relativistic, however, their abundance plummets, and becomes expo-
nentially suppressed with respect to the relativistic species. This is simply because it becomes
progressively harder for massive particle-antiparticle pairs to be produced in a plasma with
T ≪ m.
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Table 2: Number density, energy density, and pressure, for species in thermal equilibrium.

It is interesting to note that, although matter is much more dominant than radiation
in the universe today, since their energy densities scale differently the early universe was
radiation-dominated. We can write the ratio of the density parameters in matter and radi-
ation as

ΩM

ΩR
=

ΩM0

ΩR0

(

a

a0

)

=
ΩM0

ΩR0
(1 + z)−1 . (101)

The redshift of matter-radiation equality is thus

1 + zeq =
ΩM0

ΩR0
≈ 3 × 103 . (102)

This expression assumes that the particles that are non-relativistic today were also non-
relativistic at zeq; this should be a safe assumption, with the possible exception of massive
neutrinos, which make a minority contribution to the total density.

As we mentioned in our discussion of the CMB in the previous lecture, even decoupled
photons maintain a thermal distribution; this is not because they are in equilibrium, but
simply because the distribution function redshifts into a similar distribution with a lower
temperature proportional to 1/a. We can therefore speak of the “effective temperature” of
a relativistic species that freezes out at a temperature Tf and scale factor af :

T rel
i (a) = Tf

(

af

a

)

. (103)

For example, neutrinos decouple at a temperature around 1 MeV; shortly thereafter, electrons
and positrons annihilate into photons, dumping energy (and entropy) into the plasma but
leaving the neutrinos unaffected. Consequently, we expect a neutrino background in the
current universe with a temperature of approximately 2K, while the photon temperature is
3K.

A similar effect occurs for particles which are non-relativistic at decoupling, with one
important difference. For non-relativistic particles the temperature is proportional to the
kinetic energy 1

2mv2, which redshifts as 1/a2. We therefore have

T non−rel
i (a) = Tf

(

af

a

)2

. (104)
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photons maintain a thermal distribution; this is not because they are in equilibrium, but
simply because the distribution function redshifts into a similar distribution with a lower
temperature proportional to 1/a. We can therefore speak of the “effective temperature” of
a relativistic species that freezes out at a temperature Tf and scale factor af :

T rel
i (a) = Tf

(

af

a

)

. (103)

For example, neutrinos decouple at a temperature around 1 MeV; shortly thereafter, electrons
and positrons annihilate into photons, dumping energy (and entropy) into the plasma but
leaving the neutrinos unaffected. Consequently, we expect a neutrino background in the
current universe with a temperature of approximately 2K, while the photon temperature is
3K.

A similar effect occurs for particles which are non-relativistic at decoupling, with one
important difference. For non-relativistic particles the temperature is proportional to the
kinetic energy 1

2mv2, which redshifts as 1/a2. We therefore have

T non−rel
i (a) = Tf

(

af

a

)2

. (104)
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Thus, the Hubble parameter is suppressed with respect to the temperature by a factor of
T/Mp. At extremely early times (near the Planck era, for example), the universe may
be expanding so quickly that no species are in equilibrium; as the expansion rate slows,
equilibrium becomes possible. However, the interaction rate Γ for a particle with cross-
section σ is typically of the form

Γ = n⟨σv⟩ , (97)

where n is the number density and v a typical particle velocity. Since n ∝ a−3, the density
of particles will eventually dip so low that equilibrium can once again no longer be main-
tained. In our current universe, no species are in equilibrium with the background plasma
(represented by the CMB photons).

Now let us focus on particles in equilibrium. For a gas of weakly-interacting particles, we
can describe the state in terms of a distribution function f(p), where the three-momentum
p satisfies

E2(p) = m2 + |p|2 . (98)

The distribution function characterizes the density of particles in a given momentum bin.
(In general it will also be a function of the spatial position x, but we suppress that here.)
The number density, energy density, and pressure of some species labeled i are given by

ni =
gi

(2π)3

∫

fi(p)d3p

ρi =
gi

(2π)3

∫

E(p)fi(p)d3p

pi =
gi

(2π)3

∫ |p|2

3E(p)
fi(p)d3p , (99)

where gi is the number of spin states of the particles. For massless photons we have gγ = 2,
while for a massive vector boson such as the Z we have gZ = 3. In the usual accounting,
particles and antiparticles are treated as separate species; thus, for spin-1/2 electrons and
positrons we have ge− = ge+ = 2. In thermal equilibrium at a temperature T the particles
will be in either Fermi-Dirac or Bose-Einstein distributions,

f(p) =
1

eE(p)/T ± 1
, (100)

where the plus sign is for fermions and the minus sign for bosons.
We can do the integrals over the distribution functions in two opposite limits: particles

which are highly relativistic (T ≫ m) or highly non-relativistic (T ≪ m). The results are
shown in table 2, in which ζ is the Riemann zeta function, and ζ(3) ≈ 1.202.

From this table we can extract several pieces of relevant information. Relativistic parti-
cles, whether bosons or fermions, remain in approximately equal abundances in equilibrium.
Once they become non-relativistic, however, their abundance plummets, and becomes expo-
nentially suppressed with respect to the relativistic species. This is simply because it becomes
progressively harder for massive particle-antiparticle pairs to be produced in a plasma with
T ≪ m.

37

Thus, the Hubble parameter is suppressed with respect to the temperature by a factor of
T/Mp. At extremely early times (near the Planck era, for example), the universe may
be expanding so quickly that no species are in equilibrium; as the expansion rate slows,
equilibrium becomes possible. However, the interaction rate Γ for a particle with cross-
section σ is typically of the form

Γ = n⟨σv⟩ , (97)

where n is the number density and v a typical particle velocity. Since n ∝ a−3, the density
of particles will eventually dip so low that equilibrium can once again no longer be main-
tained. In our current universe, no species are in equilibrium with the background plasma
(represented by the CMB photons).

Now let us focus on particles in equilibrium. For a gas of weakly-interacting particles, we
can describe the state in terms of a distribution function f(p), where the three-momentum
p satisfies

E2(p) = m2 + |p|2 . (98)

The distribution function characterizes the density of particles in a given momentum bin.
(In general it will also be a function of the spatial position x, but we suppress that here.)
The number density, energy density, and pressure of some species labeled i are given by

ni =
gi

(2π)3

∫

fi(p)d3p

ρi =
gi

(2π)3

∫

E(p)fi(p)d3p

pi =
gi

(2π)3

∫ |p|2

3E(p)
fi(p)d3p , (99)

where gi is the number of spin states of the particles. For massless photons we have gγ = 2,
while for a massive vector boson such as the Z we have gZ = 3. In the usual accounting,
particles and antiparticles are treated as separate species; thus, for spin-1/2 electrons and
positrons we have ge− = ge+ = 2. In thermal equilibrium at a temperature T the particles
will be in either Fermi-Dirac or Bose-Einstein distributions,

f(p) =
1

eE(p)/T ± 1
, (100)

where the plus sign is for fermions and the minus sign for bosons.
We can do the integrals over the distribution functions in two opposite limits: particles

which are highly relativistic (T ≫ m) or highly non-relativistic (T ≪ m). The results are
shown in table 2, in which ζ is the Riemann zeta function, and ζ(3) ≈ 1.202.

From this table we can extract several pieces of relevant information. Relativistic parti-
cles, whether bosons or fermions, remain in approximately equal abundances in equilibrium.
Once they become non-relativistic, however, their abundance plummets, and becomes expo-
nentially suppressed with respect to the relativistic species. This is simply because it becomes
progressively harder for massive particle-antiparticle pairs to be produced in a plasma with
T ≪ m.

37

In either case we are imagining that the species freezes out while relativistic/non-relativistic
and stays that way afterward; if it freezes out while relativistic and subsequently becomes
non-relativistic, the distribution function will be distorted away from a thermal spectrum.

The notion of an effective temperature allows us to define a corresponding notion of
an effective number of relativistic degrees of freedom, which in turn permits a compact
expression for the total relativistic energy density. The effective number of relativistic degrees
of freedom (as far as energy is concerned) can be defined as

g∗ =
∑

bosons

gi

(

Ti

T

)4

+
7

8

∑

fermions

gi

(

Ti

T

)4

. (105)

(The temperature T is the actual temperature of the background plasma, assumed to be in
equilibrium.) Then the total energy density in all relativistic species comes from adding the
contributions of each species, to obtain the simple formula

ρ =
π2

30
g∗T

4 . (106)

We can do the same thing for the entropy density. From (94), the entropy density in rela-
tivistic particles goes as T 3 rather than T 4, so we define the effective number of relativistic
degrees of freedom for entropy as

g∗S =
∑

bosons

gi

(

Ti

T

)3

+
7

8

∑

fermions

gi

(

Ti

T

)3

. (107)

The entropy density in relativistic species is then

s =
2π

45
g∗ST 3 . (108)

Numerically, g∗ and g∗S will typically be very close to each other. In the Standard Model,
we have

g∗ ≈ g∗S ∼

⎧

⎨

⎩

100 T > 300 MeV
10 300 MeV > T > 1 MeV
3 T < 1 MeV .

(109)

The events that change the effective number of relativistic degrees of freedom are the QCD
phase transition at 300 MeV, and the annihilation of electron/positron pairs at 1 MeV.

Because of the release of energy into the background plasma when species annihilate, it is
only an approximation to say that the temperature goes as T ∝ 1/a. A better approximation
is to say that the comoving entropy density is conserved,

s ∝ a−3 . (110)

This will hold under all forms of adiabatic evolution; entropy will only be produced at a
process like a first-order phase transition or an out-of-equilibrium decay. (In fact, we expect
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Not all phenomena are successfully described in terms of such a local entropy vector (e.g.,
black holes); fortunately, it suffices for a wide variety of fluids relevant to cosmology.

The conservation law for the energy-momentum tensor yields, most importantly, equa-
tion (25), which can be thought of as the first law of thermodynamics

dU = TdS − pdV , (92)

with dS = 0.
It is useful to resolve Sµ into components parallel and perpendicular to the fluid 4-velocity

Sµ = sUµ + sµ , (93)

where sµUµ = 0. The scalar s is the rest-frame entropy density which, up to an additive
constant (that we can consistently set to zero), can be written as

s =
ρ + p

T
. (94)

In addition to all these quantities, we must specify an equation of state, and we typically do
this in such a way as to treat n and s as independent variables.

4.2 Particles in Equilibrium

The various particles inhabiting the early universe can be usefully characterized according to
three criteria: in equilibrium vs. out of equilibrium (decoupled), bosonic vs. fermionic, and
relativistic (velocities near c) vs. non-relativistic. In this section we consider species which
are in equilibrium with the surrounding thermal bath.

Let us begin by discussing the conditions under which a particle species will be in equilib-
rium with the surrounding thermal plasma. A given species remains in thermal equilibrium
as long as its interaction rate is larger than the expansion rate of the universe. Roughly
speaking, equilibrium requires it to be possible for the products of a given reaction have
the opportunity to recombine in the reverse reaction and if the expansion of the universe
is rapid enough this won’t happen. A particle species for which the interaction rates have
fallen below the expansion rate of the universe is said to have frozen out or decoupled. If
the interaction rate of some particle with the background plasma is Γ, it will be decoupled
whenever

Γ ≪ H , (95)

where the Hubble constant H sets the cosmological timescale.
As a good rule of thumb, the expansion rate in the early universe is “slow,” and particles

tend to be in thermal equilibrium (unless they are very weakly coupled). This can be seen
from the Friedmann equation when the energy density is dominated by a plasma with ρ ∼ T 4;
we then have

H ∼
(

T

Mp

)

T . (96)
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that the entropy production from such processes is very small compared to the total entropy,
and adiabatic evolution is an excellent approximation for almost the entire early universe.
One exception is inflation, discussed in the next lecture.) Combining entropy conservation
with the expression (108) for the entropy density in relativistic species, we obtain a better
expression for the evolution of the temperature,

T ∝ g−1/3
∗S a−1 . (111)

The temperature will consistently decrease under adiabatic evolution in an expanding uni-
verse, but it decreases more slowly when the effective number of relativistic degrees of freedom
is diminished.

4.3 Thermal Relics

As we have mentioned, particles typically do not stay in equilibrium forever; eventually
the density becomes so low that interactions become infrequent, and the particles freeze
out. Since essentially all of the particles in our current universe fall into this category, it is
important to study the relic abundance of decoupled species. (Of course it is also possible
to obtain a significant relic abundance for particles which were never in thermal equilibrium;
examples might include baryons produced by GUT baryogenesis, or axions produced by
vacuum misalignment.) In this section we will typically neglect factors of order unity.

We have seen that relativistic, or hot, particles have a number density that is proportional
to T 3 in equilibrium. Thus, a species X that freezes out while still relativistic will have a
number density at freeze-out Tf given by

nX(Tf ) ∼ T 3
f . (112)

Since this is comparable to the number density of photons at that time, and after freeze-out
both photons and our species X just have their number densities dilute by a factor a(t)−3

as the universe expands, it is simple to see that the abundance of X particles today should
be comparable to the abundance of CMB photons,

nX0 ∼ nγ0 ∼ 102 cm−3 . (113)

We express this number as 102 rather than 411 since the roughness of our estimate does not
warrant such misleading precision. The leading correction to this value is typically due to
the production of additional photons subsequent to the decoupling of X; in the Standard
Model, the number density of photons increases by a factor of approximately 100 between
the electroweak phase transition and today, and a species which decouples during this period
will be diluted by a factor of between 1 and 100 depending on precisely when it freezes out.
So, for example, neutrinos which are light (mν < MeV) have a number density today of
nν = 115 cm−3 per species, and a corresponding contribution to the density parameter (if
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that the entropy production from such processes is very small compared to the total entropy,
and adiabatic evolution is an excellent approximation for almost the entire early universe.
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number density at freeze-out Tf given by
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Since this is comparable to the number density of photons at that time, and after freeze-out
both photons and our species X just have their number densities dilute by a factor a(t)−3

as the universe expands, it is simple to see that the abundance of X particles today should
be comparable to the abundance of CMB photons,
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as ρφ ∝ a−3; in a particle interpretation, the field is a Bose condensate of zero-momentum
particles. We will therefore have
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which leads to a density parameter today
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A classic example of a non-thermal relic produced by vacuum displacement is the QCD
axion, which has a typical primordial value ⟨φ⟩ ∼ fPQ and a mass mφ ∼ Λ2

QCD/fPQ, where
fPQ is the Peccei-Quinn symmetry-breaking scale and ΛQCD ∼ 0.3 GeV is the QCD scale [1].
In this case, plugging in numbers reveals

Ω0,φ ∼
(

fPQ

1013 GeV

)3/2

. (125)

The Peccei-Quinn scale is essentially a free parameter from a theoretical point of view,
but experiments and astrophysical constraints have ruled out most values except for a small
window around fPQ ∼ 1012 GeV. The axion therefore remains a viable dark matter candidate
[115, 116]. Note that, even though dark matter axions are very light (Λ2

QCD/fPQ ∼ 10−4 eV),
they are extremely non-relativistic, which can be traced to the non-thermal nature of their
production process. (Another important way to produce axions is through the decay of axion
cosmic strings [1, 117].)

4.5 Primordial Nucleosynthesis

Given our time constraints, even some of the more important concepts in cosmology cannot
be dealt with in significant detail. We have chosen just to give a cursory treatment to
primordial nucleosynthesis, although its importance as a crucial piece of evidence in favor of
the big bang model and its usefulness in bounding any new physics of cosmological relevance
cannot be overstated.

Observations of primordial nebulae reveal abundances of the light elements unexplained
by stellar nucleosynthesis. Although it does a great disservice to the analytic and numerical
work required, not to mention the difficulties of measuring the abundances, we will just state
that the study of nuclear processes in the background of an expanding cooling universe yields
a remarkable concordance between theory and experiment.

At temperatures below 1 MeV, the weak interactions are frozen out and neutrons and
protons cease to interconvert. The equilibrium abundance of neutrons at this temperature
is about 1/6 the abundance of protons (due to the slightly larger neutron mass). The
neutrons have a finite lifetime (τn = 890 sec) that is somewhat larger than the age of the
universe at this epoch, t(1 MeV) ≈ 1 sec, but they begin to gradually decay into protons and
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leptons. Soon thereafter, however, we reach a temperature somewhat below 100 keV, and
Big-Bang nucleosynthesis (BBN) begins. (The nuclear binding energy per nucleon is typically
of order 1 MeV, so you might expect that nucleosynthesis would occur earlier; however, the
large number of photons per nucleon prevents nucleosynthesis from taking place until the
temperature drops below 100 keV.) At that point the neutron/proton ratio is approximately
1/7. Of all the light nuclei, it is energetically favorable for the nucleons to reside in 4He,
and indeed that is what most of the free neutrons are converted into; for every two neutrons
and fourteen protons, we end up with one helium nucleus and twelve protons. Thus, about
25% of the baryons by mass are converted to helium. In addition, there are trace amounts of
deuterium (approximately 10−5 deuterons per proton), 3He (also ∼ 10−5), and 7Li (∼ 10−10).

Of course these numbers are predictions, which are borne out by observations of the
primordial abundances of light elements. (Heavier elements are not synthesized in the Big
Bang, but require supernova explosions in the later universe.) We have glossed over numerous
crucial details, especially those which explain how the different abundances depend on the
cosmological parameters. For example, imagine that we deviate from the Standard Model by
introducing more than three light neutrino species. This would increase the radiation energy
density at a fixed temperature, which in turn decreases the timescales associated with a given
temperature (since t ∼ H−1 ∝ ρ−1/2

R ). Nucleosynthesis would therefore happen somewhat
earlier, resulting in a higher abundance of neutrons, and hence in a larger abundance of 4He.
Observations of the primordial helium abundance, which are consistent with the Standard
Model prediction, provided the first evidence that the number of light neutrinos is actually
three.

The most amazing fact about nucleosynthesis is that, given that the universe is radiation
dominated during the relevant epoch (and the physics of general relativity and the Stan-
dard Model), the relative abundances of the light elements depend essentially on just one
parameter, the baryon to entropy ratio

η ≡
nB

s
=

n − nb̄

s
, (126)

where nB = nb − nb̄ is the difference between the number of baryons and antibaryons per
unit volume. The range of η consistent with the deuterium and 3He primordial abundances
is

2.6 × 10−10 < η < 6.2 × 10−10 . (127)

Very recently this number has been independently determined to be

η = 6.1 × 10−10 +0.3×10−10

−0.2×10−10 (128)

from precise measurements of the relative heights of the first two microwave background
(CMB) acoustic peaks by the WMAP satellite. This is illustrated in figure (4.9) and we will
have a lot more to say about this quantity later when we discuss baryogenesis.
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Figure 4.9: Abundances of light elements produced by BBN, as a function of the baryon den-
sity. The vertical strip indicates the concordance region favored by observations of primordial
abundances. From [47].

4.6 Finite Temperature Phase Transitions

We have hinted at the need to go beyond perfect fluid sources for the Einstein equations if
we are to unravel some of the mysteries left by the standard cosmology. Given our modern
understanding of particle physics, it is natural to consider using field theory to model matter
at early times in the universe. The effect of cosmic expansion and the associated thermody-
namics yield some fascinating phenomena when combined with such a field theory approach.
One significant example is provided by finite temperature phase transitions.

Rather than performing a detailed calculation in finite-temperature field theory, we will
illustrate this with a rough argument. Consider a theory of a single real scalar field φ at zero
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structure formation in the universe [124, 125]; the predictions of these theories are incon-
sistent with the sharp acoustic peaks observed in the CMB, so such models are no longer
considered viable.

In the standard model, however, the broken symmetry is gauged. In this case there is
no need for gradient energies, since the gauge field can always be chosen to cancel them;
equivalently, “texture” configurations can always be brought to the vacuum by a gauge
transformation. However, transitions from one texture configuration to one with a different
winding number are gauge invariant. These transitions will play a role in electroweak baryon
number violation, discussed in the next section.

4.8 Baryogenesis

The symmetry between particles and antiparticles [126, 127], firmly established in collider
physics, naturally leads to the question of why the observed universe is composed almost
entirely of matter with little or no primordial antimatter.

Outside of particle accelerators, antimatter can be seen in cosmic rays in the form of a
few antiprotons, present at a level of around 10−4 in comparison with the number of protons
(for example see [128]). However, this proportion is consistent with secondary antiproton
production through accelerator-like processes, p + p → 3p + p̄, as the cosmic rays stream
towards us. Thus there is no evidence for primordial antimatter in our galaxy. Also, if matter
and antimatter galaxies were to coexist in clusters of galaxies, then we would expect there
to be a detectable background of γ-radiation from nucleon-antinucleon annihilations within
the clusters. This background is not observed and so we conclude that there is negligible
antimatter on the scale of clusters (For a review of the evidence for a baryon asymmetry see
[129].)

More generally, if large domains of matter and antimatter exist, then annihilations would
take place at the interfaces between them. If the typical size of such a domain was small
enough, then the energy released by these annihilations would result in a diffuse γ-ray back-
ground and a distortion of the cosmic microwave radiation, neither of which is observed.

While the above considerations put an experimental upper bound on the amount of an-
timatter in the universe, strict quantitative estimates of the relative abundances of baryonic
matter and antimatter may also be obtained from the standard cosmology. The baryon num-
ber density does not remain constant during the evolution of the universe, instead scaling
like a−3, where a is the cosmological scale factor [130]. It is therefore convenient to define
the baryon asymmetry of the universe in terms of the quantity

η ≡
nB

s
, (164)

defined earlier. Recall that the range of η consistent with the deuterium and 3He primordial
abundances is

2.6 × 10−10 < η < 6.2 × 10−10 . (165)

Thus the natural question arises; as the universe cooled from early times to today, what
processes, both particle physics and cosmological, were responsible for the generation of
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this very specific baryon asymmetry? (For reviews of mechanisms to generate the baryon
asymmetry, see

As pointed out by Sakharov [131], a small baryon asymmetry η may have been produced
in the early universe if three necessary conditions are satisfied

• baryon number (B) violation,

• violation of C (charge conjugation symmetry) and CP (the composition of parity and
C),

• departure from thermal equilibrium.

The first condition should be clear since, starting from a baryon symmetric universe with
η = 0, baryon number violation must take place in order to evolve into a universe in which η
does not vanish. The second Sakharov criterion is required because, if C and CP are exact
symmetries, one can prove that the total rate for any process which produces an excess
of baryons is equal to the rate of the complementary process which produces an excess of
antibaryons and so no net baryon number can be created. That is to say that the thermal
average of the baryon number operator B, which is odd under both C and CP , is zero unless
those discrete symmetries are violated. CP violation is present either if there are complex
phases in the Lagrangian which cannot be reabsorbed by field redefinitions (explicit breaking)
or if some Higgs scalar field acquires a VEV which is not real (spontaneous breaking). We
will discuss this in detail shortly.

Finally, to explain the third criterion, one can calculate the equilibrium average of B at
a temperature T = 1/β:

⟨B⟩T = Tr (e−βHB) = Tr [(CPT )(CPT )−1e−βHB)]

= Tr (e−βH(CPT )−1B(CPT )] = −Tr (e−βHB) , (166)

where we have used that the Hamiltonian H commutes with CPT . Thus ⟨B⟩T = 0 in
equilibrium and there is no generation of net baryon number.

Of the three Sakharov conditions, baryon number violation and C and CP violation may
be investigated only within a given particle physics model, while the third condition – the
departure from thermal equilibrium – may be discussed in a more general way, as we shall
see (for baryogenesis reviews see [132, 133, 9, 10, 134, 135, 136].) Let us discuss the Sakharov
criteria in more detail.

4.9 Baryon Number Violation

4.9.1 B-violation in Grand Unified Theories

As discussed earlier, Grand Unified Theories (GUTs) [137] describe the fundamental inter-
actions by means of a unique gauge group G which contains the Standard Model (SM) gauge
group SU(3)C ⊗ SU(2)L ⊗U(1)Y . The fundamental idea of GUTs is that at energies higher
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C),

• departure from thermal equilibrium.
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does not vanish. The second Sakharov criterion is required because, if C and CP are exact
symmetries, one can prove that the total rate for any process which produces an excess
of baryons is equal to the rate of the complementary process which produces an excess of
antibaryons and so no net baryon number can be created. That is to say that the thermal
average of the baryon number operator B, which is odd under both C and CP , is zero unless
those discrete symmetries are violated. CP violation is present either if there are complex
phases in the Lagrangian which cannot be reabsorbed by field redefinitions (explicit breaking)
or if some Higgs scalar field acquires a VEV which is not real (spontaneous breaking). We
will discuss this in detail shortly.

Finally, to explain the third criterion, one can calculate the equilibrium average of B at
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⟨B⟩T = Tr (e−βHB) = Tr [(CPT )(CPT )−1e−βHB)]

= Tr (e−βH(CPT )−1B(CPT )] = −Tr (e−βHB) , (166)
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equilibrium and there is no generation of net baryon number.

Of the three Sakharov conditions, baryon number violation and C and CP violation may
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but … 

There are some issues associated with the choice of 
initial conditions, to which the standard Hot Big bang 
cosmological model is not able to provide an answer. 

It does not give a wrong answer, it is just unable to 
provide any answer. 

Hence, in the context of the Hot Big bang 
cosmological model one must accept particular initial 
conditions. 

four pillars of the standard hot big bang model:          

� expansion of the universe 

� origin of the cosmic background radiation 

� synthesis of light elements 

� formation of galaxies and large  

   scale structure 
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Successes of Hot big Bang Model 



Problems of the standard cosmological model: 

ú ø aà3(1+w)

a ø t3(1+w)
2

� singularity problem 

ú ! 1 as t ! 0

& the corresponding solutions cannot be 
formally to the domain  t < 0
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� problem of large scale homogeneity and isotropy 

The universe is not completely homogeneous and isotropic 
even now, at least on a relatively small scale, so there is no 
reason to believe that it was initially homogeneous 

 

The class of initial conditions for which the universe tends 
asymptotically (at large t) to a  Friedmann universe is one of 
measure zero among all possible initial conditions 
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� flatness of space problem 

in the early universe: 

and                                                              was extremely small   

to have                                 now 

T øMPlat                    : 
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Figure 1: The horizon problem.

8.1.2 The flatness problem

Another issue is the spatial flatness of the universe. The density parameter is

Ω− 1 =
K

(aH)2
. (8.1)

If Ω is unity at some time, it is always unity. If Ω ≠ 1 at any time, it evolves in
time. Assuming that the spatial curvature is initially small, we have

mat. dom. a ∝ t2/3, H ∝ t−1 ⇒
1

aH
∝ t1/3 ⇒ |1− Ω| ∝ t2/3 (8.2)

rad. dom. a ∝ t1/2, H ∝ t−1 ⇒
1

aH
∝ t1/2 ⇒ |1− Ω| ∝ t . (8.3)

If the spatial curvature is positive, it will quickly dominate over matter or radia-
tion, and the expansion will stop and turn around, and the universe will collapse. If
the spatial curvature is negative, the universe will quickly become empty and cold.
The flatness problem is thus also called the oldness problem. In the ΛCDM model,
the curvature today is very small, |Ω(t0) − 1| < 10−2. Therefore, at BBN we have
|Ω(tBBN) − 1| ! 10−17, which seems like a strong tuning. (Of course, if the spatial
curvature is initially zero, it will remain zero. However, this is a special value, for
which we would like to have an explanation.)

8.1.3 The relic problem

At early times in the Big Bang model the temperature is very high. In grand unified
theories of particle physics there are phase transitions at high temperatures (just
like the Standard Model has the QCD and electroweak phase transitions). These
phase transitions typically generate topological defects such as magnetic monopoles,
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time. Assuming that the spatial curvature is initially small, we have

mat. dom. a ∝ t2/3, H ∝ t−1 ⇒
1

aH
∝ t1/3 ⇒ |1− Ω| ∝ t2/3 (8.2)

rad. dom. a ∝ t1/2, H ∝ t−1 ⇒
1

aH
∝ t1/2 ⇒ |1− Ω| ∝ t . (8.3)

If the spatial curvature is positive, it will quickly dominate over matter or radia-
tion, and the expansion will stop and turn around, and the universe will collapse. If
the spatial curvature is negative, the universe will quickly become empty and cold.
The flatness problem is thus also called the oldness problem. In the ΛCDM model,
the curvature today is very small, |Ω(t0) − 1| < 10−2. Therefore, at BBN we have
|Ω(tBBN) − 1| ! 10−17, which seems like a strong tuning. (Of course, if the spatial
curvature is initially zero, it will remain zero. However, this is a special value, for
which we would like to have an explanation.)

8.1.3 The relic problem

At early times in the Big Bang model the temperature is very high. In grand unified
theories of particle physics there are phase transitions at high temperatures (just
like the Standard Model has the QCD and electroweak phase transitions). These
phase transitions typically generate topological defects such as magnetic monopoles,

8 INFLATION: BACKGROUND 122

Figure 1: The horizon problem.

8.1.2 The flatness problem

Another issue is the spatial flatness of the universe. The density parameter is

Ω− 1 =
K

(aH)2
. (8.1)

If Ω is unity at some time, it is always unity. If Ω ≠ 1 at any time, it evolves in
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� horizon problem or causality problem 

CMB data show that at                        the universe was quite 
accurately homogeneous and isotropic on scales orders of 
magnitude greater than t (i.e., greater than the particle 
horizon), with temperatures T in different regions differing by 
less that  

 

The probability that the T of these regions being correlated to 
that accuracy is at most 
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� structure formation problem 

what is the origin of initial inhomogeneities giving rise to the observed 
structure formation? 

� baryon asymmetry problem 

why the universe is made almost entirely of matter, with almost no 
antimatter? 

why baryons are many orders of magnitude scarcer than photons with                          
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� unwanted relics problem 
Primordial monopole problem: 

Creation of superheavy t’Hooft-Plyakov magnetic monopoles, 
which should be copiously produced in all of GUTs when phase 
transitions at  

Monopole annihilation proceeds very slowly & present monopole 
density should be comparable to baryon density 

  catastrophic consequences: 

Mmonopole ù O(mproton)

giving an energy density in the universe about 15 orders of 
magnitude higher that the    
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The horizon problem is simply the fact that the CMB is isotropic to a high degree of
precision, even though widely separated points on the last scattering surface are completely
outside each others’ horizons. When we look at the CMB we were observing the universe
at a scale factor aCMB ≈ 1/1200; meanwhile, the comoving distance between a point on the
CMB and an observer on Earth is

∆r = 2H−1
0 (1 −

√
aCMB)

≈ 2H−1
0 . (184)

However, the comoving horizon distance for such a point is

rhor(aCMB) = 2H−1
0

√
aCMB

≈ 6 × 10−2H−1
0 . (185)

Hence, if we observe two widely-separated parts of the CMB, they will have non-overlapping
horizons; distinct patches of the CMB sky were causally disconnected at recombination.
Nevertheless, they are observed to be at the same temperature to high precision. The
question then is, how did they know ahead of time to coordinate their evolution in the right
way, even though they were never in causal contact? We must somehow modify the causal
structure of the conventional FRW cosmology.

5.3 Unwanted Relics

We have spoken in the last lecture about grand unified theories (GUTs), and also about
topological defects. If grand unification occurs with a simple gauge group G, any spontaneous
breaking of G satisfies π2(G/H) = π1(H) for any simple subgroup H . In particular, breaking
down to the standard model will lead to magnetic monopoles, since

π2(G/H) = π1([SU(3) × SU(2) × U(1)]/Z6) = Z . (186)

(The gauge group of the standard model is, strictly speaking, [SU(3) × SU(2) × U(1)]/Z6.
The Z6 factor, with which you may not be familiar, only affects the global structure of the
group and not the Lie algebra, and thus is usually ignored by particle physicists.)

Using the Kibble mechanism, the expected relic abundance of monopoles works out to
be

Ω0,mono ∼ 1011
(

TGUT

1014 GeV

)3 ( mmono

1016 GeV

)

. (187)

This is far too big; the monopole abundance in GUTs is a serious problem for cosmology if
GUTs have anything to do with reality.

In addition to monopoles, there may be other model-dependent relics predicted by your
favorite theory. If these are incompatible with current limits, it is necessary to find some
way to dilute their density in the early universe.

62



� vacuum energy problem 

a constant homogeneous scalar field over all space 
represents a restructuring of the vacuum --- space filled 
with a constant scalar field remains empty since the motion 
of objects passing through space is not disturbed 

 

but when the scalar field appears, there is a change in the 
vacuum energy density, which is described by             ; in 
GR this affects the properties of space-time 

V(þ)
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V(þ)            enters into Einstein eq. as: 

energy 
momentum tensor 
of vacuum 

energy momentum tensor 
of substantive matter 

- 
Compare                                                         with 
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Data: 

This value of          was attained after a series of phase transitions V(þ)

Example 

�after 1st PT:                                                               the vacuum 
energy (the value of          ) decreased by 

�after PT:                                                                             it was 
reduced by about  

�after PT that formed baryons form quarks, the vacuum energy 
decreased by                              and surprisingly enough after all 
of these enormous drops, it turned out to equal zero to an 
accuracy 
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Cosmological Inflation
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cosmic strings and domain walls, which correspond to (approximately) zero-, one-
and two-dimensional topological defects. Just like (given a specific model) we can
calculate the relic density of dark matter particles, we can calculate the density of
these relics. In some models the energy density in monopoles today would be much
higher than the observed energy density. This is related to the fact that monopoles
are typically very massive, with masses of the order of the grand unified scale. The
presence of cosmic strings and domain walls would also be problematic, as they
are also typically very heavy, and their energy density relative to ordinary matter
increases with time (i.e. it goes down more slowly). In supersymmetric models one
particular problem is the overproduction of gravitinos, the supersymmetric partners
of the graviton. If gravitinos are not stable, their lifetime is very long, because
they interact only gravitationally, so they typically decay after BBN, and ruin its
observational success. It is however also possible that the gravitinos form the dark
matter. The constraint on the temperature of the universe from gravitinos is of
the order T ! 107 GeV. However, it may be that the grand unified theories or
supersymmetric models do not describe reality, in which case this is not a problem.
Observationally, from BBN, we know only that the universe has been at least as hot
as 1 MeV.

8.1.4 What is needed

All of the above problems are solved if we have a mechanism which produces an
“initial condition” for the universe at T > 1 MeV, where the universe is homogeneous
and isotropic up to small perturbations that are correlated on all observable scales,
where the spatial curvature is very small and matter is in thermal equilibrium (at
least the part which consists of baryons, photons and neutrinos). In specific theories
of particle physics, there may be an upper limit on the temperature.

8.2 Inflation introduced

Inflation is not a replacement for the Hot Big Bang model, but an add-on, occurring
at very early times (somewhere between the energy scales of MeV and 1016 GeV, in
most models closer to the upper end) without disturbing its successes. Inflation is
defined as accelerating expansion:

inflation ⇔ ä > 0 . (8.4)

Often the term inflation is used to refer only to a period of acceleration expansion
in the early universe, and not to the recent phase of accelerated expansion.

Consider how the flatness and horizon problems can be solved with inflation.
The origin of the flatness problem is that |Ω − 1| = |K|/(aH)2 = |K|ȧ−2 grows
with time because ȧ falls, i.e. the universe decelerates. If the expansion instead
accelerates, Ω is driven towards unity starting from any value. (This is the case for
an expanding universe. If the universe contracts, the behaviour is reversed.)

Consider now the horizon problem. The problem is that in the standard Big
Bang model the horizon at the time of photon decoupling is small compared to the
part of the universe we can see today. In standard Big Bang picture the universe
is first radiation-dominated and then becomes matter-dominated somewhat before
photon decoupling. (Recall that teq ≈ 50 000 years and tdec ≈ 380 000 years.) In
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If aH decreases, then (aH)−1 increases, and vice versa. So we can say that inflation
is any epoch when the comoving Hubble length shrinks:

inflation ⇔
d

dt

(

1

aH

)

< 0 . (8.11)

It has unfortunately become customary in cosmology to use the word “horizon”
also for the Hubble distance, particularly with regard to inflation. We adopt this
lamentable practice when referring to subhorizon or superhorizon modes (to be de-
fined a bit later), but will otherwise try to be careful not to confuse the two concepts.

Let us consider an example of accelerated expansion that we are already familiar
with from the discussion on dark energy, namely exponential expansion, correspond-
ing to the vacuum energy equation of state w = −1, a(t) ∝ eHt, with constant H.
We will shortly see that this a first approximation for the expansion law during
inflation. The horizon distance is

dhor(t) = a(t)

∫ t

0

dt′

a(t′)
= H−1eHt(1− e−Ht) ≃ H−1eHt , (8.12)

where the last limit is for t ≫ H−1. So in contrast to the radiation- and matter-
dominated eras, the physical particle horizon grows exponentially, and the comoving
particle horizon stays almost constant, dchor(t) ≃ H−1. The present observable
universe has evolved from a small patch of a much larger causally connected region.
See figure 2.

However, even though the particle horizon grows exponentially, the distance over
which it is possible to send signals does not grow. If we consider a light ray, we have
0 = ds2 = −dt2 + a(t)2dr2, so the comoving coordinate separation (which is the
comoving distance, since the universe is spatially flat) between emission at t1 and
reception at t2 is (taking a = eHt)

∆r =

∫ t2

t1

dt′

a(t′)
= H−1(e−Ht1 − e−Ht2) < H−1 . (8.13)

If the coordinate separation between two points is more than the Hubble length, it
is not possible to send signals between them. In this sense, the Hubble length gives
the comoving size of the region during inflation over which it is possible to retain
causal connection. If the universe before inflation is matter-dominated, for example,
observers with separation 2(aH)−1 have been able to send signals to each other,
so causal connection is lost. Also, regardless of what happened before inflation,
during inflation a signal sent at t1 cannot travel a longer coordinate distance than
H−1e−Ht1 , and this distance gets smaller t1 grows, so causal connection is lost during
inflation. Note that the particle horizon, which expresses the maximum distance at
which parts of the universe can have been in causal contact always grows as a
function of time, it never shrinks. What changes during inflation is just that regions
that once were in causal contact cannot send signals to each other any more.

The Friedmann equations are

3
ȧ2

a2
= 8πGNρ− 3

K

a2
(8.14)

3
ä

a
= −4πGN(ρ+ 3p) . (8.15)
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which parts of the universe can have been in causal contact always grows as a
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The Friedmann equations are

3
ȧ2

a2
= 8πGNρ− 3

K

a2
(8.14)

3
ä

a
= −4πGN(ρ+ 3p) . (8.15)
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Figure 2: Evolution of the comoving Hubble radius (length, distance) during and after
inflation (schematic).

Thus, in general relativity and assuming the FRW metric, accelerating expansion
requires negative pressure:

inflation ⇔ ρ+ 3p < 0 . (8.16)

Note that the energy density of matter for which p/ρ < −1
3 falls down in an

expanding universe slower than a−2, i.e. it grows relative to the spatial curvature.
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models, the energy density typically remains nearly constant during a period in
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As for the relic problem, if unwanted relics are produced before inflation, they
are diluted to practically zero density by the expansion, just like spatial curvature.
However, we have to be careful that they are not produced after inflation, i.e. the
reheating temperature (see below) has to small enough. This is one constraint on
models of inflation. At the end of inflation, matter is produced in reheating3, which

2If it were discovered by observations that Ω0 ̸= 1, this would be a blow to the credibility of
inflation. However, there is a version of inflation, called open inflation, for which it is natural that
Ω0 < 1. The existence of such models of inflation have led critics of inflation to complain that
inflation is “unfalsifiable” in the sense that no matter what the observation, a model of inflation
can be found that agrees with it. Nevertheless, most models of inflation give similar “generic”
predictions, including Ω0 = 1 to great accuracy, and thus far the observations have been in good
agreement with them.

3“Reheating” may turn out to be as much a misnomer as “recombination”, as it is not clear
whether matter was ever in a thermal state before inflation.
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8.2.1 Starting inflation

In the discussion, we have already assumed that we can use the FRWmetric, i.e. that
the universe is homogeneous and isotropic. In order to explain how inflation produces
homogeneity and isotropy and solves the horizon problem, we should consider how
inflation gets started from some generic initial conditions. Inflation certainly makes
the homogeneity and isotropy problem “exponentially smaller” in the sense that
it produces a large homogeneous and isotropic causally connected patch from a
small one. However, the issue of how to get inflation started remains an open
question. There are some ideas and studies of this, but as we have no solid theoretical
understanding (and no observations at all) of the pre-inflationary era, the issue
remains rather speculative. We will comment on this a bit more after discussing the
simplest inflationary models.

We will assume that sufficient inflation has already taken place to make the
universe (within a horizon volume) flat and homogeneous, and follow inflation in
detail after that. Thus we will work in the flat FRW universe. In any case, from
the modern point of view, the most important (and testable) aspect of inflation is
the generation of the seeds of structure, which we will discuss in chapter 10, which
makes the question of deviations from homogeneity and isotropy quantitative.

8.3 The inflaton field

As we saw in section 8.2, inflation requires negative pressure. In chapter 5 we
considered systems of particles where interaction energies can be neglected (the
ideal gas approximation). For such systems the pressure is always non-negative4.
However, the particle picture is not fundamental. In the early universe, at high
energy densities, we have to consider the more fundamental entities, fields. Particles
are just excitations of fields. The mean value of a field can have negative pressure,
even if a gas consisting of the particles corresponding to the field does not. The
simplest form of matter which has a negative pressure is a scalar field, so the simplest
inflationary models involve just a single scalar field. The field responsible for inflation
(and the corresponding spin 0 particle) is called the inflaton.

The starting point is the Lagrangean density L(ϕ, ∂µϕ), where ϕ is the inflaton
field. In the simplest case where the kinetic term of the field has the kanonical form
and the field is minimally coupled (see below), we have couple

L = −
1

2
gµν∂µϕ∂νϕ− V (ϕ) . (8.17)

where V (ϕ) is the potential of the field. The action is correspondingly

S =

∫

d4x
√
−gL , (8.18)

where g is the determinant of the metric. The effect of spacetime curvature is
manifested via the metric in the kinetic term and the determinant of the metric in
the integration measure. This case is called theminimal coupling to gravity. It is also
possible to include in the Lagrangean density terms which couple the scalar field to
quantities built from the derivatives from the metric. (Such a non-minimal coupling

4A gas of interacting particles could have negative pressure.
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is important if the Higgs field is the inflaton.) We will not discuss non-minimal
coupling.

If the field is free, we have

V (ϕ) =
1

2
m2ϕ2 , (8.19)

and the mass of the particle corresponding to the field ϕ is m. If the potential
has higher order terms, these describe self-interactions of the field. Even when the
potential is more complicated than in eq. (8.19), we define the quantity m2(ϕ) ≡
V ′′(ϕ). For m2 > 0, this gives the mass of the particles when the field has the value
ϕ. In the case m2 < 0, the field configuration is unstable, and small perturbations
no longer describe particles with mass m. We also use the notation

V ′(ϕ) ≡
dV

dϕ
and V ′′(ϕ) ≡

d2V

dϕ2
. (8.20)

Minimisation of the action leads to the Euler–Lagrange equation

∂(
√
−gL)
∂ϕ

− ∂µ
∂(
√
−gL)

∂[∂µϕ]
= 0 . (8.21)

For the Lagrange density (8.17) we get the field equation

−
1√
−g

∂µ(
√
−ggµν∂νϕ) + V ′ = 0 . (8.22)

In flat spacetime (Minkowski space), we have gµν = diag(−1, 1, 1, 1), so we get

ϕ̈−∇2ϕ+ V ′ = 0 . (8.23)

For a free field, we have V ′(ϕ) = m2ϕ, and the equation of motion reduces to
the Klein-Gordon equation. For the spatially flat FRW metric we have (in Cartesian
coordinates) gµν = diag(−1, a−2, a−2, a−2), so we get

ϕ̈+ 3Hϕ̇− a−2∇2ϕ+ V ′ = 0 , (8.24)

where ∇2ϕ ≡ δij∂i∂j . During inflation, the field (like the space) is almost homo-
geneous, so we can take ∂iϕ = 0 for the background evolution (we will consider
perturbations in chapters 9 and 10). In fact, inflation makes the inflaton field more
homogeneous, as the coefficient a−2 falls. A sufficient level of initial homogeneity of
the field is required to get inflation started. We start our discussion when a sufficient
level of inflation has already taken place to make the gradients negligible, so that
the field can be considered homogeneous.

The Lagrangean density also gives us the energy-momentum tensor

Tµν = −
∂L

∂(∂µϕ)
∂νϕ+ gµνL , (8.25)

which for the Lagrangean density (8.17) is

Tµν = ∂µϕ∂νϕ− gµν

(

1

2
gαβ∂αϕ∂βϕ+ V

)

. (8.26)
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8.2.1 Starting inflation
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L = −
1

2
gµν∂µϕ∂νϕ− V (ϕ) . (8.17)

where V (ϕ) is the potential of the field. The action is correspondingly

S =

∫

d4x
√
−gL , (8.18)

where g is the determinant of the metric. The effect of spacetime curvature is
manifested via the metric in the kinetic term and the determinant of the metric in
the integration measure. This case is called theminimal coupling to gravity. It is also
possible to include in the Lagrangean density terms which couple the scalar field to
quantities built from the derivatives from the metric. (Such a non-minimal coupling

4A gas of interacting particles could have negative pressure.
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5.4 The General Idea of Inflation

The horizon problem especially is an extremely serious problem for the standard cosmology
because at its heart is simply causality. Any solution to this problem is therefore almost
certain to require an important modification to how information can propagate in the early
universe. Cosmological inflation is such a mechanism.

Before getting into the details of inflation we will just sketch the general idea here. The
fundamental idea is that the universe undergoes a period of accelerated expansion, defined
as a period when ä > 0, at early times. The effect of this acceleration is to quickly expand
a small region of space to a huge size, diminishing spatial curvature in the process, making
the universe extremely close to flat. In addition, the horizon size is greatly increased, so
that distant points on the CMB actually are in causal contact and unwanted relics are
tremendously diluted, solving the monopole problem. As an unexpected bonus, quantum
fluctuations make it impossible for inflation to smooth out the universe with perfect precision,
so there is a spectrum of remnant density perturbations; this spectrum turns out to be
approximately scale-free, in good agreement with observations of our current universe.

5.5 Slowly-Rolling Scalar Fields

If inflation is to solve the problems of the standard cosmology, then it must be active at
extremely early times. Thus, we would like to address the earliest times in the universe
amenable to a classical description. We expect this to be at or around the Planck time tP
and since Planckian quantities arise often in inflation we will retain values of the Planck mass
in the equations of this section. There are many models of inflation, but because of time
constraints we will concentrate almost exclusively on the chaotic inflation model of Linde.
We have borrowed heavily in places here from the excellent text of Liddle and Lyth [7].

Consider modeling matter in the early universe by a real scalar field φ, with potential
V (φ). The energy-momentum tensor for φ is

Tµν = (∇µφ)(∇νφ) − gµν

[

1

2
gαβ(∇αφ)(∇βφ) + V (φ)

]

. (188)

For simplicity we will specialize to the homogeneous case, in which all quantities depend
only on cosmological time t and set k = 0. A homogeneous real scalar field behaves as a
perfect fluid with

ρφ =
1

2
φ̇2 + V (φ) (189)

pφ =
1

2
φ̇2 − V (φ) . (190)

The equation of motion for the scalar field is given by

φ̈ + 3
ȧ

a
φ̇ +

dV

dφ
= 0 , (191)
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which can be thought of as the usual equation of motion for a scalar field in Minkowski space,
but with a friction term due to the expansion of the universe. The Friedmann equation with
such a field as the sole energy source is

H2 =
8πG

3

[

1

2
φ̇2 + V (φ)

]

. (192)

A very specific way in which accelerated expansion can occur is if the universe is dom-
inated by an energy component that approximates a cosmological constant. In that case
the associated expansion rate will be exponential, as we have already seen. Scalar fields can
accomplish this in an interesting way. From (189) it is clear that if φ̇2 ≪ V (φ) then the
potential energy of the scalar field is the dominant contribution to both the energy density
and the pressure, and the resulting equation of state is p ≃ −ρ, approximately that of a
cosmological constant. the resulting expansion is certainly accelerating. In a loose sense,
this negligible kinetic energy is equivalent to the fields slowly rolling down its potential; an
approximation which we will now make more formal.

Technically, the slow-roll approximation for inflation involves neglecting the φ̈ term
in (191) and neglecting the kinetic energy of φ compared to the potential energy. The
scalar field equation of motion and the Friedmann equation then become

φ̇ ≃ −
V ′(φ)

3H
, (193)

H2 ≃
8πG

3
V (φ) , (194)

where in this lecture a prime denotes a derivative with respect to φ.
These conditions will hold if the two slow-roll conditions are satisfied. These are

|ϵ| ≪ 1

|η| ≪ 1 , (195)

where the slow-roll parameters are given by

ϵ ≡
M2

p

2

(

V ′

V

)2

, (196)

and

η ≡ M2
p

V ′′

V
. (197)

It is easy to see that the slow roll conditions yield inflation. Recall that inflation is defined
by ä/a > 0. We can write

ä

a
= Ḣ + H2 , (198)

so that inflation occurs if
Ḣ

H2
> −1 . (199)
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is important if the Higgs field is the inflaton.) We will not discuss non-minimal
coupling.

If the field is free, we have

V (ϕ) =
1

2
m2ϕ2 , (8.19)

and the mass of the particle corresponding to the field ϕ is m. If the potential
has higher order terms, these describe self-interactions of the field. Even when the
potential is more complicated than in eq. (8.19), we define the quantity m2(ϕ) ≡
V ′′(ϕ). For m2 > 0, this gives the mass of the particles when the field has the value
ϕ. In the case m2 < 0, the field configuration is unstable, and small perturbations
no longer describe particles with mass m. We also use the notation

V ′(ϕ) ≡
dV

dϕ
and V ′′(ϕ) ≡

d2V

dϕ2
. (8.20)

Minimisation of the action leads to the Euler–Lagrange equation

∂(
√
−gL)
∂ϕ

− ∂µ
∂(
√
−gL)

∂[∂µϕ]
= 0 . (8.21)

For the Lagrange density (8.17) we get the field equation

−
1√
−g

∂µ(
√
−ggµν∂νϕ) + V ′ = 0 . (8.22)

In flat spacetime (Minkowski space), we have gµν = diag(−1, 1, 1, 1), so we get

ϕ̈−∇2ϕ+ V ′ = 0 . (8.23)

For a free field, we have V ′(ϕ) = m2ϕ, and the equation of motion reduces to
the Klein-Gordon equation. For the spatially flat FRW metric we have (in Cartesian
coordinates) gµν = diag(−1, a−2, a−2, a−2), so we get

ϕ̈+ 3Hϕ̇− a−2∇2ϕ+ V ′ = 0 , (8.24)

where ∇2ϕ ≡ δij∂i∂j . During inflation, the field (like the space) is almost homo-
geneous, so we can take ∂iϕ = 0 for the background evolution (we will consider
perturbations in chapters 9 and 10). In fact, inflation makes the inflaton field more
homogeneous, as the coefficient a−2 falls. A sufficient level of initial homogeneity of
the field is required to get inflation started. We start our discussion when a sufficient
level of inflation has already taken place to make the gradients negligible, so that
the field can be considered homogeneous.

The Lagrangean density also gives us the energy-momentum tensor

Tµν = −
∂L

∂(∂µϕ)
∂νϕ+ gµνL , (8.25)

which for the Lagrangean density (8.17) is

Tµν = ∂µϕ∂νϕ− gµν

(

1

2
gαβ∂αϕ∂βϕ+ V

)

. (8.26)
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For the FRW metric, the energy density and pressure measured by an observer
comoving with the FRW metric are5

ρ = −T 0
0 =

1

2
ϕ̇2 + V (8.27)

p = T i
i =

1

2
ϕ̇2 − V , (8.28)

The field has negative pressure when the potential dominates over the kinetic term,
i.e. when the field is moving slowly. The equation of state parameter w ≡ p/ρ is

w =
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ̇)
=

1− 2V/ϕ̇2

1 + 2V/ϕ̇2
, (8.29)

so
−1 ≤ w ≤ 1 . (8.30)

If the kinetic term 1
2 ϕ̇

2 dominates, w ≈ 1; if the potential term V (ϕ) dominates,
w ≈ −1. Different inflaton models have different potentials V (ϕ). From (8.27), we
can form the useful combinations

ρ+ p = ϕ̇2

ρ+ 3p = 2
(

ϕ̇2 − V
)

.
(8.31)

We have the equation of motion of the field from (8.24). Alternatively, we could
just insert the energy density and pressure from (8.27) into the continuity equation

ρ̇ = −3H(ρ+ p) . (8.32)

This gives the same result,

ϕ̈+ 3Hϕ̇ = −V ′ . (8.33)

This is the field equation for a homogeneous field in a spatially flat FRW universe.
The effect of expansion is to add the term 3Hϕ̇, which acts like friction and slows
down the evolution of ϕ.

The condition for inflation, ρ+ 3p < 0, is satisfied if

ϕ̇2 < V . (8.34)

Let us assume that ϕ is initially far from the minimum of V (ϕ). The potential
then pulls ϕ towards the minimum (see figure 4). If the potential has a suitable
(sufficiently flat) shape, the friction term soon makes ϕ̇ small enough to satisfy
(8.34), even if it was not satisfied initially.

We also need the Friedmann equation,

H2 =
8πG

3
ρ =

1

3M2
Pl

ρ . (8.35)

Inserting the energy density from (8.27), we have

H2 =
1

3M2
Pl

[

1

2
ϕ̇2 + V

]

. (8.36)

5Those used to the Einstein summation convention should note that there is no summation over
i in (8.28).



5.4 The General Idea of Inflation

The horizon problem especially is an extremely serious problem for the standard cosmology
because at its heart is simply causality. Any solution to this problem is therefore almost
certain to require an important modification to how information can propagate in the early
universe. Cosmological inflation is such a mechanism.

Before getting into the details of inflation we will just sketch the general idea here. The
fundamental idea is that the universe undergoes a period of accelerated expansion, defined
as a period when ä > 0, at early times. The effect of this acceleration is to quickly expand
a small region of space to a huge size, diminishing spatial curvature in the process, making
the universe extremely close to flat. In addition, the horizon size is greatly increased, so
that distant points on the CMB actually are in causal contact and unwanted relics are
tremendously diluted, solving the monopole problem. As an unexpected bonus, quantum
fluctuations make it impossible for inflation to smooth out the universe with perfect precision,
so there is a spectrum of remnant density perturbations; this spectrum turns out to be
approximately scale-free, in good agreement with observations of our current universe.

5.5 Slowly-Rolling Scalar Fields

If inflation is to solve the problems of the standard cosmology, then it must be active at
extremely early times. Thus, we would like to address the earliest times in the universe
amenable to a classical description. We expect this to be at or around the Planck time tP
and since Planckian quantities arise often in inflation we will retain values of the Planck mass
in the equations of this section. There are many models of inflation, but because of time
constraints we will concentrate almost exclusively on the chaotic inflation model of Linde.
We have borrowed heavily in places here from the excellent text of Liddle and Lyth [7].

Consider modeling matter in the early universe by a real scalar field φ, with potential
V (φ). The energy-momentum tensor for φ is

Tµν = (∇µφ)(∇νφ) − gµν

[

1

2
gαβ(∇αφ)(∇βφ) + V (φ)

]

. (188)

For simplicity we will specialize to the homogeneous case, in which all quantities depend
only on cosmological time t and set k = 0. A homogeneous real scalar field behaves as a
perfect fluid with

ρφ =
1

2
φ̇2 + V (φ) (189)

pφ =
1

2
φ̇2 − V (φ) . (190)

The equation of motion for the scalar field is given by

φ̈ + 3
ȧ

a
φ̇ +

dV

dφ
= 0 , (191)
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which can be thought of as the usual equation of motion for a scalar field in Minkowski space,
but with a friction term due to the expansion of the universe. The Friedmann equation with
such a field as the sole energy source is

H2 =
8πG

3

[

1

2
φ̇2 + V (φ)

]

. (192)

A very specific way in which accelerated expansion can occur is if the universe is dom-
inated by an energy component that approximates a cosmological constant. In that case
the associated expansion rate will be exponential, as we have already seen. Scalar fields can
accomplish this in an interesting way. From (189) it is clear that if φ̇2 ≪ V (φ) then the
potential energy of the scalar field is the dominant contribution to both the energy density
and the pressure, and the resulting equation of state is p ≃ −ρ, approximately that of a
cosmological constant. the resulting expansion is certainly accelerating. In a loose sense,
this negligible kinetic energy is equivalent to the fields slowly rolling down its potential; an
approximation which we will now make more formal.

Technically, the slow-roll approximation for inflation involves neglecting the φ̈ term
in (191) and neglecting the kinetic energy of φ compared to the potential energy. The
scalar field equation of motion and the Friedmann equation then become

φ̇ ≃ −
V ′(φ)

3H
, (193)

H2 ≃
8πG

3
V (φ) , (194)

where in this lecture a prime denotes a derivative with respect to φ.
These conditions will hold if the two slow-roll conditions are satisfied. These are

|ϵ| ≪ 1

|η| ≪ 1 , (195)

where the slow-roll parameters are given by

ϵ ≡
M2

p

2

(

V ′

V

)2

, (196)

and

η ≡ M2
p

V ′′

V
. (197)

It is easy to see that the slow roll conditions yield inflation. Recall that inflation is defined
by ä/a > 0. We can write

ä

a
= Ḣ + H2 , (198)

so that inflation occurs if
Ḣ

H2
> −1 . (199)
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ä

a
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5.4 The General Idea of Inflation

The horizon problem especially is an extremely serious problem for the standard cosmology
because at its heart is simply causality. Any solution to this problem is therefore almost
certain to require an important modification to how information can propagate in the early
universe. Cosmological inflation is such a mechanism.

Before getting into the details of inflation we will just sketch the general idea here. The
fundamental idea is that the universe undergoes a period of accelerated expansion, defined
as a period when ä > 0, at early times. The effect of this acceleration is to quickly expand
a small region of space to a huge size, diminishing spatial curvature in the process, making
the universe extremely close to flat. In addition, the horizon size is greatly increased, so
that distant points on the CMB actually are in causal contact and unwanted relics are
tremendously diluted, solving the monopole problem. As an unexpected bonus, quantum
fluctuations make it impossible for inflation to smooth out the universe with perfect precision,
so there is a spectrum of remnant density perturbations; this spectrum turns out to be
approximately scale-free, in good agreement with observations of our current universe.

5.5 Slowly-Rolling Scalar Fields

If inflation is to solve the problems of the standard cosmology, then it must be active at
extremely early times. Thus, we would like to address the earliest times in the universe
amenable to a classical description. We expect this to be at or around the Planck time tP
and since Planckian quantities arise often in inflation we will retain values of the Planck mass
in the equations of this section. There are many models of inflation, but because of time
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ä

a
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ä

a
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Ḣ

H2
> −1 . (199)

64

vv

which can be thought of as the usual equation of motion for a scalar field in Minkowski space,
but with a friction term due to the expansion of the universe. The Friedmann equation with
such a field as the sole energy source is

H2 =
8πG

3

[

1

2
φ̇2 + V (φ)

]

. (192)

A very specific way in which accelerated expansion can occur is if the universe is dom-
inated by an energy component that approximates a cosmological constant. In that case
the associated expansion rate will be exponential, as we have already seen. Scalar fields can
accomplish this in an interesting way. From (189) it is clear that if φ̇2 ≪ V (φ) then the
potential energy of the scalar field is the dominant contribution to both the energy density
and the pressure, and the resulting equation of state is p ≃ −ρ, approximately that of a
cosmological constant. the resulting expansion is certainly accelerating. In a loose sense,
this negligible kinetic energy is equivalent to the fields slowly rolling down its potential; an
approximation which we will now make more formal.

Technically, the slow-roll approximation for inflation involves neglecting the φ̈ term
in (191) and neglecting the kinetic energy of φ compared to the potential energy. The
scalar field equation of motion and the Friedmann equation then become

φ̇ ≃ −
V ′(φ)

3H
, (193)

H2 ≃
8πG

3
V (φ) , (194)

where in this lecture a prime denotes a derivative with respect to φ.
These conditions will hold if the two slow-roll conditions are satisfied. These are

|ϵ| ≪ 1

|η| ≪ 1 , (195)

where the slow-roll parameters are given by

ϵ ≡
M2

p

2

(

V ′

V

)2

, (196)

and

η ≡ M2
p

V ′′

V
. (197)

It is easy to see that the slow roll conditions yield inflation. Recall that inflation is defined
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= Ḣ + H2 , (198)

so that inflation occurs if
Ḣ
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8.4.1 Relation between inflation and slow-roll
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Thus the condition for inflation is Ḣ + H2 > 0. This would be satisfied if Ḣ > 0,
but this is not possible here, since it would require p < −ρ, i.e., w ≡ p/ρ < −1,
which is not possible for a minimally coupled scalar field, see (8.29).6 Thus we have
Ḣ ≤ 0 and:
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< 1 . (8.48)
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So if the slow-roll approximation is valid, inflation is guaranteed. This result
also shows that during slow-roll inflation, the Hubble parameter changes slowly
(while the scale factor changes almost exponentially). As we have noted, slow-roll
conditions are not necessary for inflation, it is possible to have inflation even when
the slow-roll parameters are not small (called fast-roll inflation). However, when we
consider perturbations in chapter 10, we will see that slow-roll inflation automatically
produces a spectrum of perturbations that is in close agreement with observations,
unlike fast-roll inflation.

8.5 Models of inflation

A scalar field model of inflation consists of the potential for the inflation and its
couplings to other fields. In most models, couplings to other fields don’t matter
during inflation, and only the inflaton is dynamically important. However, these
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be neglected, i.e. we can take K = 0.
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ä
a
= −

4πG
3

(ρ+ 3p)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⇒ Ḣ =
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⇒ Ḣ =

ä
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So if the slow-roll approximation is valid, inflation is guaranteed. This result
also shows that during slow-roll inflation, the Hubble parameter changes slowly
(while the scale factor changes almost exponentially). As we have noted, slow-roll
conditions are not necessary for inflation, it is possible to have inflation even when
the slow-roll parameters are not small (called fast-roll inflation). However, when we
consider perturbations in chapter 10, we will see that slow-roll inflation automatically
produces a spectrum of perturbations that is in close agreement with observations,
unlike fast-roll inflation.

8.5 Models of inflation

A scalar field model of inflation consists of the potential for the inflation and its
couplings to other fields. In most models, couplings to other fields don’t matter
during inflation, and only the inflaton is dynamically important. However, these
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ȧ
a

)2

=
8πG
3

ρ−
K
a2

ä
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3a2 < 0. In the above, we assume that spatial curvature can already

be neglected, i.e. we can take K = 0.
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V ′ϕ̇

3M2
Pl

⇒ H2Ḣ =
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But in slow-roll
Ḣ

H2
≃ −ϵ , (200)

which will be small. Smallness of the other parameter η helps to ensure that inflation will
continue for a sufficient period.

It is useful to have a general expression to describe how much inflation occurs, once it
has begun. This is typically quantified by the number of e-folds, defined by

N(t) ≡ ln

(

a(tend)

a(t)

)

. (201)

Usually we are interested in how many efolds occur between a given field value φ and the
field value at the end of inflation φend, defined by ϵ(φend) = 1. We also would like to express
N in terms of the potential. Fortunately this is simple to do via

N(t) ≡ ln

(

a(tend)

a(t)

)

=
∫ tend

t
H dt ≃

1

M2
p

∫ φend

φ

V

V ′
dφ . (202)

The issue of initial conditions for inflation is one that is quite subtle and we will not get
into a discussion of that here. Instead we will remain focused on chaotic inflation, in which
we assume that the early universe emerges from the Planck epoch with the scalar field taking
different values in different parts of the universe, with typically Planckian energies. There
will then be some probability for inflation to begin in some places, and we shall focus on
those.

5.6 Attractor Solutions in Inflation

For simplicity, let us consider a particularly simple potential

V (φ) =
1

2
m2φ2 , (203)

where m has dimensions of mass. We shall also assume initial conditions that at the end of
the quantum epoch, which we label as t = 0, ρ ∼ M4

p .
The slow-roll conditions give that, at t = 0,

φ = φ0 ∼
M2

p

m
∼

Mp

ε
, (204)

where we have defined ε ≡ m/Mp ≪ 1. We also have

H = αφ , (205)

where

α ≡
√

4π

3
ε , (206)
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Figure 4: An example of inflaton potential.

We have ignored other contributions to the energy density and pressure besides
the inflaton. During inflation, the inflaton moves slowly, so the inflaton energy
density, which is dominated by V (ϕ), also changes slowly. If there are matter and
radiation components in the energy density, they decrease fast, ρ ∝ a−3 or ∝ a−4,
and soon become negligible, like the spatial curvature. The presence of extra matter
can put some constraints on the initial conditions for inflation to get started and
the inflaton to become dominant. But once inflation begins, we can soon forget
components other than the inflaton.

8.4 Slow-roll inflation

The friction (expansion) term tends to slow down the evolution of ϕ, so the system
easily reaches a situation where the following conditions hold:

ϕ̇2 ≪ V (8.37)

|ϕ̈| ≪ 3H|ϕ̇| (8.38)

These are the slow-roll conditions. If the slow-roll conditions are valid, we may ap-
proximate (the slow-roll approximation) (8.33) and (8.36) by the slow-roll equations:

H2 =
V

3M2
Pl

(8.39)

3Hϕ̇ = −V ′ . (8.40)

The shape of the potential V (ϕ) determines the slow-roll parameters, defined as

ε(ϕ) ≡
1

2
M2

Pl

(

V ′

V

)2

(8.41)

η(ϕ) ≡ M2
Pl
V ′′

V
. (8.42)

Exercise: Show that

ε ≪ 1 and |η| ≪ 1 ⇐ (8.37) and (8.38) (8.43)

Note that the implication goes only in this direction. The conditions ε ≪ 1 and
|η| ≪ 1 are necessary, but not sufficient for the slow-roll approximation (i.e. the
slow-roll conditions) to be valid. The conditions are not sufficient, because they
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Figure 5: The potential V (ϕ) = 1

2
m2ϕ2 and its two slow-roll sections.

only constrain the form of the potential, and identify from the potential a slow-roll

section, where the slow-roll approximation may be valid. Since the field equation
(8.33) is second order, it accepts arbitrary ϕ and ϕ̇ as initial conditions. Thus (8.37)
and (8.38) may not hold initially, even if ϕ is in the slow-roll section. However, it
turns out that the slow-roll solution, the solution of the slow-roll equations (8.39)
and (8.40), is an attractor of the full equations, (8.33) and (8.36). This means that
the solution of the full equations rapidly approaches it, if the initial conditions that
are in the basin of attraction. To be in the basin of attraction means that ϕ must
be in the slow-roll section; if ϕ̇ is large, ϕ needs to be deep in the slow-roll section.

Once the system has reached the attractor, where (8.39) and (8.40) hold, ϕ̇ is
determined by ϕ. In fact everything is determined by ϕ (assuming a fixed potential
V (ϕ)). The value of ϕ is the single parameter describing the state of the universe,
and ϕ evolves down the potential V (ϕ) as specified by the slow-roll equations.

The ideas of “attractor” and “basin of attraction” can be taken further. If the
universe (or a region of it) finds itself initially (or enters) the basin of attraction
of slow-roll inflation, meaning that: there is a sufficiently large region, where the
curvature is sufficiently small, the inflaton makes a sufficient contribution to the
total energy density, the inflaton is sufficiently homogeneous, and lies sufficiently
deep in the slow-roll section, then this region begins inflating, it becomes rapidly
very homogeneous and flat, all other contributions to the energy density besides the
inflaton become negligible, and the inflaton begins to follow the slow-roll solution.

Thus inflation erases all memory of initial conditions, and we can predict the
later history of the universe just from the shape of V (ϕ) and the assumption that
ϕ started out far enough in the slow-roll part of it. Note the similarity to thermal
equilibrium. In the stages of the universe we discussed earlier, things were calculable
because in thermal equilibrium, it is sufficient to know the temperature, masses of
particles and conserved quantum numbers in order to have full information about
the system. In the case of inflation, knowing the inflaton field value (and the shape
of the potential) is enough, because of a rather different kind of attractor behaviour.

Example:

V (ϕ) =
1

2
m2ϕ2 ⇒ V ′(ϕ) = m2ϕ , V ′′(ϕ) = m2 (8.44)
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For the FRW metric, the energy density and pressure measured by an observer
comoving with the FRW metric are5

ρ = −T 0
0 =

1

2
ϕ̇2 + V (8.27)

p = T i
i =

1

2
ϕ̇2 − V , (8.28)

The field has negative pressure when the potential dominates over the kinetic term,
i.e. when the field is moving slowly. The equation of state parameter w ≡ p/ρ is

w =
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ̇)
=

1− 2V/ϕ̇2

1 + 2V/ϕ̇2
, (8.29)

so
−1 ≤ w ≤ 1 . (8.30)

If the kinetic term 1
2 ϕ̇

2 dominates, w ≈ 1; if the potential term V (ϕ) dominates,
w ≈ −1. Different inflaton models have different potentials V (ϕ). From (8.27), we
can form the useful combinations

ρ+ p = ϕ̇2

ρ+ 3p = 2
(

ϕ̇2 − V
)

.
(8.31)

We have the equation of motion of the field from (8.24). Alternatively, we could
just insert the energy density and pressure from (8.27) into the continuity equation

ρ̇ = −3H(ρ+ p) . (8.32)

This gives the same result,

ϕ̈+ 3Hϕ̇ = −V ′ . (8.33)

This is the field equation for a homogeneous field in a spatially flat FRW universe.
The effect of expansion is to add the term 3Hϕ̇, which acts like friction and slows
down the evolution of ϕ.

The condition for inflation, ρ+ 3p < 0, is satisfied if

ϕ̇2 < V . (8.34)

Let us assume that ϕ is initially far from the minimum of V (ϕ). The potential
then pulls ϕ towards the minimum (see figure 4). If the potential has a suitable
(sufficiently flat) shape, the friction term soon makes ϕ̇ small enough to satisfy
(8.34), even if it was not satisfied initially.

We also need the Friedmann equation,

H2 =
8πG

3
ρ =

1

3M2
Pl

ρ . (8.35)

Inserting the energy density from (8.27), we have

H2 =
1

3M2
Pl

[

1

2
ϕ̇2 + V

]

. (8.36)

5Those used to the Einstein summation convention should note that there is no summation over
i in (8.28).
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very homogeneous and flat, all other contributions to the energy density besides the
inflaton become negligible, and the inflaton begins to follow the slow-roll solution.

Thus inflation erases all memory of initial conditions, and we can predict the
later history of the universe just from the shape of V (ϕ) and the assumption that
ϕ started out far enough in the slow-roll part of it. Note the similarity to thermal
equilibrium. In the stages of the universe we discussed earlier, things were calculable
because in thermal equilibrium, it is sufficient to know the temperature, masses of
particles and conserved quantum numbers in order to have full information about
the system. In the case of inflation, knowing the inflaton field value (and the shape
of the potential) is enough, because of a rather different kind of attractor behaviour.

Example:
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2
M2
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(

V ′

V

)2

(8.41)

η(ϕ) ≡ M2
Pl
V ′′

V
. (8.42)

Exercise: Show that

ε ≪ 1 and |η| ≪ 1 ⇐ (8.37) and (8.38) (8.43)

Note that the implication goes only in this direction. The conditions ε ≪ 1 and
|η| ≪ 1 are necessary, but not sufficient for the slow-roll approximation (i.e. the
slow-roll conditions) to be valid. The conditions are not sufficient, because they
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Figure 9: Remaining number of e-foldings N(t) as a function of time.

with some temperature Treh. This reheating temperature is determined by the energy
density ρreh at the end of the reheating epoch:

ρreh =
π2

30
g∗(Treh)T

4
reh . (8.56)

Necessarily ρreh < ρend (end = end of inflation). If reheating takes a long time,
we may have ρreh ≪ ρend. The evolution of the gas of particles into a thermal
state can be quite involved, and it has been studied in various models. Usually it
is just assumed that it happens eventually, since the particles are able to interact.
However, it is possible that some particles (such as gravitinos) never reach ther-
mal equilibrium, since their interactions are too weak. In any case, as long as the
momenta of the particles are much higher than their masses, the energy density of
the universe behaves like radiation, regardless of the momentum space distribution.
So the background expansion rate is the same. After thermalisation of at least the
baryons, photons and neutrinos is complete, the standard Hot Big Bang era begins.

8.7 Scales of inflation

8.7.1 Amount of inflation

During inflation, the scale factor a(t) grows by a huge factor. We define the number

of e-foldings from time t to end of inflation tend

N(t) ≡ ln
a(tend)

a(t)
. (8.57)

See figure 9. We can calculate N(t) ≡ N(ϕ(t)) ≡ N(ϕ) from the shape of the
potential V (ϕ) and the value of ϕ at time t:

N(ϕ) = ln
a(tend)

a(t)
=

∫ tend

t
H(t)dt =

∫ ϕend

ϕ

H

ϕ̇
dϕ

slow roll
≈

1

M2
Pl

∫ ϕ

ϕend

V

V ′
dϕ ,

(8.58)

where we have used da
a = d ln a = Hdt = H dϕ

ϕ̇ .

8.7.2 Evolution of scales

When discussing the evolution of density perturbations and formation of structures
in the universe (to which we will get later), we will be interested in the history
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the solution of the full equations rapidly approaches it, if the initial conditions that
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be in the slow-roll section; if ϕ̇ is large, ϕ needs to be deep in the slow-roll section.

Once the system has reached the attractor, where (8.39) and (8.40) hold, ϕ̇ is
determined by ϕ. In fact everything is determined by ϕ (assuming a fixed potential
V (ϕ)). The value of ϕ is the single parameter describing the state of the universe,
and ϕ evolves down the potential V (ϕ) as specified by the slow-roll equations.

The ideas of “attractor” and “basin of attraction” can be taken further. If the
universe (or a region of it) finds itself initially (or enters) the basin of attraction
of slow-roll inflation, meaning that: there is a sufficiently large region, where the
curvature is sufficiently small, the inflaton makes a sufficient contribution to the
total energy density, the inflaton is sufficiently homogeneous, and lies sufficiently
deep in the slow-roll section, then this region begins inflating, it becomes rapidly
very homogeneous and flat, all other contributions to the energy density besides the
inflaton become negligible, and the inflaton begins to follow the slow-roll solution.

Thus inflation erases all memory of initial conditions, and we can predict the
later history of the universe just from the shape of V (ϕ) and the assumption that
ϕ started out far enough in the slow-roll part of it. Note the similarity to thermal
equilibrium. In the stages of the universe we discussed earlier, things were calculable
because in thermal equilibrium, it is sufficient to know the temperature, masses of
particles and conserved quantum numbers in order to have full information about
the system. In the case of inflation, knowing the inflaton field value (and the shape
of the potential) is enough, because of a rather different kind of attractor behaviour.

Example:
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2
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and
ε, η ≪ 1 ⇒ ϕ2 ≫ 2M2
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See figure 5.

8.4.1 Relation between inflation and slow-roll
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a
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a
= Ḣ +H2 (8.47)

Thus the condition for inflation is Ḣ + H2 > 0. This would be satisfied if Ḣ > 0,
but this is not possible here, since it would require p < −ρ, i.e., w ≡ p/ρ < −1,
which is not possible for a minimally coupled scalar field, see (8.29).6 Thus we have
Ḣ ≤ 0 and:

inflation ⇔ −
Ḣ

H2
< 1 . (8.48)

If the slow-roll approximation is valid,
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Ḣ

H2
=

V ′2

18M2
Pl

9M4
Pl

V 2
=

1

2
M2

Pl

(

V ′

V

)2

= ε ≪ 1 .

So if the slow-roll approximation is valid, inflation is guaranteed. This result
also shows that during slow-roll inflation, the Hubble parameter changes slowly
(while the scale factor changes almost exponentially). As we have noted, slow-roll
conditions are not necessary for inflation, it is possible to have inflation even when
the slow-roll parameters are not small (called fast-roll inflation). However, when we
consider perturbations in chapter 10, we will see that slow-roll inflation automatically
produces a spectrum of perturbations that is in close agreement with observations,
unlike fast-roll inflation.

8.5 Models of inflation

A scalar field model of inflation consists of the potential for the inflation and its
couplings to other fields. In most models, couplings to other fields don’t matter
during inflation, and only the inflaton is dynamically important. However, these

6From the Friedmann equations,
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)

Thus Ḣ > 0 requires ρ+ p− K
3a2 < 0. In the above, we assume that spatial curvature can already

be neglected, i.e. we can take K = 0.
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Ḣ ≤ 0 and:

inflation ⇔ −
Ḣ
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Figure 6: Potential for (a) large field and (b) small field inflation. For a typical small-field
model, the entire range of ϕ shown is ≪ MPl.

couplings usually come into play when inflation ends. Inflation can end because the
slow-roll approximation is no longer valid, as the field has rolled down the potential.
In this case inflation ends when either ε(ϕ) or |η(ϕ)| becomes of order unity. Another
possibility is that inflation ends while the inflaton undergoes slow-roll, because other
fields coupled to the inflaton become dynamically important and terminate inflation.
An example of this is hybrid inflation, where there is an extra scalar field in addition
to the inflaton.
Inflation models can be divided into two classes:

1. Small field inflation: ∆ϕ < MPl in the slow-roll section.

2. Large field inflation: ∆ϕ > MPl in the slow-roll section.

Here ∆ϕ change in ϕ during (the observationally relevant part of) inflation.
Example: Consider a simple potential of the form V (ϕ) = Aϕn. This is a large

field model, since V ′/V = n/ϕ ⇒ ε ≪ 1 requires ϕ2 ≫ 1
2n

2M2
Pl.

See figure 6 for typical shapes of potentials of large field and small field models.

8.5.1 An exact solution

Usually the slow-roll approximation is sufficient. In single-field models it fails near
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For the FRW metric, the energy density and pressure measured by an observer
comoving with the FRW metric are5

ρ = −T 0
0 =

1

2
ϕ̇2 + V (8.27)

p = T i
i =

1

2
ϕ̇2 − V , (8.28)

The field has negative pressure when the potential dominates over the kinetic term,
i.e. when the field is moving slowly. The equation of state parameter w ≡ p/ρ is

w =
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ̇)
=

1− 2V/ϕ̇2

1 + 2V/ϕ̇2
, (8.29)

so
−1 ≤ w ≤ 1 . (8.30)

If the kinetic term 1
2 ϕ̇

2 dominates, w ≈ 1; if the potential term V (ϕ) dominates,
w ≈ −1. Different inflaton models have different potentials V (ϕ). From (8.27), we
can form the useful combinations

ρ+ p = ϕ̇2

ρ+ 3p = 2
(

ϕ̇2 − V
)

.
(8.31)

We have the equation of motion of the field from (8.24). Alternatively, we could
just insert the energy density and pressure from (8.27) into the continuity equation

ρ̇ = −3H(ρ+ p) . (8.32)

This gives the same result,

ϕ̈+ 3Hϕ̇ = −V ′ . (8.33)

This is the field equation for a homogeneous field in a spatially flat FRW universe.
The effect of expansion is to add the term 3Hϕ̇, which acts like friction and slows
down the evolution of ϕ.

The condition for inflation, ρ+ 3p < 0, is satisfied if

ϕ̇2 < V . (8.34)

Let us assume that ϕ is initially far from the minimum of V (ϕ). The potential
then pulls ϕ towards the minimum (see figure 4). If the potential has a suitable
(sufficiently flat) shape, the friction term soon makes ϕ̇ small enough to satisfy
(8.34), even if it was not satisfied initially.

We also need the Friedmann equation,

H2 =
8πG

3
ρ =

1

3M2
Pl

ρ . (8.35)

Inserting the energy density from (8.27), we have

H2 =
1

3M2
Pl

[

1

2
ϕ̇2 + V

]

. (8.36)

5Those used to the Einstein summation convention should note that there is no summation over
i in (8.28).
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8.5.1 An exact solution

Usually the slow-roll approximation is sufficient. In single-field models it fails near
the end of inflation, but this is usually not a large correction. It is also much easier
to solve the slow-roll equations, (8.39) and (8.40), than the full equations, (8.33) and
(8.36). However, it is useful to have some exact solutions to the full equations, for
comparison. For some special cases, exact analytical solutions exist. One example
is power-law inflation, where the potential is

V (ϕ) = V0 exp

(

−
√

2

p

ϕ

MPl

)

, p > 1 , (8.49)

where V0 and p are constants.
An exact solution for the full equations, (8.33) and (8.36), is

a(t) = a0t
p (8.50)

ϕ(t) =
√

2pMPl ln

(
√

V0

p(3p− 1)

t

MPl

)

. (8.51)
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Figure 6: Potential for (a) large field and (b) small field inflation. For a typical small-field
model, the entire range of ϕ shown is ≪ MPl.
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Figure 7: After inflation, the inflaton field is left oscillating at the bottom.

The slow-roll parameters for this model are

ε =
1

2
η =

1

p
, (8.52)

independent of ϕ. In this model inflation never ends unless other physics intervenes.

8.6 Reheating

During inflation, practically all energy in the universe is in the inflaton potential
V (ϕ), since according to the slow-roll approximation 1

2 ϕ̇
2 ≪ V (ϕ). As inflation

ends, this energy is transferred in the reheating process to a thermal bath of particles
produced in the reheating. Thus reheating creates, from V (ϕ), all the stuff there is
in the later universe. The conversion of the inflaton energy density into a thermal
gas of particles does not affect the spectrum of density perturbations in single field
models of inflation (at least on superhorizon scales; see section 8.7 below). (It does
change the relationship between the relation of ϕk. and k/H0 given in (8.62), i.e.
amount that the perturbations are stretched between the end of inflation and today.)
The main constraint on reheating is that the reheating temperature must be above 1
MeV, but sufficiently low so as not to produce unwanted relics – where “sufficiently”
depends on the theory under consideration. For typical supersymmetric theories the
constraint on the reheating temperature is TR ! 107 GeV.

8.6.1 Scalar field oscillations

After inflation, the inflaton field ϕ begins to oscillate at the bottom of the potential
V (ϕ), see figure 7. The inflaton field is still homogeneous, ϕ(t, x⃗) = ϕ(t), so it
oscillates in the same phase everywhere (the oscillation is coherent). The oscillation
period soon becomes much shorter than the expansion time scale H−1.

Assume the potential can be approximated as V (ϕ) = 1
2m

2ϕ2 near the minimum
of V (ϕ), where the amplitude of ϕ is small. The equation of motion is then

ϕ̈+ 3Hϕ̇ = −m2ϕ . (8.53)

In the limit m ≫ H, we can neglect the friction term, and the field undergoes
oscillations with frequency m. We can write the energy continuity equation as

ρ̇+ 3Hρ = −3Hp = −
3

2
H
(

m2ϕ2 − ϕ̇2
)

. (8.54)
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In the limit m ≫ H, we can neglect the friction term, and the field undergoes
oscillations with frequency m. We can write the energy continuity equation as

ρ̇+ 3Hρ = −3Hp = −
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ends, this energy is transferred in the reheating process to a thermal bath of particles
produced in the reheating. Thus reheating creates, from V (ϕ), all the stuff there is
in the later universe. The conversion of the inflaton energy density into a thermal
gas of particles does not affect the spectrum of density perturbations in single field
models of inflation (at least on superhorizon scales; see section 8.7 below). (It does
change the relationship between the relation of ϕk. and k/H0 given in (8.62), i.e.
amount that the perturbations are stretched between the end of inflation and today.)
The main constraint on reheating is that the reheating temperature must be above 1
MeV, but sufficiently low so as not to produce unwanted relics – where “sufficiently”
depends on the theory under consideration. For typical supersymmetric theories the
constraint on the reheating temperature is TR ! 107 GeV.

8.6.1 Scalar field oscillations

After inflation, the inflaton field ϕ begins to oscillate at the bottom of the potential
V (ϕ), see figure 7. The inflaton field is still homogeneous, ϕ(t, x⃗) = ϕ(t), so it
oscillates in the same phase everywhere (the oscillation is coherent). The oscillation
period soon becomes much shorter than the expansion time scale H−1.

Assume the potential can be approximated as V (ϕ) = 1
2m

2ϕ2 near the minimum
of V (ϕ), where the amplitude of ϕ is small. The equation of motion is then

ϕ̈+ 3Hϕ̇ = −m2ϕ . (8.53)

In the limit m ≫ H, we can neglect the friction term, and the field undergoes
oscillations with frequency m. We can write the energy continuity equation as

ρ̇+ 3Hρ = −3Hp = −
3

2
H
(

m2ϕ2 − ϕ̇2
)

. (8.54)

8 INFLATION: BACKGROUND 135

Figure 7: After inflation, the inflaton field is left oscillating at the bottom.

The slow-roll parameters for this model are

ε =
1

2
η =

1

p
, (8.52)

independent of ϕ. In this model inflation never ends unless other physics intervenes.

8.6 Reheating

During inflation, practically all energy in the universe is in the inflaton potential
V (ϕ), since according to the slow-roll approximation 1

2 ϕ̇
2 ≪ V (ϕ). As inflation

ends, this energy is transferred in the reheating process to a thermal bath of particles
produced in the reheating. Thus reheating creates, from V (ϕ), all the stuff there is
in the later universe. The conversion of the inflaton energy density into a thermal
gas of particles does not affect the spectrum of density perturbations in single field
models of inflation (at least on superhorizon scales; see section 8.7 below). (It does
change the relationship between the relation of ϕk. and k/H0 given in (8.62), i.e.
amount that the perturbations are stretched between the end of inflation and today.)
The main constraint on reheating is that the reheating temperature must be above 1
MeV, but sufficiently low so as not to produce unwanted relics – where “sufficiently”
depends on the theory under consideration. For typical supersymmetric theories the
constraint on the reheating temperature is TR ! 107 GeV.

8.6.1 Scalar field oscillations

After inflation, the inflaton field ϕ begins to oscillate at the bottom of the potential
V (ϕ), see figure 7. The inflaton field is still homogeneous, ϕ(t, x⃗) = ϕ(t), so it
oscillates in the same phase everywhere (the oscillation is coherent). The oscillation
period soon becomes much shorter than the expansion time scale H−1.

Assume the potential can be approximated as V (ϕ) = 1
2m

2ϕ2 near the minimum
of V (ϕ), where the amplitude of ϕ is small. The equation of motion is then

ϕ̈+ 3Hϕ̇ = −m2ϕ . (8.53)

In the limit m ≫ H, we can neglect the friction term, and the field undergoes
oscillations with frequency m. We can write the energy continuity equation as

ρ̇+ 3Hρ = −3Hp = −
3

2
H
(

m2ϕ2 − ϕ̇2
)

. (8.54)

8 INFLATION: BACKGROUND 135

Figure 7: After inflation, the inflaton field is left oscillating at the bottom.

The slow-roll parameters for this model are

ε =
1

2
η =

1

p
, (8.52)

independent of ϕ. In this model inflation never ends unless other physics intervenes.

8.6 Reheating

During inflation, practically all energy in the universe is in the inflaton potential
V (ϕ), since according to the slow-roll approximation 1

2 ϕ̇
2 ≪ V (ϕ). As inflation

ends, this energy is transferred in the reheating process to a thermal bath of particles
produced in the reheating. Thus reheating creates, from V (ϕ), all the stuff there is
in the later universe. The conversion of the inflaton energy density into a thermal
gas of particles does not affect the spectrum of density perturbations in single field
models of inflation (at least on superhorizon scales; see section 8.7 below). (It does
change the relationship between the relation of ϕk. and k/H0 given in (8.62), i.e.
amount that the perturbations are stretched between the end of inflation and today.)
The main constraint on reheating is that the reheating temperature must be above 1
MeV, but sufficiently low so as not to produce unwanted relics – where “sufficiently”
depends on the theory under consideration. For typical supersymmetric theories the
constraint on the reheating temperature is TR ! 107 GeV.

8.6.1 Scalar field oscillations

After inflation, the inflaton field ϕ begins to oscillate at the bottom of the potential
V (ϕ), see figure 7. The inflaton field is still homogeneous, ϕ(t, x⃗) = ϕ(t), so it
oscillates in the same phase everywhere (the oscillation is coherent). The oscillation
period soon becomes much shorter than the expansion time scale H−1.

Assume the potential can be approximated as V (ϕ) = 1
2m

2ϕ2 near the minimum
of V (ϕ), where the amplitude of ϕ is small. The equation of motion is then

ϕ̈+ 3Hϕ̇ = −m2ϕ . (8.53)

In the limit m ≫ H, we can neglect the friction term, and the field undergoes
oscillations with frequency m. We can write the energy continuity equation as

ρ̇+ 3Hρ = −3Hp = −
3

2
H
(

m2ϕ2 − ϕ̇2
)

. (8.54)

8 INFLATION: BACKGROUND 136

Figure 8: The time evolution of ϕ as inflation ends.

The oscillating factor on the right hand side averages to zero over one oscillation
period (in the limit where the period is ≪ H−1), so on average the energy density
goes like ρ ∝ a−3, just like in a matter-dominated universe. The fall in the energy
density shows as a decrease of the oscillation amplitude, see figure 8.

8.6.2 Inflaton decay

When the inflaton field is oscillating around the minimum of the potential, the
energy stored in the inflaton field is transferred into particles, both by decay into
quanta of the inflaton field, which subsequently decay, and direct decay into other
fields via coupling between them and the inflaton. There can be tension between
achieving efficient reheating and having a long period of inflation. To have a long
duration of inflation, the inflaton field must be weakly coupled, but couplings to
other degrees of freedom are required for reheating7.

If the decay is slow, inflaton energy density satisfies the equation

ρ̇ϕ + 3Hρϕ = −Γϕρϕ , (8.55)

where Γϕ = 1/τϕ, the decay width, is the inverse of the inflaton decay time τϕ, and
the term −Γϕρϕ represents energy transfer to other particles.

If the inflaton can decay into bosons, the decay may be very rapid, involving a
mechanism called parametric resonance. The produced particles are far from thermal
equilibrium (only certain bands in momentum space become populated, and their
occupation numbers are huge). In realistic models of inflation, the inflaton can
decay via mixture of different decay methods. The process by which the inflaton
transfers its energy into particles is called preheating and the thermalisation of the
gas of particles is called reheating. However, terminology varies, and often the term
reheating is used to refer just to the energy transfer, even if the final state is not in
thermal equilibrium.

8.6.3 Thermalisation

The particles produced from the inflaton will interact, create other particles through
particle reactions, and the resulting soup will eventually reach thermal equilibrium

7In fact, if the scale of inflation is sufficiently high, it is possible to reheat without any couplings
between the inflaton and the Standard Model degrees of freedom by producing particles gravitation-
ally out of the vacuum. This is called gravitational reheating, and it is one of the many delicacies
of inflation we will not have time to sample!
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Figure 9: Remaining number of e-foldings N(t) as a function of time.

with some temperature Treh. This reheating temperature is determined by the energy
density ρreh at the end of the reheating epoch:

ρreh =
π2

30
g∗(Treh)T

4
reh . (8.56)

Necessarily ρreh < ρend (end = end of inflation). If reheating takes a long time,
we may have ρreh ≪ ρend. The evolution of the gas of particles into a thermal
state can be quite involved, and it has been studied in various models. Usually it
is just assumed that it happens eventually, since the particles are able to interact.
However, it is possible that some particles (such as gravitinos) never reach ther-
mal equilibrium, since their interactions are too weak. In any case, as long as the
momenta of the particles are much higher than their masses, the energy density of
the universe behaves like radiation, regardless of the momentum space distribution.
So the background expansion rate is the same. After thermalisation of at least the
baryons, photons and neutrinos is complete, the standard Hot Big Bang era begins.

8.7 Scales of inflation

8.7.1 Amount of inflation

During inflation, the scale factor a(t) grows by a huge factor. We define the number

of e-foldings from time t to end of inflation tend

N(t) ≡ ln
a(tend)

a(t)
. (8.57)

See figure 9. We can calculate N(t) ≡ N(ϕ(t)) ≡ N(ϕ) from the shape of the
potential V (ϕ) and the value of ϕ at time t:

N(ϕ) = ln
a(tend)

a(t)
=

∫ tend

t
H(t)dt =

∫ ϕend

ϕ

H

ϕ̇
dϕ

slow roll
≈

1

M2
Pl

∫ ϕ

ϕend

V

V ′
dϕ ,

(8.58)

where we have used da
a = d ln a = Hdt = H dϕ

ϕ̇ .

8.7.2 Evolution of scales

When discussing the evolution of density perturbations and formation of structures
in the universe (to which we will get later), we will be interested in the history
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Comments:

Inflation does not replace the Big Bang model, but it enriches it; it was proposed in order to address shortcoming of 
the BB model. Inflation does not resolve all problems of the BB model which are related with the initial conditions.

Despite decades of studies and countless inflationary models, inflation remains a paradigm in search of a theory.

Inflation gave as a bonus adiabatic scalar perturbations that can explain the origin of initial perturbations leading to 
scalar formation from gravitational instability.

The inflationary mechanism may be the appropriate one, but its origin may not be a scalar field but a modification of 
gravity having each origin in the quantum gravity era (like the Starobinsky model)

Standard inflation requires particular conditions as the outcome of a quantum era setting the beginning of the 
semiclassical era.

There are other models suggested in the literature that can do the job of inflation: bounce cosmologies


