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OUTLINE

+ Introduction: IR divergences
« Ideas for IR finiteness:

— Cross section method
— Finite S-matrix

— Coherent states

« Conclusions & Future directions



THE SCATTERING MATRIX (S-MATRIX)

(f| S|¢): Probability amplitude for measuring a

final state |f) given an initial state |¢)

€ €
« Used in most Quantum Field Theory calculations. ><

— Leads to predictions for collider experiments.
— Standard Model observables computed to high precision.

— Calculated using Feynman diagrams.




PROBLEM WITH S-MATRIX: DIVERGENCES

« Probability of e"e™ scattering is naively o< % — 0.

€ (&
- UV divergences at high energies. ><
« IR divergences at low energies. - -

Problems provide an opportunity: Explore and gain new insight



PROBLEM WITH S-MATRIX: DIVERGENCES

Physical Reason: We are not including the electromagnetic field

correctly in scattering calculations.
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IDEAS FOR IR FINITENESS

1. Finite cross sections o oc [ |[(f|S|i)[*dIl;

o Bloch-Nordsieck theorem
o KLN theorem

2. Finite S-matrix

3. Finite scattering amplitudes Sy; = (f|S|i)



1. FINITE CROSS SECTIONS



CROSS SECTION METHOD - INTRODUCTION

Idea: Cross section is measurable and hence should be finite.

Need to calculate the same quantity as we measure.



CROSS SECTION METHOD - INTRODUCTION

Physical Motivation: All physical observables are finite.

Theoretical Goal: Find the minimal set of Feynman diagrams

needed for finiteness.



PREVIOUS THEOREMS ON IR DIVERGENCES
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PREVIOUS THEOREMS ON IR DIVERGENCES

Bloch-Nordsieck (1937): Soft IR divergences cancel in QED when summing over

with finite energy resolution.

Doria, Frenkel, Taylor (1980): Counterexample in QCD: gq - pugq + final state

gluons is soft IR divergent at 2-loops.

KLN Theorem (1962-64): S-matrix elements squared are IR finite when summing

over final states and initial states within some energy window:

) [(f1S]i} | < o0

f,iE[E—Eo ,E+E0]



STRONGER KLN THEOREM

KLN Theorem (1962-64): S-matrix elements squared are IR finite when summing

over final states and initial states within some energy window:

> [(f1:S 1) [* < o0

f,iE[E—Eo ,E+E0]

Stronger KLN Theorem (2018): S-matrix elements squared are IR finite when

summing over final states or initial states:

§|<f|S|i>|2<oo, SIS i) < 0o



FORWARD SCATTERING

« KLN is a trivial consequence of unitarity:
— Probability of i — anything is 1 < oo
— Probability of anything — f is 1 < co

+ KLN requires a term where f =¢ — forward scattering
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CONCLUSION OF CROSS SECTION METHOD

DA o1 <00
f
Conclusion: KLN theorem = unitarity.

If we sum over all possible diagrams we get 1 by unitarity, and 1 is IR finite.

Not closer to finding the minimal set of diagrams needed for IR finiteness.



CONCLUSION OF CROSS SECTION METHOD

DA o1 <00
f
Conclusion: KLN theorem = unitarity.
If we sum over all possible diagrams we get 1 by unitarity, and 1 is IR finite.

Not closer to finding the minimal set of diagrams needed for IR finiteness.

Need new ideas beyond the cross section method.



2. A FINITE S-MATRIX



THE SCATTERING MATRIX (S-MATRIX)

« Properties extensively studied.
— How to encode its content? Spinors, twistors, amplituhedron?
— What are its symmetries? Lorentz invariance, Dual conformal invariance?
— What constraints can we impose? Steinmann relations, limits?

« Still, the S-matrix does not exist in theories with massless particles.

— Divergent in perturbation theory.

— Zero non-perturbatively.



THE SCATTERING MATRIX (S-MATRIX)

Why are our previous calculations valuable?
What is the fundamental object we should calculate?

What do we gain from a firmer mathematical ground?



WHAT IS SCATTERING?

time y
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WHAT IS SCATTERING?

S-matrix: Probability amplitude for measuring |f) given |i)

Sfl = lim <f| eiH0t+€_th+€th—e—iH0t— |Z>

ti—+o00
time
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TRADITIONAL DEFINITION OF S-MATRIX

Sf’L = lim <f| €iH0t+€_th+€th7€_iH0L |Z)

ti—+o00

Free Theory: S=1 Sy =(fli) v
QM, short range potential: v

Const. potential H =Ho+Vy: Sy = <f|i>Thm e=2tVoT 9

QED S:]l_;%+...:_oo?
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MODIFY S-MATRIX TO Sy

Recall: Interactions do not vanish as t - +oo in QED.

e SE Wi
TN NS

Redefine S-matrix in theories with long range interactions:

Sfl — ) lim (f| eiH0t+e—th+eth_e—iHot_ |Z)
+—>+00
— sz — hm (f] eiHast+e—th+eth_e—iHaSt_ |z)

+—>+00



MODIFY S-MATRIX TO Sg

t=—00 t=0 t=00



QUESTIONS

S]g :t lim <f| eiH;Lst+e—th+ 6th_e—iHast_ |Z)

+—>+00

(i) How to pick H,g?
 Criteria: IR finite, easy to calculate, useful in practice, consistent with every

measurement to date.
(ii) How to calculate matrix elements of Sg?

(iii) How to interpret Sg?



CHOICE OF H ,q

(i) How to pick Hus?
+ Use factorization, and techniques from Soft-Collinear Effective Theory (SCET):

Has = HSCET

« IR finite by construction due to universality of IR divergences.
« States evolve independently of how they scatter.
« New UV divergences dealt with using renormalization.

« No scales, most integrals are zero in dim reg.



THREE PART CALCULATION

(ii) How to calculate matriz elements of Sg ¢

+ Calculation trick in perturbation theory:

Sfi= [ty [ i (e 1) (1 S1) @9 1)

—_—  — ——

TOPT usual TOPT
. L. rules Feynman rules
« Calculations split into three parts: rules

asymptotic region t=seo  central region =00 asymptotic region
time




EXAMPLE: Z - e* e FOR H,s = Hscgrr

t=0

t=—o0

YR [3 4+2L_i_4+2L]

- A | €2 2
dr | e €ir €y €uv

_ 2
(e*e | Su|2)™ = Mo + Mof [78 + % By SL]
Y[

,E‘z . .
me=0, L=In —#Czﬂ, Mo: LO matrix element, Dim reg, CM frame



INTERPRETATION OF Sy

iii) How to interpret Sy
iii) How to int tSp?
a. Wilson coefficients in Soft-Collinear Effective Theory (SCET)
b. Remainder functions in N = 4 Supersymmetric Yang-Mills theory (SYM)

c. Dressed states / Coherent states



a. WILSON COEFFICIENTS

N 2
(e*e| Su |1Z)MS = Mg + /\/104g 8+ % _L?+3L
7I8

Familiar expression:

S amplitudes = Wilson coefficients in SCET

+ Wilson coefficients: Coupling constants in the effective field theory.

« Encode hard dynamics of a scattering process.



a. WILSON COEFFICIENTS

Advantages to alternative definition:

Properties of Wilson coefficients identical to those of Sg.

« Usually: difference of matrix elements in different theories.
« Here: matrix elements of a single operator.

« What are the analytic and symmetry properties of Sgr?



b. N =4 REMAINDER FUNCTIONS

« N =4 supersymmetric Yang-Mills theory obeys dual conformal invariance
(DCI).
— Amplitudes bootstrapped to 6 and 7 loops (Caron-Huot et al. 2019)
— DCI violated at 1-loop.
« Compute remainder functions R instead of amplitudes

— Ratio of full amplitude and an exponentiation of 1-loop divergences.

— Sometimes obey Steinmann relations and DCI.

IR divergences obscure simplicity of N =4 amplitudes.



4-Point Amplitude in N =4 is Complicated
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Use universality of IR divergences to simplify.



b. AN =4 REMAINDER FUNCTIONS

Sy approach:
+ Subtract divergent amplitudes instead of taking ratios.

« Sy amplitude for 4-points, 1-loop after renormalization:

2 2 2
IR
-t  -s 6

EBDS,(l) _

« Sy amplitude for 4-points, 2-loop after renormalization:

7 BDS.(2) _ 1| g7 BDS,(1) ]
— ’2 — ’1
4 2[ 4 6]



b. N =4 REMAINDER FUNCTIONS
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b. N =4 REMAINDER
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b. N =4 REMAINDER FUNCTIONS

Factorization, and techniques from SCET,
explain why remainder functions have simple forms.
L
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3. FINITE SCATTERING AMPLITUDES



C. COHERENT STATES

o Arise as intermediate steps in Sy calculations:

SH = SIS (| S (]2 Ji)

fl il

(9] i)

. t=0 t=—oc0
time




C. COHERENT STATES

o Arise as intermediate steps in Sy calculations:
St = 2 2 QTS IS 1) (1925° )
fl Z‘/
(f i)

Mathematically the same as the finite S-matrix



FUTURE DIRECTIONS: ANALYTIC STRUCTURE OF Sy

We have explored:

S provides an alternative definition of familiar QFT objects.

New goal:

Examine properties of Sg, e.g. using bootstrapping methods.

Tools needed:

Better handle on analytic structure of amplitudes.



FUTURE DIRECTIONS: ANALYTIC STRUCTURE OF Sy

Y s ¢ 777777:« .
Vo Sx

Sx

o R

Can we deduce branch-point structure of Sg?



CONCLUSIONS

« IR divergences remain a problem in QFT
« Explored three solutions:

1. Finite cross sections: Sum over all diagrams for finiteness.
2. Finite S-matrix: Encodes hard dynamics of scattering processes.

3. Finite scattering amplitudes (Coherent states): Same as Finite S-matriz.

« Future directions: Explore analytic structure
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