A FINITE S-MATRIX

Hofie Sigridar Hannesdottir

Institute for Advanced Study

arXiv: 1810.10022

with C. Frye, N. Paul, M. Schwartz, and K. Yan with M. Schwartz

arXiv: 1906.03271

with M. Schwartz

arXiv: 1911.06821

e-----

OUTLINE

- Introduction: IR divergences
- Ideas for IR finiteness:
 - Cross section method
 - Finite S-matrix
 - Coherent states
- Conclusions & Future directions

The Scattering Matrix (S-matrix)

 $\langle f|S|i\rangle$: Probability amplitude for measuring a

final state $|f\rangle$ given an initial state $|i\rangle$

- Used in most **Quantum Field Theory** calculations.
 - Leads to predictions for **collider experiments**.
 - Standard Model observables computed to high precision.
 - Calculated using Feynman diagrams.

PROBLEM WITH S-MATRIX: DIVERGENCES

- Probability of e^-e^- scattering is naively $\propto \frac{1}{\epsilon} \to \infty$.
- UV divergences at high energies.
- IR divergences at low energies.

Problems provide an opportunity: Explore and gain new insight

PROBLEM WITH S-MATRIX: DIVERGENCES

Physical Reason: We are not including the electromagnetic field correctly in scattering calculations.

IR DIVERGENCES IN QFT

Propagator: $\frac{1}{(p+k)^2} \sim \frac{1}{|k|(1-\cos\theta)}$

Singularities:
$$|k| \to 0$$
 soft
$$\theta \to 0$$
 collinear $\}$ IR divergences

IDEAS FOR IR FINITENESS

- 1. Finite cross sections $\sigma \propto \int |\langle f|S|i\rangle|^2 d\Pi_f$
 - Bloch-Nordsieck theorem
 - KLN theorem
- 2. Finite S-matrix
- 3. Finite scattering amplitudes $S_{fi} = \langle f | S | i \rangle$

1. Finite Cross Sections

CROSS SECTION METHOD - INTRODUCTION

Idea: Cross section is **measurable** and hence should be finite.

Need to calculate the same quantity as we measure.

CROSS SECTION METHOD - INTRODUCTION

Physical Motivation: All physical observables are finite.

Theoretical Goal: Find the *minimal set* of Feynman diagrams needed for finiteness.

PREVIOUS THEOREMS ON IR DIVERGENCES

Kinoshita-Lee-Nauenberg (KLN) theorem

PREVIOUS THEOREMS ON IR DIVERGENCES

Bloch-Nordsieck (1937): Soft IR divergences cancel in QED when summing over final state photons with finite energy resolution.

Doria, Frenkel, Taylor (1980): Counterexample in QCD: $qq \rightarrow \mu\mu qq$ + final state gluons is soft IR divergent at 2-loops.

KLN Theorem (1962-64): S-matrix elements squared are IR finite when summing over final states and initial states within some energy window:

$$\sum_{f,i\in[E-E_0,E+E_0]} |\langle f|S|i\rangle|^2 < \infty$$

STRONGER KLN THEOREM

KLN Theorem (1962-64): S-matrix elements squared are IR finite when summing over final states and initial states within some energy window:

$$\sum_{f,i\in[E-E_0,E+E_0]} |\langle f|S|i\rangle|^2 < \infty$$

Stronger KLN Theorem (2018): S-matrix elements squared are IR finite when summing over final states or initial states:

$$\sum_{f} |\langle f | S | i \rangle|^{2} < \infty, \qquad \sum_{i} |\langle f | S | i \rangle|^{2} < \infty$$

FORWARD SCATTERING

- KLN is a trivial consequence of **unitarity**:
 - Probability of $i \to \text{anything is } 1 < \infty$
 - Probability of anything $\rightarrow f$ is $1 < \infty$
- KLN requires a term where $f = i \rightarrow$ forward scattering

$\gamma\gamma \to \gamma\gamma$ SCATTERING

 $\sigma \propto \frac{1}{2\epsilon}$

× × σ × -

Rate to produce no charged particles in photon collisions is not IR safe

CONCLUSION OF CROSS SECTION METHOD

$$\sum_{f} |\langle f | S | i \rangle|^2 \propto 1 < \infty$$

Conclusion: KLN theorem = unitarity.

If we sum over all possible diagrams we get 1 by unitarity, and 1 is IR finite.

Not closer to finding the **minimal set of diagrams** needed for IR finiteness.

CONCLUSION OF CROSS SECTION METHOD

$$\sum_{f} |\langle f | S | i \rangle|^2 \propto 1 < \infty$$

Conclusion: KLN theorem = unitarity.

If we sum over all possible diagrams we get 1 by unitarity, and 1 is IR finite.

Not closer to finding the **minimal set of diagrams** needed for IR finiteness.

Need new ideas beyond the cross section method.

2. A FINITE S-MATRIX

The Scattering Matrix (S-matrix)

- Properties extensively studied.
 - How to **encode its content**? *Spinors, twistors, amplituhedron?*
 - What are its **symmetries**? Lorentz invariance, Dual conformal invariance?
 - What **constraints** can we impose? Steinmann relations, limits?
- Still, the S-matrix does not exist in theories with massless particles.
 - Divergent in perturbation theory.
 - Zero non-perturbatively.

The Scattering Matrix (S-matrix)

Why are our previous calculations valuable?

What is the **fundamental object** we should calculate?

What do we gain from a firmer mathematical ground?

WHAT IS SCATTERING?

WHAT IS SCATTERING?

S-matrix: **Probability amplitude** for measuring $|f\rangle$ given $|i\rangle$

$$S_{fi} = \lim_{t_+ \to \pm \infty} \left\langle f \right| e^{iH_0t_+} e^{-iHt_+} e^{iHt_-} e^{-iH_0t_-} \left| i \right\rangle$$

Traditional Definition of S-matrix

$$S_{fi} = \lim_{t_+ \to \pm \infty} \langle f | e^{iH_0t_+} e^{-iHt_+} e^{iHt_-} e^{-iH_0t_-} | i \rangle$$

Free Theory:
$$S = 1$$
 $S_{fi} = \langle f|i \rangle \checkmark$

Const. potential
$$H = H_0 + V_0$$
: $S_{fi} = \langle f|i \rangle \lim_{T \to \infty} e^{-2iV_0T}$?

QED:
$$S = \mathbb{1} - \frac{\alpha}{\epsilon^2} + \dots = -\infty?$$

$$S = \exp\left\{-\frac{\alpha}{\epsilon^2}\right\} = 0?$$

QM, short range potential:

Modify S-matrix to S_H

Recall: Interactions do not vanish as $t \to \pm \infty$ in QED.

Redefine S-matrix in theories with long range interactions:

$$S_{fi} = \lim_{t_{\pm} \to \pm \infty} \langle f | e^{iH_0 t_+} e^{-iHt_+} e^{iHt_-} e^{-iH_0 t_-} | i \rangle$$

$$\to S_{fi}^H = \lim_{t_{\pm} \to \pm \infty} \langle f | e^{iH_{as} t_+} e^{-iHt_+} e^{iHt_-} e^{-iH_{as} t_-} | i \rangle$$

Modify S-matrix to S_H

QUESTIONS

$$S_{fi}^{H} = \lim_{t_{+} \to \pm \infty} \langle f | e^{iH_{as}t_{+}} e^{-iHt_{+}} e^{iHt_{-}} e^{-iH_{as}t_{-}} | i \rangle$$

- (i) How to pick H_{as} ?
 - Criteria: IR finite, easy to calculate, useful in practice, consistent with every measurement to date.
- (ii) How to calculate matrix elements of S_H ?
- (iii) How to interpret S_H ?

Choice of $H_{ m AS}$

- (i) How to pick H_{as} ?
 - Use **factorization**, and techniques from Soft-Collinear Effective Theory (SCET):

$$H_{\rm as} = H_{SCET}$$

- IR finite by construction due to universality of IR divergences.
- States evolve independently of how they scatter.
- New UV divergences dealt with using renormalization.
- No scales, most integrals are zero in dim reg.

THREE PART CALCULATION

- How to calculate matrix elements of S_H ? (ii)
 - Calculation trick in perturbation theory:

$$S_{fi}^{H} = \int d\Pi_{f}' \int d\Pi_{i}' \underbrace{\langle f | \Omega_{+}^{\mathrm{as}} | f' \rangle}_{\text{TOPT}} \underbrace{\langle f' | S | i' \rangle}_{\text{rules}} \underbrace{\langle i' | \Omega_{+}^{\mathrm{as}} | i \rangle}_{\text{rules}}$$
plit into three parts:

• Calculations split into three parts:

EXAMPLE: $Z \rightarrow e^+ e^-$ FOR $H_{AS} = H_{SCET}$

$$= \mathcal{M}_0 \frac{\alpha}{4\pi} \left[\frac{1}{\epsilon_{\text{UV}}} - \frac{2}{\epsilon_{\text{IR}}^2} - \frac{4 + 2L}{\epsilon_{\text{IR}}} - 8 + \frac{\pi^2}{6} - L^2 + 3L \right]$$

$$= \mathcal{M}_0 \frac{\alpha}{4\pi} \left[\frac{2}{\epsilon_{\text{IR}}^2} + \frac{4 + 2L}{\epsilon_{\text{IR}}} - \frac{2}{\epsilon_{\text{UV}}^2} - \frac{4 + 2L}{\epsilon_{\text{UV}}} \right]$$

$$= \mathcal{M}_0 \frac{\alpha}{4\pi} \left[\frac{2}{\epsilon_{\text{IR}}^2} + \frac{4 + 2L}{\epsilon_{\text{IR}}} - \frac{2}{\epsilon_{\text{UV}}^2} - \frac{4 + 2L}{\epsilon_{\text{UV}}} \right]$$

$$= \mathcal{M}_0 \frac{\alpha}{4\pi} \left[\frac{2}{\epsilon_{\text{IR}}^2} + \frac{4 + 2L}{\epsilon_{\text{IR}}} - \frac{2}{\epsilon_{\text{UV}}^2} - \frac{4 + 2L}{\epsilon_{\text{UV}}} \right]$$

$$= \mathcal{M}_0 \frac{\alpha}{4\pi} \left[-8 + \frac{\pi^2}{6} - L^2 + 3L \right]$$

$$= \mathcal{M}_0 \frac{\alpha}{4\pi} \left[-8 + \frac{\pi^2}{6} - L^2 + 3L \right]$$

$$= \mathcal{M}_0 \frac{\alpha}{4\pi} \left[-8 + \frac{\pi^2}{6} - L^2 + 3L \right]$$

$$= \mathcal{M}_0 \frac{\alpha}{4\pi} \left[-8 + \frac{\pi^2}{6} - L^2 + 3L \right]$$

$$= \mathcal{M}_0 \frac{\alpha}{4\pi} \left[-8 + \frac{\pi^2}{6} - L^2 + 3L \right]$$

$$= \mathcal{M}_0 \frac{\alpha}{4\pi} \left[-8 + \frac{\pi^2}{6} - L^2 + 3L \right]$$

Interpretation of S_H

(iii) How to interpret S_H ?

- a. Wilson coefficients in Soft-Collinear Effective Theory (SCET)
- b. Remainder functions in $\mathcal{N} = 4$ Supersymmetric Yang-Mills theory (SYM)
- c. Dressed states / Coherent states

a. WILSON COEFFICIENTS

$$\langle e^+e^-|S_H|Z\rangle^{\overline{\mathrm{MS}}} = \mathcal{M}_0 + \mathcal{M}_0 \frac{\alpha}{4\pi} \left[-8 + \frac{\pi^2}{6} - L^2 + 3L \right]$$

Familiar expression:

$$S_H$$
 amplitudes = Wilson coefficients in SCET

- Wilson coefficients: Coupling constants in the effective field theory.
- Encode hard dynamics of a scattering process.

a. WILSON COEFFICIENTS

Advantages to alternative definition:

Properties of Wilson coefficients identical to those of S_H .

- Usually: difference of matrix elements in different theories.
- Here: matrix elements of a **single operator**.
- What are the analytic and symmetry properties of S_H ?

- $\mathcal{N} = 4$ supersymmetric Yang-Mills theory obeys dual conformal invariance (DCI).
 - Amplitudes **bootstrapped** to 6 and 7 loops (Caron-Huot et al. 2019)
 - DCI violated at 1-loop.
- Compute remainder functions R instead of amplitudes
 - Ratio of full amplitude and an exponentiation of 1-loop divergences.
 - Sometimes obey **Steinmann relations** and **DCI**.

IR divergences obscure simplicity of N = 4 amplitudes.

4-Point Amplitude in $\mathcal{N} = 4$ is Complicated

$$M_4^{(1)}(\epsilon) = -\frac{2}{\epsilon^2} + \frac{1}{\epsilon} M_4^{(1)}(\epsilon^{-1}) + M_4^{(1)}(\epsilon^0) + \cdots$$

$$\begin{split} &M_4^{(1)}(\epsilon^{-1}) = -\ln\frac{\mu^2}{-s} - \ln\frac{\mu^2}{-t} \\ &M_4^{(1)}(\epsilon^0) = -\ln\frac{\mu^2}{-t} \ln\frac{\mu^2}{-s} + \frac{2\pi^2}{3} \\ &M_4^{(1)}(\epsilon^1) = -\frac{\pi^2}{2} \ln\frac{s}{-s} - \frac{1}{3} \ln^3\frac{-s}{u} + \frac{\pi^2}{12} \ln\frac{\mu^2}{-s} - \frac{1}{6} \ln^3\frac{\mu^2}{-s} + \frac{\pi^2}{4} \ln\frac{\mu^2}{u} + \frac{1}{2} \ln^2\frac{-s}{u} \ln\frac{\mu^2}{u} - \frac{1}{2} \ln\frac{-s}{u} \ln\frac{-t}{u} \ln\frac{\mu^2}{u} \\ &- \ln\frac{-s}{u} \text{Li}_2\frac{-s}{u} + \text{Li}_3\frac{-s}{u} + \frac{7}{3}\zeta_3 + (s \leftrightarrow t) \\ &M_4^{(1)}(\epsilon^2) = \frac{5\pi^2}{24} \ln^2\frac{-s}{u} + \frac{1}{8} \ln^4\frac{-s}{u} + \frac{3}{8} \ln\frac{-s}{u} \ln\frac{-t}{u} + \frac{1}{6} \ln^3\frac{-s}{u} \ln\frac{-t}{u} - \frac{1}{4} \ln^2\frac{-s}{u} \ln^2\frac{-t}{u} + \frac{\pi^2}{24} \ln^2\frac{\mu^2}{-s} - \frac{1}{24} \ln^4\frac{\mu^2}{s} - \frac{\pi^2}{2} \ln\frac{-s}{u} \ln\frac{\mu^2}{u} \\ &- \frac{1}{3} \ln^3\frac{-s}{u} \ln\frac{\mu^2}{u} + \frac{\pi^2}{8} \ln^2\frac{\mu^2}{u} + \frac{1}{4} \ln^2\frac{-s}{u} \ln^2\frac{\mu^2}{u} - \frac{1}{4} \ln\frac{s}{u} \ln\frac{-t}{u} \ln^2\frac{\mu^2}{u} + \frac{7}{3}\zeta_3 \ln^2\frac{\mu^2}{-s} + \frac{1}{2} \ln^2\frac{-s}{u} \ln\frac{\mu^2}{u} - \frac{1}{u} \ln\frac{\mu^2}{u} \text{Li}_2\frac{-s}{u} \\ &+ \ln\frac{\mu^2}{u} \text{Li}_3\frac{-s}{u} - \ln\frac{-s}{u} \frac{1}{u^2} - \text{Li}_4\frac{-s}{u} + \frac{49\pi^4}{790} + (s \leftrightarrow t) \end{split}$$

Use universality of IR divergences to simplify.

S_H approach:

- Subtract divergent amplitudes instead of taking ratios.
- S_H amplitude for 4-points, 1-loop after renormalization:

$$\widehat{M}_4^{\text{BDS},(1)} = -\ln \frac{\mu^2}{-t} \ln \frac{\mu^2}{-s} + \frac{5\pi^2}{6}$$

• S_H amplitude for 4-points, 2-loop after renormalization:

$$\widehat{M}_4^{\text{BDS},(2)} = \frac{1}{2} \left[\widehat{M}_4^{\text{BDS},(1)} - \frac{\pi^2}{6} \right]^2$$

$$M_4^{(1)}(\epsilon) = -\frac{2}{\epsilon^2} + \frac{1}{\epsilon} M_4^{(1)}(\epsilon^{-1}) + M_4^{(1)}(\epsilon^0) + \cdots$$

$$\begin{split} &M_4^{(1)}(\epsilon^{-1}) = -\ln\frac{\mu^2}{-s} - \ln\frac{\mu^2}{-t} \\ &M_4^{(1)}(\epsilon^0) = -\ln\frac{\mu^2}{-t} \ln\frac{\mu^2}{-s} + \frac{2\pi^2}{3} \\ &M_4^{(1)}(\epsilon^0) = -\frac{\pi^2}{2} \ln\frac{-s}{-t} - \frac{1}{3} \ln^3\frac{-s}{u} + \frac{\pi^2}{2} \ln\frac{\mu^2}{-s} - \frac{1}{6} \ln^3\frac{\mu^2}{-s} + \frac{\pi^2}{4} \ln\frac{\mu^2}{u} + \frac{1}{2} \ln^2\frac{-s}{u} \ln\frac{\mu^2}{u} - \frac{1}{2} \ln\frac{-s}{u} \ln\frac{-t}{u} \ln\frac{\mu^2}{u} \\ &- \ln\frac{-s}{u} \text{Li}_2\frac{-s}{u} + \text{Li}_3\frac{-s}{u} + \frac{7}{3}\zeta_3 + (s \leftrightarrow t) \\ &M_4^{(1)}(\epsilon^2) = \frac{5\pi^2}{24} \ln^2\frac{-s}{u} + \frac{1}{8} \ln^4\frac{-s}{u} + \frac{3}{8} \ln\frac{-s}{u} \ln\frac{-t}{u} + \frac{1}{6} \ln^3\frac{-s}{u} \ln\frac{-t}{u} - \frac{1}{4} \ln^2\frac{-s}{u} \ln^2\frac{-t}{u} + \frac{\pi^2}{24} \ln^2\frac{\mu^2}{-s} - \frac{1}{24} \ln^4\frac{\mu^2}{u} - \frac{\pi^2}{2} \ln\frac{-s}{u} \ln\frac{\mu^2}{u} \\ &- \frac{1}{3} \ln^3\frac{-s}{u} \ln\frac{\mu^2}{u} + \frac{\pi^2}{8} \ln^2\frac{\mu^2}{u} + \frac{1}{4} \ln^2\frac{-s}{u} \ln\frac{\mu^2}{u} - \frac{1}{4} \ln\frac{-s}{u} \ln\frac{-t}{u} \ln\frac{t}{u} + \frac{\tau^2}{3} \ln^2\frac{\mu^2}{u} + \frac{1}{2} \ln^2\frac{-s}{u} - \frac{1}{2} \ln\frac{\mu^2}{u} + \frac{1}{2} \ln^2\frac{-s}{u} \ln\frac{\mu^2}{u} + \frac{1}{2} \ln\frac{\mu^2}{u}$$

$$M_4^{(1)}(\epsilon) = -\frac{2}{\epsilon^2} + \frac{1}{\epsilon} M_4^{(1)}(\epsilon^{-1}) + M_4^{(1)}(\epsilon^0) + \cdots$$

$$\begin{split} M_4^{(1)}(c^{-1}) &= \ln \frac{\mu^2}{c^2} - \ln \frac{\mu^2}{c^2} \\ M_4^{(1)}(c^3) &= -\ln \frac{\mu^2}{c^4} \ln \frac{\mu^2}{c^2} + \frac{2\pi^2}{3} \\ M_4^{(1)}(c^3) &= -\ln \frac{\mu^2}{c^4} \ln \frac{\mu^2}{c^2} + \frac{2\pi^2}{3} \\ M_4^{(1)}(c^4) &= \frac{\pi^2}{c^2} \ln \frac{\mu^2}{c^2} - \frac{1}{3} \ln^2 \frac{\mu^2}{c^2} + \frac{1}{6} \ln^3 \frac{\mu^2}{c^2} + \frac{\pi^2}{4} \ln \frac{\mu^2}{c^2} + \frac{1}{2} \ln^2 \frac{\mu^2}{c^2} - \frac{1}{4} \ln \frac{\mu^2}{c^2} - \frac{\mu^2}{c^2} - \frac{1}{4} \ln \frac{\mu^2}{c^2}$$

$$\widehat{M}_4^{\text{BDS},(1)} = -\ln \frac{\mu^2}{-t} \ln \frac{\mu^2}{-s} + \frac{5\pi^2}{6}$$

Factorization, and techniques from SCET, explain why remainder functions have simple forms.

$$\widehat{M}_4^{\text{BDS},(1)} = -\ln\frac{\mu^2}{-t}\ln\frac{\mu^2}{-s} + \frac{5\pi^2}{6}$$

3. Finite Scattering Amplitudes

C. COHERENT STATES

• Arise as intermediate steps in S_H calculations:

C. COHERENT STATES

• Arise as intermediate steps in S_H calculations:

$$S_{fi}^{H} = \sum_{f'} \sum_{i'} \underbrace{\langle f | \Omega_{+}^{as} | f' \rangle \langle f' |}_{\langle f^{d} |} \underbrace{S \underbrace{|i'\rangle \langle i' | \Omega_{+}^{as} | i\rangle}_{|i^{d}\rangle}_{}$$

Mathematically the same as the finite S-matrix

FUTURE DIRECTIONS: ANALYTIC STRUCTURE OF S_H

We have explored:

 S_H provides an alternative definition of familiar QFT objects.

New goal:

Examine properties of S_H , e.g. using **bootstrapping** methods.

Tools needed:

Better handle on analytic structure of amplitudes.

FUTURE DIRECTIONS: ANALYTIC STRUCTURE OF S_H

Can we deduce branch-point structure of S_H ?

Conclusions

- IR divergences remain a problem in QFT
- Explored three solutions:
 - 1. Finite cross sections: Sum over all diagrams for finiteness.
 - 2. Finite S-matrix: Encodes hard dynamics of scattering processes.
 - 3. Finite scattering amplitudes (Coherent states): Same as Finite S-matrix.
- Future directions: Explore analytic structure

THANKS!