Some features of v_{μ} -CC interactions in GRAIN (... and in STT)

Antonio Surdo for Lecce group

DUNE Italian Meeting Bologna, 12/11/2021

GRAIN design and simulation

- ✓ Detailed geometry, dimensions and structure of the active LAr detector currently in the design phase
- ✓ Layout with temporary geometry implemented in GEANT4 code
- FLUKA: implementation of current geometry layout in progress. with a simplified detector response simulation
 - provided info: particle hits (position, time, energy deposit)

Neutrino interactions in GRAIN (FLUKA)

Two samples of ν_{μ} - CC interactions in LAr target and in STT

Some features

- Multiplicity and spectrum of generated particles
- \succ E_v fraction deposited in LAr (to be evaluated from light yield)
- Vertex (and tracks) reconstructed in LAr (from times and imaging)
- ✓ Outgoing particles detected (and tracked) in STT and ECal
- ✓ For a few tracks, global transform method expected to work fine

Primary particle multiplicities (v-Ar in GRAIN)

Neutrino and other particle spectra – v-Ar in GRAIN

Spectrum of produced muons

E_v fraction carried out by produced particles:

Protons + neutrons

Energy deposited in LAr target

For E_v reconstruction, the fraction deposited in LAr is not negligible ... to be estimated as a calorimetric measure

Correlation of $Edep_{LAr}/E_v$ with E_v , CC-Interaction Type, tracks in STT

Multiplicities of tracks entering STT

Track-multiplicity at 1st STT (nu_mu-CC in LAr)

A relatively low number of charged particles escaping GRAIN and tracked in STT (≥3 hits required in Y-Z view)

Tracks entering STT come from primary and secondary (δ rays) particles

Note: more tracks can appear in STT due to secondary interactions/decays

LAr "cleans up" events by absorbing low energy particles and nuclear frags

- ⇒ Possibility to successfully reconstruct most events by applying global track finding algorithms (as the 'transform method')
- ⇒ Especially for high multiplicities, different and more sofisticated pattern recognition methods (Kalman filter algorithm, ..) are necessary

Vertex reconstruction in LAr-target

Vertex "reconstructed" from hit positions with Edep weights

Basic idea:

tight correlation with scintillation light emission (~40,000 photons/MeV)

⇒ Vertex position from light collected by photo-sensor through lenses or coded masks (precision ~cm)

Comparable precision from reco-track crossing

Track reconstruction (transform method)

Track-finding: global transform method \rightarrow Vertex needed

- \circ Use of Vertex position (from MC hits) reconstructed in LAr
- **o** "Reconstructed" Vertex used for coordinate transformation:

$$\begin{array}{l} u = +(z - z_{v}) \ / \ [(z - z_{v})^{2} + (y - y_{v})^{2}] \\ v = -(y - y_{v}) \ / \ [(z - z_{v})^{2} + (y - y_{v})^{2}] \end{array} \hspace{0.5cm} \text{Vertex:} \ (z_{v}, y_{v})^{2} \end{array}$$

- Search for peaks in distribution of ϕ = arctan(v/u)
- Associate digits to tracks (without MC info!) and perform a circular fit

 $x \rightarrow u$

 $v \rightarrow v$

Reconstructed vs 'real' tracks entering STT

∆Ntrack = Difference btw Reco and MC tracks <u>entering</u> STT

Track multiplicities in STT: a in-depth look

Most events with few tracks entering STT ...

- $\sim~$ 78 % up to 3 tracks
- \sim 65 % up to 2 tracks
- \sim 38 % only 1 track

Question:

Most charged particles not capable to enter STT ?

- Pions ?
- Protons?

Proton and pion spectra (v-Ar in GRAIN)

${\bf E}_{\rm v}$ fraction carried out by hadrons:

Proton energy loss in LAr

- Energy loss in GRAIN: difference between P_{gen} (MC) and P_{track} (reco)
- Track-length in GRAIN: distance btw Vertex and 1st Hit of track in STT
- ⇒ Energy loss per length unity in LAr, dE/dL (MeV/cm)

Proton spectra at generation and in STT

.

Proton path-length in LAr

From energy loss rate in LAr (6MeV/cm) and average path-length (22 cm) ↓ Most Protons (below ~100-150 MeV) are prevented from reaching STT

10²

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Ekin (GeV)

Emission angle for protons and muons

Large pT values also decreases STT acceptance for protons

<50% protons within $\theta_z < 60^\circ$

~25 % with E_{kin} >150 MeV

Muon energy loss in LAr

After correcting for ΔE (taking into account the typical path-length), the particle momentum at vertex can be reconstructed

Estimated muon energy loss in GRAIN $\Delta E = LAr_path^* < dE/dx >$

with <dE/dx> = 3.9 MeV/cm

Single track events: v Energy reconstruction

- Tracks succesfully matched in the 2 views ⇒ track in space (~75%)
- Assuming the energy deposited in LAr has been measured
- Off-track energy deposited in ECal taken into account
- Track ascribed to the muon (true in 95% of events, p in 4%, $\pi\pm$ in 1%)

Preliminary

Primary charged Particle multiplicity (STT)

ν_{μ} interactions on H in STT

ν_{μ} interactions on C in STT

Conclusions e outlook

- Some features of $\nu_{\mu}\text{-}\text{CC}$ interactions in LAr target (GRAIN) from FLUKA simulation
- Acceptance of outgoing charged particles in STT, track finding, global event reconstruction, ..
- Most events with low track multiplicity, so global track finding methods could be reliable. High track multiplicity events probably need more sophisticated track finding algorithms
- Some features of v_{μ} -CC interactions in STT (H and C targets), peculiarities and differences w.r.t. interactions in LAr

• • • • •

 Different interaction channels and event topologies: identification of event categories to be reconstructed with same tools or with the highest priority

Backup

GRAIN inside SAND

Problematic situations for transform method

Many tracks, eventually crossing each other

Superimposed tracks, although few

Track multiplicities in STT

The total track multiplicity in STT can be underestimated due to secondary vertices by interactions, decays, ...

Some examples:

Single track events

Difference btw Reconstructed and MC (single) track entering STT:

 v_{μ} interactions on H and C in STT

RES interaction on H

PosCaly:PosCalz {abs(PosCalx)<169 && Nev<100}

DIS interaction on C

