

In

Status of Kalman Filter Heavy Neutral Lepton study

Zahra Moghaddam **University of Perugia and INFN Genova**

Meeting Annuale della Collaborazione Nazionale di DUNE **11-12 Nov Bologna**

Acceptance

- Long lived.

BEYOND STANDARD MODEL PHYSICS

- 6 years exposure, 1.1×10^{21} NPOT/1yr
- Coupling follows Benchmark II, mass range is extended to 1.7 GeV
- Very small mixing between N2 and N3 due BAU lower bound
- Detector's Geometry has been modified to fit with SAND transversally
- All correction has been checked
- All Ds channels has been covered

*****Reconstruction

- Mad-Dump output file gets transformed to Genie-like output
- Genie-like output processed with EdepSim : edepsim output
- Digitization
- Existing Reco didn't work for me -> Motivation for implementing Kalman Filter for my work

Geometry of the Tracker

Reconstruction, Kalman Filter

- Kalman Filter is an algorithm that determines the trajectory of a state vector of a dynamical system from a set of measurements taken at different times, taking into account gaussian fluctuations
- It proceeds progressively from one measurement to the next, improving the knowledge about the trajectory with each new measurement.
- There are three steps for Kalman Filter
 - **Predicting** : an estimate is made for the next measurement from current knowledge of the state vector
 - Filtering/Updating : Kalman Filter in Theory updates the state vector using the measurement
 - **Smoothing** : recursive operation, step by step in the direction opposite to that of filter

Residuals

Predict

$$\begin{aligned}
\tilde{x}_{k}^{k-1} &= F_{k}\tilde{x}_{k-1} & \tilde{r}_{k}^{k-1} &= m_{k} - H_{k}\tilde{x}_{k-1}^{k} \\
\tilde{C}_{k}^{k-1} &= F_{k}C_{k-1}F_{k}^{T} + Q_{k} \quad (=MCS) & \tilde{R}_{k}^{k-1} &= V_{k} + H_{k}C_{k-1}^{k}H_{k}^{T} \\
\end{aligned}$$
Update

$$\begin{aligned}
K_{k} &= C_{k-1}^{k}H^{T}(V_{k} + H_{k}C_{k-1}^{k}H_{k}^{T})^{-1} & r_{k} &= (1 - K_{k}H_{k})r_{k-1}^{k} \\
\tilde{x}_{k} &= \tilde{x}_{k}^{k-1} + K_{k}(m_{k} - H_{k}\tilde{x}_{k-1}^{k}) & R_{k} &= (1 - K_{k}H_{k})V_{k} \\
C_{k} &= (1 - K_{k}H_{k})C_{k-1}^{k} & \chi_{k,F}^{2} &= r_{k}^{T}R_{k}^{-1}r_{k} \\
\end{aligned}$$
Smooth

$$\begin{aligned}
A_{k} &= C_{k}F_{k+1}^{T}(C_{k+1}^{k})^{-1} & r_{k}^{n} &= m_{k} - H_{k}\tilde{x}_{k}^{n} \\
\tilde{x}_{k}^{n} &= \tilde{x}_{k} + A_{k}(\tilde{x}_{k+1}^{n} - \tilde{x}_{k+1}^{k}) & R_{k}^{n} &= R_{k} - H_{k}A_{k}(C_{k+1}^{n} - C_{k+1}^{k})A_{k}^{T}H_{k}^{T}
\end{aligned}$$

х μ^{-} Х Х 1/ĸ z $X = (x, y, t_x, t_y, \frac{1}{P_T})$ 1/ĸ (X_{\circ}, Z_{\circ}) $\overline{R \times 0.3 \times B}$

Kalman Filter, Obj Oriented Coding

*** Coding structure**

- Started with simple code (it cannot go far)
- Progressed to Object Oriented

***** Procedure

- Hits
 - Digitization provides 1-D hits (X,Y), drift radius is not stored
 - Having the drift radius instead of the coordinate directly, leaves with an ambiguity on left and right (to be solved using the other hits in the same coordinate)
 - Not very realistic but it's still ok for my study
- Kalman Step
 - In each step Kalman Process and Smooth acts
- Kalman Filter
 - Search Seed
 - Two hits combinations
 - Build potential tracks
 - Discard candidates with < 6 points
 - Fit
 - Save the track

Search for the first and second seed

• Combinatorial try -> decision based on chi2

Kalman Filter, from Toy MC to Geant4 MC

- - Forward (Backward) Kalman
 - Measurements
 - Assuming uniform B field, 0.6 T, constant δz for the planes (ideal, zero thickness)
 - RN generation with uniform distribution for initial position and initial momentum
 - For each plane x , y according to analytic extrapolation, with 95% efficiency.
 - Smearing 0.1mm for x and y

***** Preparation for Geant4 MC

- Mad-Dump -> Genie-like output
- EdepSim (nd_hall_kloe_sttonly.gdml) -> Edep-Sim output
- Digitization (200 µm smearing)-> wire position added (to meet with Kalman Filter discrete process that goes in steps, e.g. zero uncertainty on z coordinate of the plane)
- XY hits are combined into an extrapolated measurement at the z of the wire of the upstream plane of the module

*** Kalman Filter Geant4 MC**

- HNL sample 1 GeV mass
- Forward/Backward
- My Kalman Filter Assumptions
 - Straw modules -> XXYY or XXYYXX (present in this geometry)
 - Uniform B field
 - Processing hits
 - Separate measurement for X and Y are recombined to (X, Y) referring to the Z of the first straw layer of each module

*** Kalman Filter Procedure:**

- Sequentially adding new information on each hits to get an optimal track
- Strategy:
 - Prediction and Update (Filtering, Residual, χ^2) -> forward and backward, Smoothing

***** Kalman Filter Assumptions

- Uniform B field
- Prediction step is an analytical extrapolation

***** Momentum Resolution

- Sigma 0.2% -> contribution of the Kalman Filter process to momentum resolution
 - Detector's contribution under estimated by the simple simulation approach
- Toy MC could be improved:
 - mimic a closer geometry to the real one, e.g. the separate measurements for X and Y
 - Individual effects like MS can be studied

• Seems to find all tracks up to 10 tracks but a realistic estimate on efficiency is not worth for this toy MC

0

Hits = 69/34 = 2.04
Hits = 70/34 = 2.07
Hits = 45/34 = 1.35
Hits = 55/32 = 1.72
Hits = 66/30 = 2.20
Hits = 64/30 = 2.14
Hits = 75/32 = 2.37
Hits = 53/29 = 1.85
Hits = 64/29 = 2.22
Hits = 48/31 = 1.56
*
3500

/nHits = 69/34 = 2.04	
/nHits = 70/34 = 2.07	
/nHits = 45/34 = 1.35	
/nHits = 55/32 = 1.72	
/nHits = 66/30 = 2.20	
/nHits = 64/30 = 2.14	
/nHits = 75/32 = 2.37	
/nHits = 53/29 = 1.85	
/nHits = 64/29 = 2.22	
/nHits = 48/31 = 1.56	

***** Dominant contributions to Invariant Mass (besides Momentum)

- Quality of the Vertex:
 - cut is < 1mm (most of statistics)
- Quality of the Reco final product angle:
 - The final product angle resolution is around 30 [mrad] up to 25 [GeV]
- MC truth Matching angle (preliminary):
 - Significant tail on the single particle angle resolution (currently cut by MC truth matching ~ 20 [mrad])

Kalman Filter, Angles and Vertex

200

100

-1

***** Improvements

- Backward Kalman direction implemented, in this case backward is more 500⊢ efficient: the initial hit is found easier and more precise (MCS not messing with the hits much) 400
- Multiple scattering has been added (changing the resolution by 0.1%)
- 300 • For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one)

***** Items to have an eye on:

- Invariant Mass resolution
- Momentum resolution
- Kalman Filter parameters (Pull plots)
- Goodness of the fit (χ^2)

***** Procedure:

Kalman Filter	140
 Forward/Backward Kalman and smoothing. 	120
 External helical fit. 	-
Reco tracks:	100
A. Choosing either forward or backward as Reco tracks.	80
B. Matching the forward/backward Reco tracks (>=90% shared	60
hits), choosing the right combo for the final Reco track	10
collection.	40
 Matching the Reco and the True. 	20
 Momentum resolution, Invariant mass resolution, Pull plots 	°

Kalman Filter, GEANT4 MC

*** Improvements**

•	Backward Kalman direction implemented, in this case backward is more
	efficient: the initial hit is found easier and more precise (MCS not messing with
	the hits much)

- Multiple scattering has been added (changing the resolution by 0.1%)
- For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one)

***** Items to have an eye on:

- Invariant Mass resolution
- Momentum resolution
- Kalman Filter parameters (Pull plots)
- Goodness of the fit (χ^2)

***** Procedure:

- Kalman Filter
 - Forward/Backward Kalman and smoothing.
 - External helical fit.
 - Reco tracks:
 - A. Choosing either forward or backward as Reco tracks.
 - B. Matching the forward/backward Reco tracks (>=90% shared hits), choosing the right combo for the final Reco track collection.
- Matching the Reco and the True.
- Momentum resolution, Invariant mass resolution, Pull plots

Kalman Filter, GEANT4 MC

20

0

***** Improvements

 Backward Kalman direction implemented, in this case backward is more 	00	0.2
efficient: the initial hit is found easier and more precise (MCS not messing with	Ъ	0.18
the hits much)		0.16
 Multiple scattering has been added (changing the resolution by 0.1%) 		0.14
• For better precision, external helical fit has been used (hits are coming from		0.12
Kalman Filter, the used fit is the external one)		0.1 0.08
Items to have an eve on:		0.06
		0.04
 Invariant Mass resolution 		0.02
 Momentum resolution 		0
 Kalman Filter parameters (Pull plots) 		
• Goodness of the fit (χ^2)		
Procedure:	14(ם
Kalman Filter	120	2
 Forward/Backward Kalman and smoothing. 	100	2
External helical fit.	80	0
Reco tracks:	60	0 <u>-</u>
A. Choosing either forward or backward as Reco tracks.	41	

- B. Matching the forward/backward Reco tracks (>=90% shared hits), choosing the right combo for the final Reco track collection.
- Matching the Reco and the True.
- Momentum resolution, Invariant mass resolution, Pull plots

Forward

Backward

Kalman Filter, GEANT4 MC

***** Improvements

- Backward Kalman direction implemented, in this case backward is more efficient: the initial hit is found easier and more precise (MCS not messing with the hits much)
- Multiple scattering has been added (changing the resolution by 0.1%)
- For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one)

***** Items to have an eye on:

- Invariant Mass resolution
- Momentum resolution
- Kalman Filter parameters (Pull plots)
- Goodness of the fit (χ^2)

*** Procedure:**

- Kalman Filter
 - Forward/Backward Kalman and smoothing.
 - External helical fit.
 - Reco tracks:
 - A. Choosing either forward or backward as Reco tracks.

B. Matching the forward/backward Reco tracks (>=90% shared hits), choosing the right combo for the final Reco track collection: Matched-> minChi2/Backward, Non-Matched->Both

- Matching the Reco and the True.
- Momentum resolution, Invariant mass resolution, Pull plots

Kalman Filter, Resolution Comparison

Momentum Resolution, Muon (Merged Kalman)

- A. Monochromatic, simple
 - single muon: fixed point,
 - fixed direction
 - (horizontal)
- B. My event-like muons
 - (Cylindrical distribution,
 - comparable angle to my
 - sample)

C. HNL sample

Momentum Resolution, Pion (Merged Kalman)

Kalman Filter, GEANT4 MC, Event Display

- The hits are coming from the digitization -3440 and the solid lines are the Kalman Filter -3460
- The ghosts usually are not back to back -3480 (potential discriminant for this channel) -3500
- The χ^2 :
 - Point rejection chi2 (Update stage)
 - \sim threshold 300
 - The external fit chi2 for the tracks
- The bottom graphs show the spacial residual fluctuations

Kalman Filter, GEANT4 MC, Event Display

Kalman Events

*** Kalman Event Selection**

- For/Backward tracks
 - The more apart the hits the better the track recognition
 - Statistically, the backward Kalman is more efficient
- Merged tracks
 - Enhancing the InvarMass resolution
 - Recovering the events failed in either of For/Backward process
 - Saving the better reconstructed event
 - no double counting
- - FidCut is done:
 - Extrapolation of the track up to the exiting point, count the # plane
 - Number of planes = 6
 - Single track efficiency ~ 70%
 - Event (pair of tracks with a vertex < 1mm) efficiency ~ 80%
 - Still to investigate the apparent statistical
 - correlation

• Shared hits are checked to make sure of

Preliminary Efficiency estimate

Events Selection

- Production cut
 - Cubic FidVol cut to mad-Dump output
- Events Kinematic
 - Heavy Neutrino: High P, mostly with low theta—>back to back (XY) 2-body decay
- Treatment for Ghosts
 - Opposite charges and tracks in opposite quadrants XY.
 - Alpha angle in XY between the ghosts or the tracks
 - Theta is the angle of HNL with respect to the z-axis
 - Alpha is geometrically correlated with theta
 - A cut can be made for selecting the tracks from ghosts -> theta < 0.02, alpha > 2.9
 - Removes most of the ghosts contaminating the signal
 - To be optimized based on Signal/Background(regular neutrino interactions)
 - The remnant ghosts:
 - No effect on the resolution (very symmetric events)
 - Compensated by a correction factor

• Particle ID

- Not necessary at this stage
 - Swapping pi-mu has negligible effect on Invariant mass resolution
- Background
 - Working on generating a neutrino beam-like sample with the tracker geometry i'm using

Summary and Outlook

Kalman Filter Implementation

- Toy (Uniform B, Const δz, (x,y) measurement based on analytical function, 95% off, 0.1 mm smearing)
- Geant4 (Uniform B, Geometry "nd_hall_kloe_sttonly.gdml", XXYY, XXYYXX for δz, separate X, Y measurement, 200 μm smearing)
- Kalman Selection
 - Heavy Neutrino: High P, mostly with low theta—>back to back (XY) 2body decay
 - Ghosts treatment
 - Angle cut in XY plane combined with the angle cut on theta
 - Removes most of the ghosts contaminating the signal
 - To be optimized based on s/b
 - The remnant ghosts:
 - No effect on the resolution (very symmetric events)
 - Compensated by a correction factor

• Event Selection and Efficiency

- FidCut based on track extrapolation to the detectors walls (passing >=6 planes)
- Efficiency (preliminary) of single track ~ of an event (pair with a vertex < 1mm)
- Particle ID
 - Not needed at this stage-> highly boosted event
- Background
 - Working on generating a neutrino beam-like sample with the tracker geometry i'm using
 - More accurate efficiency can be estimated after the bg sample is ready

• To be done

- Further Investigation on the efficiency of single and paired tracks
- Run background and signal to assess "final" sensitivity
- Kalman Filter optimization

THANKS!

Meeting Annuale della Collaborazione Nazionale di DUNE 11-12 Nov Bologna

