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Ricostruzione di un segmento

Proiezione

Proiezione polare di un segmento
su piani focali  

Segmentodi riferimento
Segmento proiettato da O

Segmento proiettato da O_

 Segmento poroiettato da Ox

Tratteggiati Rosso:
Proiezioni sui piani focali  xz e yz 



La matrice di trasferimento
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La matrice di trasferimento
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Figura: The transfer matrix Φ for a MURA 17× 17 for sources on the
focal plane, i.e. δP = 1.0



La matrice di trasferimento

The spectrum
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Figura: The spectrum of transfer matrix Φ for the MURA 17× 17 at
δP = 1.0



La matrice di trasferimento
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Figura: Transfer matrix for δ = 1.1



La matrice di trasferimento
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Figura: Transfer matrix spectrum for δ = 1.1. Max 145.76



Multiple View Geometry

3D to 2D camera projection.
154 6 Camera Models
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Fig. 6.1. Pinhole camera geometry. C is the camera centre and p the principal point. The camera
centre is here placed at the coordinate origin. Note the image plane is placed in front of the camera
centre.

computes that the point (X, Y, Z)T is mapped to the point (fX/Z, fY/Z, f)T on the
image plane. Ignoring the final image coordinate, we see that

(X, Y, Z)T !→ (fX/Z, fY/Z)T (6.1)

describes the central projection mapping from world to image coordinates. This is a
mapping from Euclidean 3-space IR3 to Euclidean 2-space IR2.

The centre of projection is called the camera centre. It is also known as the optical
centre. The line from the camera centre perpendicular to the image plane is called the
principal axis or principal ray of the camera, and the point where the principal axis
meets the image plane is called the principal point. The plane through the camera
centre parallel to the image plane is called the principal plane of the camera.

Central projection using homogeneous coordinates. If the world and image points
are represented by homogeneous vectors, then central projection is very simply ex-
pressed as a linear mapping between their homogeneous coordinates. In particular,
(6.1) may be written in terms of matrix multiplication as
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. (6.2)

The matrix in this expression may be written as diag(f, f, 1)[I | 0] where
diag(f, f, 1) is a diagonal matrix and [I | 0] represents a matrix divided up into a 3× 3
block (the identity matrix) plus a column vector, here the zero vector.

We now introduce the notation X for the world point represented by the homoge-
neous 4-vector (X, Y, Z, 1)T, x for the image point represented by a homogeneous 3-
vector, and P for the 3×4 homogeneous camera projection matrix. Then (6.2) is written
compactly as

x = PX

which defines the camera matrix for the pinhole model of central projection as

P = diag(f, f, 1) [I | 0].

Figura: Model of camera. The three image points defined by pi are the
vanishing points of the directions of the world axes

6.2 The projective camera 159
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Fig. 6.4. The three image points defined by the columns pi, i = 1, . . . , 3, of the projection matrix are
the vanishing points of the directions of the world axes.

Under the mapping x = PX points on this line are projected to

x = PX(λ) = λPA + (1− λ)PC = λPA

since PC = 0. That is all points on the line are mapped to the same image point PA,
which means that the line must be a ray through the camera centre. It follows that C
is the homogeneous representation of the camera centre, since for all choices of A the
line X(λ) is a ray through the camera centre.
This result is not unexpected since the image point (0, 0, 0)T = PC is not defined,

and the camera centre is the unique point in space for which the image is undefined. In
the case of finite cameras the result may be established directly, since C = (C̃

T
, 1)T

is clearly the null-vector of P = KR[I | −C̃]. The result is true even in the case where
the first 3× 3 submatrix M of P is singular. In this singular case, though, the null-vector
has the form C = (dT, 0)T where Md = 0. The camera centre is then a point at infinity.
Camera models of this class are discussed in section 6.3.

Column vectors. The columns of the projective camera are 3-vectors which have a
geometric meaning as particular image points. With the notation that the columns of P
are pi, i = 1, . . . , 4, then p1,p2,p3 are the vanishing points of the world coordinate X,
Y and Z axes respectively. This follows because these points are the images of the axes’
directions. For example the x-axis has direction D = (1, 0, 0, 0)T, which is imaged at
p1 = PD. See figure 6.4. The column p4 is the image of the world origin.

Row vectors. The rows of the projective camera (6.12) are 4-vectors which may be
interpreted geometrically as particular world planes. These planes are examined next.
We introduce the notation that the rows of P are PiT so that

P =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34


 =




P1T

P2T

P3T


 . (6.12)

x = P X P = K [R |C ] K =




αx s x0
0 αy y0
0 0 1






Multiple View Geometry

1 Given two images, and no other information, compute matches
between the images, and the 3D position of the points that
generate these matches and the cameras that generate the
images.

2 Given three images, and no other information, similarly
compute the matches between images of points and lines, and
the position in 3D of these points and lines and the cameras.

3 Compute the epipolar geometry of a stereo rig, and trifocal
geometry of a trinocular rig, without requiring a calibration
object.

4 Compute the internal calibration of a camera from a sequence
of images of natural scenes.



Multiple View Geometry

1 Given a set of 3D points Xi and a set of corresponding points
xi in an image. Find the "experimental "projective camera P
and its properties.

2 Given a set of points xi in one image, and corresponding
points x′i in another image, compute the fundamental matrix
F : a singular 3× 3 satisfying

x′i
T F xi = 0 ∀i .

3 Given a set of point correspondences xi ↔ x′i ↔ x′′i across
three images, compute the Trifocal Tensor T jk

i relating points
or lines in three views

∑

ijk

x i `j `kT
jk
i = 0



Multiple View Geometry

240 9 Epipolar Geometry and the Fundamental Matrix
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Fig. 9.1. Point correspondence geometry. (a) The two cameras are indicated by their centres C and
C′ and image planes. The camera centres, 3-space point X, and its images x and x′ lie in a common
plane π. (b) An image point x back-projects to a ray in 3-space defined by the first camera centre, C,
and x. This ray is imaged as a line l′ in the second view. The 3-space point X which projects to x must
lie on this ray, so the image of X in the second view must lie on l′.
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Fig. 9.2. Epipolar geometry. (a) The camera baseline intersects each image plane at the epipoles e
and e′. Any plane π containing the baseline is an epipolar plane, and intersects the image planes in
corresponding epipolar lines l and l′. (b) As the position of the 3D point X varies, the epipolar planes
“rotate” about the baseline. This family of planes is known as an epipolar pencil. All epipolar lines
intersect at the epipole.

Supposing now that we know only x, we may ask how the corresponding point x′ is
constrained. The plane π is determined by the baseline and the ray defined by x. From
above we know that the ray corresponding to the (unknown) point x′ lies in π, hence
the point x′ lies on the line of intersection l′ of π with the second image plane. This line
l′ is the image in the second view of the ray back-projected from x. It is the epipolar
line corresponding to x. In terms of a stereo correspondence algorithm the benefit is
that the search for the point corresponding to x need not cover the entire image plane
but can be restricted to the line l′.

The geometric entities involved in epipolar geometry are illustrated in figure 9.2.
The terminology is

• The epipole is the point of intersection of the line joining the camera centres (the
baseline) with the image plane. Equivalently, the epipole is the image in one view

Figura: x→ `′

F = K ′−T R KT
[
K RT t

]



Multiple View Geometry

Projective reconstruction theorem

Suppose that xi ↔ x′i is a set of correspondences between points in
two images and that the fundamental matrix F is uniquely
determined by the condition x′i

T Fxi = 0 ∀i

Let (P1,P′1, {X1 i}) and (P2,P′2, {X2 i}) be two reconstructions of
the correspondences xi ↔ x′i. Then there exists a non-singular
matrix H such that P2 = P1H

−1 and P′2 = P′1H
−1

Errors in the images, Transfer error and Reprojection errors



Multiple View Geometry

Trifocal Geometry
15.1 The geometric basis for the trifocal tensor 369
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Fig. 15.3. Line transfer. The action on lines of the homography defined by figure 15.2 may similarly be
visualized geometrically. A line, l, in the first image defines a plane in 3-space, which intersects π′ in
the line L. This line L is then imaged as the line l′′ in the third view.

Thus, H defined by the above formula represents the (point) homography H13 between
views one and three specified by the line l′ in view two.
The second and third views play similar roles, and the homography between the first

and second views defined by a line in the third can be derived in a similar manner.
These ideas are formalized in the following result.

Result 15.2. The homography from the first to the third image induced by a line l′ in
the second image (see figure 15.2) is given by x′′ = H13(l

′)x, where

H13(l
′) = [TT

1 , TT
2 , TT

3 ]l′.

Similarly, a line l′′ in the third image defines a homography x′ = H12(l
′′)x from the

first to the second views, given by

H12(l
′′) = [T1, T2, T3]l

′′.

Once this mapping is understood the algebraic properties of the tensor are straight-
forward and can easily be generated. In the following section we deduce a number of
incidence relations between points and lines based on (15.3) and result 15.2.

15.1.2 Point and line incidence relations
It is easy to deduce various linear relationships between lines and points in three im-
ages involving the trifocal tensor. We have seen one such relationship already, namely
(15.3). This relation holds only up to scale since it involves homogeneous quantities.
We may eliminate the scale factor by taking the vector cross product of both sides,
which must be zero. This leads to the formula

(l′T[T1, T2, T3]l
′′)[l]× = 0T, (15.4)

where we have used the matrix [l]× to denote the cross product (see (A4.5–p581)), or
more briefly (l′T[Ti]l

′′)[l]× = 0T. Note the symmetry between l′ and l′′ – swapping the

x

Figura
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Multiple View Geometry

Estimating the trifocal tensor
1 Linear methods based on direct solution of a set of

linear equations
2 Iterative methods, that minimizes the algebraic error,

while satisfying all appropriate constraints on the
tensor

3 Iterative method that minimizes geometric error
Application of the Random Matrix Theory : Ameas = A0 + W ,
W has independent (complex) Gaussian entries: the measure of the
state density converges to the Tracy-Widom distribution.


	Ricostruzione di un segmento
	La matrice di trasferimento
	Multiple View Geometry

