Toward the discovery of lepton creation with neutrinoless double-β decay

Giovanni Benato

Fellini Seminar - November 8th, 2021

Toward the discovery of lepton creation with $0v\beta\beta$ decay

Content:

- 1. Historical landscape
- 2. Particle physics theory and motivation \rightarrow I'm not a theorist, please don't ask tough questions
- 3. Nuclear physics and implications \rightarrow I know even less about nuclear theory! \bigodot
- 4. Experimental aspects and methods
- 5. Recent and future experiments
- 6. Discovery probability and impact

Work developed in collaboration with:

- M. Agostini, University College London
- J. Detwiler, University of Washington
- J. Menéndez, University of Barcelona
- F. Vissani, Laboratori Nazionali del Gran Sasso

Review paper foreseen to come out around mid December → Stay tuned!

Historical landscape: theoretical aspects

1920ies	Nucleus made of A protons and (A-Z) inner electrons \rightarrow Monochromatic β spectrum				
1930	Pauli proposes existence of neutrino inside the nucleus $ ightarrow$ Non relativistic model				
1934	Fermi theory of β decay \rightarrow Creation and destruction of matter particles				
1935	Goeppert-Mayer applies Fermi theory to ββ decay				
1937	Majorana theory: neutral elementary particles can be their own antiparticles				
1938	Furry introduces 0vββ decay through emission and re-absorption of virtual Majorana v				
1950ies	(V-A) theory: $0\nu\beta\beta$ rate depends also on ν mass, not only on its nature \to Loss of interest				
1960ies	Models for flavor transformation of massive neutrinos				
~1980	Seesaw mechanisms				
~2000	Definitive evidence of neutrino oscillations \rightarrow Mass mechanism as "standard" for $0\nu\beta\beta$ decay				

Historical landscape: experimental aspects

Which are the fundamental symmetries and conserved quantities?

- B, L_e , L_μ , L_τ and $L=L_e+L_\mu+L_\tau$ are accidental symmetries that emerge without being a priori required
- Actually, these are anomalous symmetries spoiled by the full quantum theory
- Exact *global* symmetries of the standard model:
 - $L_e^-L_u^- \rightarrow Violation$ seen in appearance mode by T2K

 - **B-L** \rightarrow We don't know yet

What generated the matter-antimatter asymmetry in the Universe?

- Non-perturbative effect violate B+L, but can't explain *quantitatively* the asymmetry
 - → We need a *dynamical* explanation yielding the asymmetry at some point in history: *baryogenesis*
- Sakharov conditions for baryogenesis:
 - a. Violation of B (or B-L)
 - b. Violation of C and CP
 - c. Interactions out of thermal equilibrium
- Possible solution: baryogenesis through leptogenesis
 - → Observing the violation of B-L in the lepton sector would give a strong qualitative indication for the correctness of the baryogenesis hypothesis

What are the origin and nature of neutrino mass?

Why are neutrino masses so small? Maybe, are they Majorana masses?

- Neutrino mass terms generated by odd-dimensional operators with D≥5
- D=5 case *only* implies an additional right-handed Majorana neutrino
 - Light neutrino masses generated through seesaw mechanism from the heavy Majorana one:

$$M_v = -M_D \cdot M_M^{-1} \cdot M_D$$

where:

M_v = Majorana mass for light neutrino

 $M_D = Dirac mass$

M_M = Heavy Majorana neutrino mass

o In terms of neutrino oscillations:

$$m_{etaeta} = \left|\sum_{i=1}^3 |U_{
m ei}^2| \; e^{iarphi_{
m i}} \; m_{
m i}
ight|$$

From $0v\beta\beta$ decay to the neutrino mass

Connection between $0\nu\beta\beta$ decay rate and new physics terms:

$$\frac{\Gamma_{0\nu}}{\ln 2} = \frac{1}{T_{1/2}^{0\nu}} = \sum_{i} G_i g_i^4 M_i^2 f_i(\Lambda) + \text{interference terms}$$

$$\begin{split} \frac{\Gamma_{0\nu}}{\ln 2} &= \frac{1}{T_{1/2}^{0\nu}} = \sum_i G_i \, g_i^4 \, M_i^2 \, f_i(\Lambda) + \text{interference terms}, \\ \text{In the case of D=5 (light neutrino exchange): } \frac{1}{T_{1/2}^{0\nu}} &= G_{01} \, g_A^2 \, \left(M_{light}^{0\nu}\right)^2 \, \frac{m_{\beta\beta}^2}{m_e^2} \end{split}$$

Nuclear physics theory and implications

- 0νββ decay triggered by BSM physics, but takes place in a highly correlated many-body system
- Nuclear Matrix Elements computed in two approximations:
 - \circ Light: $m_{y} << p \sim 200 \text{ MeV}$
 - Heavy: m, >> p ~ 200 MeV
- Different nuclear models yield NMEs differing by up to a factor 3
- New approaches worth remarking:
 - Ab-initio calculations
 - \rightarrow Good explanation of β decay
 - → Not so good (yet) at predicting energy levels of heavy nuclei
 - Effective Field Theory
 - → Compute contribution due to any odd-dimensional operator
 - → Short-range exchange of high-energy light neutrinos might not be negligible

$$T_{1/2}^{-1} = G_{01} g_A^4 \left(M_{\text{light}}^{0\nu} \right)^2 \frac{m_{\beta\beta}^2}{m_e^2}$$

$$+ \frac{m_N^2}{m_e^2} \tilde{G} \, \tilde{g}^4 \, \tilde{M}^2 \left(\frac{v}{\tilde{\Lambda}} \right)^6$$

$$+ \frac{m_N^4}{m_e^2 v^2} \tilde{G}' \, \tilde{g'}^4 \, \tilde{M'}^2 \left(\frac{v}{\tilde{\Lambda}'} \right)^{10} + \cdots$$

$$T_{1/2}^{-1} = G_{01} g_A^4 \left(M_{\text{long}}^{0\nu} + M_{\text{short}}^{0\nu} \right)^2 \frac{m_{\beta\beta}^2}{m_e^2}$$

Nuclear physics theory and implications

Long-range, light neutrino exchange

¹⁰⁰Mo

¹¹⁶Cd

¹³⁰Te

¹³⁶Xe

¹⁵⁰Nd

Short range, light neutrino exchange

⁷⁶Ge

82Se

Nuclear physics theory and implications

Heavy neutrino exchange

Possible experimental validations

- Validation of NMEs for single β decay and 2vββ decay not enough, because of different exchanged momentum
- Ordinary muon capture: $\mu^{-} + p \rightarrow n + v_{\mu}$
- Inelastic neutrino-nucleon scattering
- Two-nucleon transfer reactions, e.g.
 136Ba (p,t) 138Ba
 - → However this is a strong interaction
- Double charge-exchange reaction, e.g.
 40Ca(18O, 18Ne)40Ar
 - → However this is a strong interaction
 - NMEs for Double Gamow-Teller transitions and $\gamma\gamma$ transitions possibly correlated to $0\nu\beta\beta$ decay NME

Experimental aspects: 0vββ decay signature

- $0v\beta\beta$ decay can be searched only with isotopes for which the regular β decay is forbidden
- $0v\beta\beta$ decay signature is an excess at the Q-value (Q_{gg}) in the sum electron spectrum
- 2vββ decay yields a continuum up to Q_{ββ}

Isotope selection

- High Q-value $(Q_{\beta\beta})$ is highly preferable:
 - Larger phase space
 - Lower background from natural radioactivity
- High isotopic abundance preferable → Easier enrichment

Isotope selection

Isotope	Daughter	$Q_{etaeta}^{ m a}$	$f_{ m nat}{}^{ m b}$	$f_{ m enr}^{\ m c}$	$T_{1/2}^{2 uetaeta\mathrm{d}}$	$T_{1/2}^{0 uetaeta m e}$
		$[\mathrm{keV}]$	[%]	[%]	[yr]	[yr]
$^{48}\mathrm{Ca}$	$^{48}\mathrm{Ti}$	4267.98(32)	0.187(21)	16	$(6.4^{+0.7}_{-0.6}(\mathrm{stat})^{+1.2}_{-0.9}(\mathrm{syst})) \cdot 10^{19}$	$> 5.8 \cdot 10^{22}$
$^{76}\mathrm{Ge}$	$^{76}\mathrm{Se}$	2039.061(7)	7.75(12)	92	$(1.926 \pm 94) \cdot 10^{21}$	$> 1.8 \cdot 10^{26}$
82 Se	$^{82}{ m Kr}$	2997.9(3)	8.82(15)	96.3	$(8.60 \pm 0.03(\text{stat})^{+0.19}_{-0.13}(\text{syst})) \cdot 10^{19}$	$> 3.5 \cdot 10^{24}$
$^{96}\mathrm{Zr}$	$^{96}\mathrm{Mo}$	3356.097(86)	2.80(2)	86	$(2.35 \pm 0.14(\text{stat}) \pm 0.16(\text{syst})) \cdot 10^{19}$	$> 9.2 \cdot 10^{21}$
$^{100}\mathrm{Mo}$	$^{100}\mathrm{Ru}$	3034.40(17)	9.744(65)	99.5	$(7.12^{+0.18}_{-0.14}(\mathrm{stat}) \pm 0.10(\mathrm{syst})) \cdot 10^{18}$	$> 1.5 \cdot 10^{24}$
$^{116}\mathrm{Cd}$	$^{116}\mathrm{Sn}$	2813.50(13)	7.512(54)	82	$2.63^{+0.11}_{-0.12} \cdot 10^{19}$	$> 2.2 \cdot 10^{23}$
$^{130}\mathrm{Te}$	$^{130}\mathrm{Xe}$	2527.518(13)	34.08(62)	92	$\left(7.71_{-0.06}^{+0.08}(\mathrm{stat})_{0.15}^{+0.12}(\mathrm{syst})\right) \cdot 10^{20}$	$> 3.2 \cdot 10^{25}$
$^{136}\mathrm{Xe}$	$^{136}\mathrm{Ba}$	2457.83(37)	8.857(72)	90	$(2.165 \pm 0.016(\text{stat}) \pm 0.059(\text{syst})) \cdot 10^{21}$	$> 1.1 \cdot 10^{26}$
$^{150}\mathrm{Nd}$	$^{150}\mathrm{Sm}$	3371.38(20)	5.638(28)	91	$(9.34 \pm 0.22(\text{stat})^{+0.62}_{-0.60}(\text{syst})) \cdot 10^{18}$	$> 2.0 \cdot 10^{22}$

- Highest sensitivities achieved with isotopes that:
 - are easier to enrich
 - o can be used in a well-established detector technology
- Detector technology plays primary role through several parameters:
 - energy resolution
 - detector material purity
 - background suppression

Detector technologies

Detector type	Description	Typical isotope mass	Containment efficiency	Pros and cons
Solid state granular	Crystals containing ββ isotope	0.1-1 kg (single crystal)	70-95%	+ Scalable+ High resolution- Many crystals required
Monolithic liquid or gaseous	Material = isotope or isotope dissolved in liquid	100-1000 kg	100%	+ Single detector+ Self shielding- Poor resolution
Composite	Foil with isotope in low-pressure gas tracker	10 kg	~50%	+ Ultra-low background+ Multiple isotopes- Very hard to scale

Detector technologies

Readout channel	Energy resolution	Particle identification	Sensitivity to position	Applicable to multiple isotopes
Ionization	0.1-1%	Only in gas	Yes	Not really
Phonons	~0.2%	Nope	Nope	Yes
Scintillation	Few %	α vs β	In liquids and gases	Yes
Cherenkov	Forget it!	Visible only for β 's	Maybe	Yes

- Take-away messages:
 - The best detector technology doesn't exist
 - Combined readout channels are VERY helpful
 - → good resolution with one, background suppression with the other

0vββ decay experimental fauna

Cosmic ray background

Residual backgrounds from cosmic in underground experiments:

- High energy muons (up to TeV)
 - → Reconstruct muon tracks (monolithic)
 - → Muon veto around granular detector
- Spallation products
 - Activate isotopes in the detector material prior to the installation underground
 - Activation in situ
 - → Relevant for large volume scintillators
 - → If the activated isotope decays quickly, search for delayed coincidences
 - High energy spallation neutrons
 - → Well, this is a problem!

Background from actinides contamination

- Uranium and thorium contamination present in many materials
- Several particle types involved:
 - α between 4 and 9 MeV
 - o β up to 3.3 MeV
 - γ up to 2.6 MeV, but summation possible
 - neutrons from (α,n) reactions
- Decay chains not always in equilibrium
 - Material exposure to air
 - → ²²²Rn deposition followed by ²¹⁰Pb accumulation
 - Surface cleaning
 - → Pb removed, ²¹⁰Po remains
 - Mechanical or chemical processes in material bulk or surface
 - → Accumulation of "chemically active" radium
- Possible suppression techniques:
 - Use cleaner materials and surfaces
 - Minimize exposure to radon
 - Particle identification to reject α
 - Event topology
 - Delayed coincidences

Man-made isotopes

- Several man-made isotopes visible in ultra-low background experiments
- Background only from:

 - Isotopes decaying β with $Q_{\beta}{>}Q_{\beta\beta}$ Isotopes or decay chains with dominant half-life comparable to experiment lifetime
- So far, only ^{110m}Ag has been found

Isotope	Half life	$Q_{\beta} [\text{keV}]$	Detected	Notes
⁸⁸ Y	$107\mathrm{d}$	3008	No	Several γ lines
$^{90}\mathrm{Sr}$	28.8 y	546	No	
^{90}Y	$64\mathrm{h}$	2279	No	Pure β emitter
$110 \mathrm{mAg}$	$250\mathrm{d}$	3008	Yes	Several γ lines
$^{134}\mathrm{Cs}$	$2\mathrm{y}$	2059	No	Several γ lines
¹⁴⁴ Ce	$285\mathrm{d}$	319	No	
$\frac{144}{2}$ Pr	$17.3\mathrm{m}$	2997	No	Pure β emitter

Neutrons

Source	Location	Energy
²³⁸ U fission	Concrete or internal	<10 MeV
(a,n) reactions	Concrete or internal	<10 MeV
Spallation	Rock, concrete,	up to GeV

Neutron suppression

- Passive shielding (polyethylene, boron, water)
 → good for neutrons <10 MeV
- Active shielding in liquid scintillator outer layer
- Add element with high neutron cross section (e.g. ⁶Li) in active volume

Neutron backgrounds

- In-situ isotope activation
- γ's from inelastic scattering or captures

Solar neutrinos

Elastic scattering

$$V + e^{-} \rightarrow V + e^{-}$$

- Only relevant for large scintillators
- Can be suppressed through signal directionality

Charge Current

Prompt:
$${}^ZA + v \rightarrow {}^{Z+1}A + e^- \left[+ \gamma(s) \right] + Q_v$$

Delayed: ${}^{Z+1}A \rightarrow {}^{Z+2}A + \beta^- \left[+ \gamma(s) \right] + Q_\beta$

Can be suppressed via topology and delayed coincidences, depending on isotope

Not quite relevant, yet

2vββ decay

- Irreducible 2vββ background
 - Tail of 2vββ spectrum
 - \Rightarrow Energy resolution
 - Pile-up of 2vββ events
 - ⇒ Time resolution

0vββ decay experimental fauna

Germanium experiments

- Low Q-value: 2039 keV
- Highest energy resolution: ~0.1%
- Extremely low bkg: ~5·10⁻⁴ counts/keV/kg/yr
 → Operating next to linear sensitivity regime
- MAJORANA + GERDA joining for next generation experiment: LEGEND

Xenon TPCs

EXO-200 / nEXO

- Liquid TPC
 - → Self shielding, easy to scale up
- Gas TPC
 - → Energy resolution ~1%
 - \rightarrow Particle tracking
- Double readout: ionization and scintillation
 - Daughter tagging possible!

NEXT

Liquid scintillator experiments

KamLAND-Zen Current

- Readout of scintillation only
 - \rightarrow Energy resolution of few %
 - → Particle identification possible
- Very large volume
 - → Isotope in central part
 - → Highly effective self shielding
- Isotope (¹³⁰Te or ¹³⁶Xe) dissolved in liquid scintillator
 - → Easily scalable
 - → Enrichment not strictly required
- Readout of Cherenkov light possible in future experiments

Cryogenic calorimeters

- Array of crystals operated at ~10 mK
- Measure temperature increase following phonon recombination
- Resolution: 5-10 keV
- Main background: α's from support materials
- Scintillating crystal allow particle discrimination!
- CUORE: 200 kg of ¹³⁰Te

 → Taking data since
- 2017 2017
- → BI~10⁻² cts/keV/kg/yr CUPID: upgrade of CUORE in preparation
- \rightarrow 250 kg of ¹⁰⁰Mo
- → BI~10⁻⁴ cts/keV/kg/yr thanks to light readout!

Tracking calorimeters: SuperNEMO

- Measure both energy and momentum
 - → Background suppression
 - → Single electrons resolved
 - \rightarrow Possible to study $0v\beta\beta$ decay mechanism
- Source ≠ detector
 - → Limited isotope mass
 - → Any isotope is usable
- Perfect technology for precision measurement of 0vββ and 2vββ decay

Other technologies

Project	Isosope(s)	Description and main features
CANDLES ^{†a}	⁴⁸ Ca	Scintillator crystal.
CANDLES		Possible operation as cryogenic calorimeter.
CODDATA	70 Zn, 114,116 Cd,	CdZnTe semiconductor detectors.
COBRA ^{†b}	$^{128,130}{ m Te}$	Room temperature; multi-isotope.
C-1C	$^{82}\mathrm{Se}$	Amorphous ⁸² Se on high resolution, high-granularity CMOS array with integrated readout.
Selena ^c		Particle discrimination via space resolution; room temperature; no self-shielding needed.
N DD d	$^{82}\mathrm{Se}$	High-pressure gaseous ⁸² SeF ₆ ion-imaging TPC.
$N\nu DEx^d$		$\lesssim 1\%$ energy resolution; precise signal topology; possible multi-isotope.
R2D2 ^e	$^{136}\mathrm{Xe}$	Spherical TPC.
1(2D2		Single readout channel; inexpensive infrastructure.
$-$ AXEL f	$^{136}\mathrm{Xe}$	High-pressure TPC operated in proportional scintillation mode.
AAEL		High energy resolution; possible positive ion detection.
JUNO ^g	n.d.y.	Isotope loaded liquid scintillator.
30110		Multi-isotope.
	n.d.y.	Liquid scintillator loaded with quantum dots or perovskites as wavelength shifter for
NuDot ^h		Cherenkov light.
		Discriminate directional backgrounds; multi-isotope.
ZICOSi	$^{96}{ m Zr}$	Zr-loaded liquid scintillator.
21005		Topology and particle discrimination via Cherenkov light readout.
THEIAj	n.d.y.	Water-based loaded liquid scintillator with Cherenkov light readout.
THEIA		Topology and particle discrimination; multi-isotope; multi-purpose.
LiquidO ^k	n.d.y.	Opaque isotope-loaded liquid scintillator with wavelength shifting fibers for event topology.
		Room temperature; multi-isotope; multi-purpose.

Discovery and exclusion sensitivity

- Events measured in multi-dimensional space: energy, position, topology, particle type, ...
- Energy is the only necessary and sufficient quantity for claiming a discovery
- Option 1: multi-dimensional fit
- Option 2: cut on variables with good signal/background separation + energy fit
- Signal is restricted to small region, background dominant everywhere else
 - → Counting analysis in ROI possible
 - → Signal and background follow Poisson
- Discovery sensitivity:

$$\begin{cases} P(X \le x | \lambda_b) \ge 99.73\% \\ P(X \ge x | \lambda_b + \lambda_s) \ge 50\% \end{cases}$$

Exclusion sensitivity:

$$\begin{cases} P(X \le x | \lambda_b) \ge 50\% \\ P(X \ge x | \lambda_b + \lambda_s) \ge 90\% \end{cases}$$

Summary of relevant experiments' parameters

Exposure + background → sensitivity

Discovery probability and impact

THANK YOU!