dRICH: R&D status and design in ATHENA

20/Dec/2021 – Giornata Nazionale EIC_NET E. Cisbani (INFN-RM and ISS)

People involved (past and present):

P. Antonioli (INFN-BO), L. Barion (INFN-FE), C. Chatterjee (INFN-TS), M. Contalbrigo (INFN-FE),

F. Cossio (INFN-TO), M.D. Da Rocha Rolo (INFN-TO), A. Del Dotto (ENEA), C. Dilks (Duke),

C. Fanelli (JLab/MIT), A. Kiselev (BLN), M. Mirazita (INFN-LNF), A. Movsisyan (INFN-FE), F. Noto (INFN-CT),

R. Preghenella (INFN-BO), G.M. Urciuoli (INFN-RM), S. Vallarino (INFN-FE), Z. Zhao (Duke/JLab),

... and those I forgot to mention, and the EIC-eRD14/PID Consortium

Origin of dRICH Baseline performances ATHENA implementation The other EIC/dRICHes Hardware Key components Hardware R&D

Tomorrow specific talks:

Chandra	Simulation status	9:25
Roberto	SiPM for RICH	9:45
=abio	ALCOR ASIC	10:05
Simone	Beam tests	10:25

Hadron-ID @ EIC h-endcap (forward region)

"Simulations show that in order to satisfy the physics goals of the EIC, it is desirable to provide π/K identification in the central barrel up to 5-7 GeV/c, in the electron-going endcap up ~10 GeV/c, and in the hadron-going endcap one would need to reach ~50 GeV/c.", from the "Electron-Ion Collider Detector Requirements and R&D Handbook", January 10, 2019

Physics Requirement:

1. Continuous $\pi/K/(p)$ identification up to ~50 GeV/c in hadron endcap

Main Technological Requirements:

- 2. Geometrical constraints (relatively small longitudinal space and large transverse space)
- 3. Solenoid Magnetic Field
- 4. Radiation levels

Why a dual radiator RICH in the EIC h-endcap?

Single detector technology cannot cover the whole range up to ≈50 GeV/c with "good" separation of π -K-p **Three main options:** 1) TOF+RICH(n1): Need challenging time resolution (\approx 3 ps sigma!) 2a) TOF+RICH(n1)+RICH(n2) Expected to be more expensive due to twice the sensors and electronics 2b) TOF+RICH(n1,n2) ... next slides

EIC-eRD14/PID dRICH→YR baseline

Radiators:

- Aerogel: 4 cm, $n_{(400nm)}$ ~1.02 + 0.3 mm acrylic filter
- Gas: 1.6m (1.1m ePHENIX), n_{C2F6}~1.0008

6 Identical Open Sectors (Petals):

- Large Focusing Mirror with R ~2.9m (~2.0 m ePHENIX)
- Optical sensor elements: ~4500 cm²/sector, 3 mm pixel size, UV sensitive, out of charged particles acceptance

Phase Space:

- Polar angle: 5-25 deg (1.5-3.5 eta)
- Momentum: 3-50 GeV/c

A. Del Dotto et al., "Design and R&D of RICH detectors for EIC experiment", NIM A876 (2017) 237-240

dual-radiator RICH PROs and CONs

- ✓ >3 σ π-K separation in ~3–50+ GeV/c whole range in RICH mode – as well as large coverage for K-p (and π-e) PID
- ✓ Photon detector out of acceptance and far from the beam pipe in moderate magnetic field; less constraints on material budget (e.g. mechanical supports, shielding, cooling); neutron flux is also reduced
- ✓ Expected to be cheaper and more compact (also in terms of services) than 2 (or more) detectors solution (sparing on photosensors and related electronics)
- ✓ Material budget likely smaller than 2 detectors solution: from CLAS12/RICH-LTCC: X₀≈1% vessel (no pressurization) + 1% mirror + aerogel, acrylic filter and gas

X More demanding PID respect to single radiator RICH

***** Aerogel chromatic

performances are critical andneed to be well investigatedin terms of stability andinterference with gases

X Gas Procurement potential issue due to possible ecological restrictions and costs (common to other EIC detectors)

Dual radiator aerogel-gas RICHes so far

dRICH baseline MC performance

- Montecarlo: GEMC (Geant4)
- Aerogel Optical properties from CLAS12 RICH data, scaled to 1.02
- Acrylic Filter (<300nm) after the aerogel to minimize Rayleigh
- Gas number of photons normalized by 0.7 factor from «poor» literature
- Include 3T central magnetic field
- Mirror quality from CLAS12
- QE from realistic CLAS12/PMT measurements (200-500 nm)
- Cherenkov Angle reconstruction based on Inverse Ray Tracing

Hadron identification (π /K/p, better than 3 sigma apart); continuous coverage from ~3 up to ~50 GeV/c for π /K and up to ~15 GeV/c for e/ π

Contributions to Cherenkov Angle Resolution

- Tracking accuracy 0.5 mrad
- Photo sensor (CLAS12/PMT) surface "optimized" (slightly curved)
- 3T central Magnetic Field (in JLEIC)
- 1.6 m gas (similar results down to about ~1 m)

Bayesian Optimizer in dRICH design

Use Bayesian Inference to efficiently maximize proper Figure of Merit: π-K Cherenkov angles separation in critical phase space regions (e.g. TOF-aerogel, aerogel-gas transitions, high momentum limit ...)

Full $\pi/K/p$ separation from ~3 to 60 GeV/c

parameter	description	range [units]
R	mirror radius	[290.0,300.0] [cm]
pos r	radial position of mirror center	[125.,140.] [cm]
pos 1	longitudinal position of mirror center	[-305.,-295.] [cm]
tiles y	shift along y of tiles center	[-5,5] [cm]
tiles z	shift along z of tiles center	[-105,-95] [cm]
tiles x	shift along x of tiles center	[-5,5] [cm]
n _{aer} .	refraction index of aerogel	[1.015,1.03]
taer.	aerogel thickness	[3.0,6.0] cm

First implementation used 8 "free" parameters, but is not limited to them.

The optimization approach can be ported to any detector (or combination of detectors) development where a detailed MonteCarlo exists and is parameterizable

J. Inst., vol.15, P05009 - May 2020 doi: 10.1088/1748-0221/15/05/P05009

ATHENA and RICHes

10-1

20 / Dec / 2021

-2

0

685 cm

"In general, the dRICH configuration is very similar to the one from the Yellow Report"

pf**RICH** сm Optics and solenoid 230 fringe field mainly 140 cm constrained size 190 cm and position pΙΑ **d**RICH C. Chatterjee tomorrow Talk p (GeV/c) p (GeV/c) (GeV/c) $\pi/K > 3\sigma$ separation K/p > 3σ separation B = 3.0 T pfRICH Ω **bTOF** hpDIRC dRICH (C₂F₆) dRICH (aerogel) 10 10 10

10-

-2

0

2

10

η

-2

dRICh status

2

η

η

ATHENA dRICH – geometry and optics

dd4hep simulation and optimization by C. Dilks and A. Kiselev

- SiPMs (3 mm pixel) on spherical surface, above the aerogel
- Mirror "points" photosensor centroid shifted by two focusing parameters to maximize focal region to sensor surface

20 / Dec / 2021

ATHENA dRICH – Performances

- YR forward region PID requirements generally fulfilled
- Eta lower bound slightly larger than goal of 1 (not an issue due to DIRC overlap)
- $e\pi$ PID momentum limit lower than desired 15 GeV/c (further magnetic field tuning may helps)

20 / Dec / 2021

ATHENA dRICH – Timeline and Estimated Costs

Estimated R&D costs:

Materials:	0.47MUSD,	in kind: 54%
Labor:	1.9 MUSD,	in kind: 79%

Estimated Construction costs:

Materials:	8.8 MUSD,	in kind: 61%
Labor:	3.2 MUSD,	in kind: 69%

(material costs breakdown from 15/Oct/21)

Estimated construction material costs

Component	%
Sensors (SiPM)	18
Power Supply for Sensors (SiPM)	5
Electronics, PS, services	30
Aerogel Radiator	5
Gas assume C2F6 (with 0.2 M\$ for recollection system)	4
Mirrors (with coating) fiber reinforced polymer	12
Mechanics (vessel, mirror and readout supports, etc.)	13
Mirror alignment system	7
Cooling system	6
5	13

ATHENA dRICH – toward further improvements

Segmented single sector mirror with

different radii to better match focal

C. Chatterjee et al. "Supplemental Material for ATHENA detectors"

wiki.bnl.gov/athena/index.php/Particle_Identification

Physics Event Reconstruction

JLEIC attempt based on Inverse Ray Tracing

... further

development steps

PYTHIA-DIS events: ≈ 20% with multiple tracks & overlapping rings

Implemented efficient event based reconstruction method: it maximizes 2 likelihood functions in sequence to reduce significantly the computational efforts

L. Barion et al., 2020 JINST 15 C02040

Example: event with 2 tracks and 15 hits

Brute Force: up to ~488 billion combinationsOur approach:1200 combinations... and it seems to perform pretty well (see above)

dRICH in CORE Proposal

From Pawel Nadel-Turonski and Charles Hyde presentations (13-14/Dec/2021 EIC Detector Proposal Advisory Panel Meeting)

PID in the hadron endcap – dual-radiator RICH

- The CORE dRICH is a smaller version of the eRD14 design
 - Most dimensions were scaled by a factor 2, but the length of the gas along the beam was only reduced from 1.6 m to 1.2 m (25%).
 - The resulting geometry provides a good match to the photosensor plane and a photon yield almost as high as the eRD14 dRICH
 - · The 55 cm aperture matches the inner radius of the barrel EMcal
- The CORE dRICH performance should be close to that of the original eRD14 dRICH, with continuous π/K coverage in RICH mode for 2-50 GeV/c, and positive pion ID below kaon threshold.

Sub-system	Primary Responsibility	Key Participants	Potential Source of Support
Solenoid	P. Brindza (ODU/JLab)		JLab/BNL Magnet Groups
Silicon tracker	S. Bueltmann (ODU)		EIC Silicon consortium
MPGD	M. Hohlmann (FIT)	K. Gnanvo (JLab)	JLab Detector Group
DIRC	G. Kalicy (CUA)	J. Schwiening (GSI)	PANDA DIRC Group (GSI)
dRICH	K. Joo (UConn)		CFNS @ Stony Brook, PID consortium

dRICH in ECCE Proposal

Use a combination of aerogel and $C_m F_n$ with indices of refraction matching EIC momentum range in the forward endcap. Similar to LHC-b, HERMES, JLAB/Hall-B, ...

From Tanja Horn and Or Hen presentations (13-14/Dec/2021 EIC Detector Proposal Advisory Panel Meeting)

dRICH Key Hardware Components

Component	Function	Specs/Requirements	Critical Issues / Comments
Mechanics	Support all other components and services Keep in position and aligned	Large volume gas and light tightness; alignment of components	Technically demanding but feasible; no major challenges expected
Optics (Mirrors)	Focus (expecially for gas) and deflect photons out of particle acceptance and reduce sensor surface	sub-mrad precision reflectivity ≥ 90% low material budget	Spherical mirrors technology of CLAS12 suitable (optical fiber and/or glass skin); similar geometry; Development for cost reduction
Aerogel Radiator	Cover Low Mom. Range between TOF and Gas	≥3 σ π-K separation up to Gas region (~13 GeV)	Procurement: currently 1 active provider (2 main producers + 1 potential) Long term stability assessment in conjunction with gas
Gas Radiator	Cover High Mom. Range above Aerogel	$\geq 3\sigma \pi$ -K separation up to ~50 GeV and overlap to aerogel	Greenhouse gas: potential procurement issue Search for alternatives, e.g. Pressurized Argon
Photon Detector	Single photon spatial detection	Magnetic field tolerant and radiation hardness; ~ few mm spatial resolution	MCP-PMT is likely doable, but expensive. LAPPD may represent an alternative. R&D on SiPM: a promising, quicky improving, wordwide pursued, and cheap technology.
Electronics	Amplify and shape single photon analog signal, convert to digital, transfer to DAQ nodes	Low noise Time res. < 0.5 ns μs signal latency	MAROC3 based readout available for prototyping; final choice will depend on sensor. ASIC development for optimised streaming readout (discrimination vs sampling)

dedicated R&D in progress on:

detector prototyping, photon sensor selection and characterization, electronics (aerogel, photon sensor and electronics R&D essentially shared with pfRICH)

20 / Dec / 2021

SiPM Characterization and Curing

R. Preghenella tomorrow Talk

TIFPA Proton Beam Facility

Collimated Beam 10⁹-10¹¹ n_{eq}

Various SiPM

1.2.2

Climate chamber

from M. Contalbrigo

INFN BO

HAMA2

SiPMs

Annealing kiln

Heater

Prototyping

adapted from M. Contalbrigo

Dual radiator imaging Pressure vessel for gas & n tune Sensor & readout friendly

Goals:

- Study dual radiator performance and interplay
- Study specifications and alternatives for optical components
- Test alternate single-photon detection systems
- First test-beams Sep. & Oct./21 at CERN (synergy with ALICE at PS T10)

20 / Dec / 2021

Prototype Beam Tests @CERN

adapted from M. Contalbrigo

Cooling

12 GeV/c - p (70%) and π + (30%)

20 / Dec / 2021

Prototype Beam Test: SiPM+ALCOR Readout

20 / Dec / 2021

dRICh status

Prototyping – Status and Plan

2021: MC simulations

First SiPM irradiation + annealing campaign

from M. Contalbrigo

Basic dRICH prototype

First dRICH test-beam with hadron beams (commissioning)

2022: Extended SiPM irradiation + annealing campaign

Improved prototype

Second test-beam campaign (realistic performance)

Data analysis and technical note (D24.3)

2023: Refined data analysis and simulation

Third test-beam campaign (component optimization)

Final assessment towards TDR

Conclusions

- dRICH implementation in ATHENA shows adequate performances; there is still margin for refinement and improvements
- All proto-collaborations have included a dRICH in their proposals
- INFN is leading (and directly carrying on) the crucial R&D on dRICH

