Physics Prospects and Performance of Proposed EIC detectors

> Salvatore Fazio Università della Calabria & INFN Cosenza

Giornata Nazionale EIC_net Sezione INFN di Torino December 19-21, 2021

Plan of the Talk

Understanding the properties of visible matter

This is us !!! protons, neutrons, electrons

Proton:

The Higgs mechanism is responsible for quarks mass

Quark-Masses: ~1% M_p

All strongly interacting matter is an emergent consequence of many-body quark-gluon dynamics in QCD

To investigate the nucleon's partonic structure, HERA, the previous and only electron (projectile beam) → proton (target beam) collider, was built

What did HERA found?

HERA studied in detail the one-dimensional picture of a free proton

HERA discovery:

Gluon density dominates at x < 0.1

Limits of HERA: Low luminosity; no nuclei; no polarization of the proton beam

Need a high lumi, highly polarized e+p(A) collider to resolve quark and gluon spatial, momentum and spin structure in multi-dimensions in both protons and nuclei $\rightarrow EIC$

Most compelling physics GOALS

How do the nucleon properties emerge from them and their interactions?

What happens to the gluon density in nuclei?

- Does it saturate at high energy?
- Does this saturation give rise to a gluonic matter with universal poperties in all nuclei, even proton?

How does a dense nuclear environment affect the quarks and gluons, their correlations and interactions? How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium?

How do the confined hadronic states emerge from these quarks and gluons?

How do the quark-gluon interactions create nuclear binding?

S. Fazio (University om Psatm abria
m Ascom NFN Cm Osenza)

 $\alpha_{\rm S} \ll 1$

 α_{s}

Ingredients for a high resolution "femtoscope"

- Large center-of-mass coverage:
- Access to wide kinematic range in x and Q^2
- Polarized electron and hadron beams:
- > access to spin structure of nucleons and nuclei
- > Spin vehicle to access the 3D spatial and momentum structure of the nucleon
- Full specification of initial and final states to probe q-g structure of NN and NNN interaction in light nuclei
- Nuclear beams:
- > Accessing the highest gluon densities \rightarrow amplification of saturation phenomena
- High luminosity:
- Detailed mapping the 3D spatial and momentum structure of nucleons and nuclei
 Access to rare probes
- All these requirement can be addressed by the future **Electron-Ion Collider**

The Electron-Ion Collider

Eur. Phy. J. A. 52 9(2016)

World's first Polarized electron-proton/light ion and electron-Nucleus collider

S. Fazio (University of Calabria & INFN Cosenza)

What process must be measured?

Requirements for a "general-purpose" detector

The Yellow Report Initiative (Jan-Dec 2020) – to advance the state of the documented physics studies (W.P., INT Reports) and detector concepts in preparation for the realization of the EIC. Report released in March 2021: <u>arXiv:2103.05419</u> Enormous community effort: 902 pages, 415 authors, 151 institutions

Overall detector requirements:

- Hermeticity: large acceptance in pseudorapidity, $-4 \leq \eta \leq 4$ [exclusive and diffractive channels]
- Good momentum resolution in central region
 - DIS and SIDIS channels that use the hadronic state to reconstruct kinematics
- **Minimum** p_T : 100 MeV for pions, 135 MeV for kaons
- Electron ID: π suppression of 10⁴ (for eg. PVDIS). $3\sigma e/\pi$ separation for spectroscopy
- Good γ detection threshold at zero angle (ZDC): separate coherent/incoherent in e+A VMP.
- Hadron ID: required over a large momentum range for SIDIS/TMD measurements
- **ECAL:** $(10 12)\%/\sqrt{E} \oplus (1 3)\%$ in central region for jets, $(1 2)\%/\sqrt{E} \oplus (1 3)\%$ at backwards rapidities (DIS electron reconstruction)
- **HCAL:** $50\%/\sqrt{E} \oplus 10\%$ (jets), with a minimum threshold of 500 MeV
- Far Forward instrumentation: measure the diffractive protons

Proposed EIC detectors

Two proposals for a general purpose «project detector»

A proposals for a (still general purpose) complementary detector

Spin Physics

- what is the polarization of gluons at small *x* where they are most abundant?
- what is the flavor decomposition of the polarized sea depending on x?

Determine quark and gluon contributions to the proton spin

Proton's helicity structure

Expected impact of the EIC:

The x-range will be extended by two orders of magnitude, allowing an extremely precise measurement in the earlier poorly known area

Proton's helicity structure

 $\Delta g(x,Q^2) = g \xrightarrow{\rightarrow} (x,Q^2) - g \xrightarrow{\rightarrow} (x,Q^2)$

- \circ **Observable:** Longitudinal double spin asymmetries (A_{LL})
- **DIS** scaling violations determine gluons at small x Ο

Proton's helicity structure from SIDIS

- \circ **Observable:** Longitudinal double spin asymmetries (A_{LL})
- Furthermore SIDIS data provide detailed separation of sea quark
 - Do see quark helicities vanish at small x ?

Key:

- PID (barrel, forward
- Vertexing for charm tagging

The spin sum rule

1/2 - Quarks

Gluons

orb. angular momentum

S. Fazio (University of Calabria & INFN Cosenza)

EIC: the Ultimate Multi-dimension Experience!

Multidimensional imaging of quarks and gluons

Wigner functions offer unprecedented insight into confinement and chiral symmetry breaking $W(x,b_T,k_T)$ $\int d^2 \mathbf{k}_{\mathrm{T}}$ ∫d²b_τ **Momentum** Coordinate $k_T \uparrow$ space space xp $f(x,b_T)$ $f(x,k_{T})$ Spin-dependent 2D coordinate space Spin-dependent 3D momentum space (transverse) + 1D (longitudinal momentum) images from **semi-inclusive scattering** images from exclusive scattering \rightarrow TMDs \rightarrow GPDs

Direct access to $W(x,b_T,k_T)$

for gluons through exclusive di-jets measurements at an EIC under investigation ¹⁹

Momentum tomography

Transverse Momentum Dependent distributions (TMDs) are PDFs depending on transverse momentum

At low k_T , these functions cannot be perturbatively calculated

 \rightarrow need precision measurement

What we want to measure:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{x}\,\mathrm{d}\mathbf{Q}^2\,\mathrm{d}\mathbf{z}\,\mathrm{d}\phi_{\mathrm{S}}\,\mathrm{d}\phi_{\mathrm{h}}\,\mathrm{d}\mathbf{p}_{\mathrm{T}}^{\mathrm{h}}}$

6-fold differential cross sections in SIDIS

Azimuthal asymmetries and their modulations

Momentum tomography – SIDIS, Heavy Flavor, Jets

5 Projected Sievers asymmetries 0.05 0.045 0.045 0.046 0.0250.025

- excellent proxies for partons
- probe **quark TMDs** without convolution with FF
- di-jets can probe gluon Sivers

Key:

- Azimuthal acceptance
- PID
- Acceptance
- Vertexing (heavy flavor)
- Quality of tracking
- HCal (for jets)

Momentum tomography

SIDIS in CORE 10x275 GeV²

- Black = all pions
- Red = Identified π

•
$$z = \frac{p_h \cdot P}{q \cdot P}$$

• Full z-range covered, independent of PID threshold

Spatial tomography

-> whole set of GPDs

-> gluon GPDs

Hard Exclusive processes probe specific components of GPDs

- DVCS, TCS
- heavy vector mesons (J/ψ, Y)
- light vector mesons (ρ^0 ; ρ^+ ; ω) -> quark flavors GPDs
- light pseudoscalar mesons (π^+ ; π^0 ; η) -> helicity-flip GPDs

✤GPDs also sensitive to

- Distribution of forces inside the proton
- Contribution from orbital angular momentum to proton spin
- Energy-Momentum Tensor trace anomaly \rightarrow origin of *p*-mass

Spatial tomography – DVCS/TCS

Observables: $d\sigma/dt$; A_{LU} ; A_{UT} **Asymmetries (DVCS & TCS):** GPDs via amplitude-level interference with Bethe-Heitler

Key:

- Acceptance (including FF)
- γ/π^0 separation in ECAL
- t lever arm in FF spectrometers

Timelike Compton Scattering (TCS) $\gamma p \rightarrow \gamma^* p \ (\gamma^* \rightarrow l^+ l^-)$ • Q': invariant mass of $l^+ l^-$ • $\tau = Q^2 = (s - m_p^2)$ equivalente to x_B

Spatial tomography - VMs

- Muon id
 - Scattered electrons over full kinem.

 $\vec{e} + \vec{p} \rightarrow e + p + \vec{V}$

• *t*-lever arm in FF spectrometers

-> origin of *p*-mass

30000

20000

10000

92

9.3

9.4

9.5

9.7

 $M_{\mu+\mu}$ [GeV]

9.6

^{3.14} M_{e+e-} [GeV]

3.12

3.1

3.08

30000

20000

And what about the nuclei?

- How does the nuclear environment affect the distribution of quarks and gluons and their interaction in nuclei?
- Where does the saturation of the gluon density set in?

Nuclear Structure Functions Ratio:F₂(x,Q²)_{Pb}/F₂(x,Q²)_p

Inclusive DIS on e+A analog to e+p:

$$\frac{d^2\sigma^{eA\to eX}}{dxdQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right]$$
quark+anti-quark (or tag on 5, shorm)

(or tag on F₂-charm)

Theory/models have to be able to describe the structure functions and their evolution

DGLAP evolution model:

predicts Q² but not A-dependence and x-dependence

Saturation models:

predict A-dependence and x-dependence but not Q^2 \rightarrow Need: large Q² lever-arm for fixed x, A-scan

Charm production at EIC:

 Aim at extending our knowledge on structure functions into the realm where gluon saturation effects emerge ⇒ different evolution

 10^{-2}

eRHIC Coverage

10-1

shadowing

10⁻³

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

10⁻⁴

 $R_{g}^{Pb}(x)$

An EIC provides a factor 10 larger reach in Q² and low-x compared to available data

Direct access to gluons at medium to high x by tagging **photon-gluon fusion**

Collinear PDFs on protons and nuclei

Impact after global fits

gluon nPDFs

 constrained at the ~10% level over large x-arm

proton PDFs

- impact on HERA + LHC global fits
- EIC/ATHENA constrains the high-x region

proton PDFs

Key:

 Fine resolution in y over a large phase space

Imaging of gluons in Nuclei

Diffractive vector meson production: $e + Au \rightarrow e' + Au' + J/\psi$

- Nuclear modifications of GPDs & gluon saturation
- Coherent part probes "shape of black disc"
- Incoherent part (large t) sensitive to "lumpiness" of the source [= proton] (fluctuations, hot spots, ...)

0.25

0.2

0.15-

0.1

6

 $R_0^8(fm)$

(1-z)r

 $V = J/w \phi \phi$

Imaging of gluons in Nuclei

EIC Yellow Report:

Measuring up to two minima required for High quality Fourier transform

Key:

0.15

- High resolution reconstruction of the event kinematics and the final-state VM decays:
 - \rightarrow 3T solenoid (higher field helps!)
- high-purity coherent sample:
 - veto the nuclear breakups using FF
 - PID to suppress vector meson
- Simulations (both experiment) do not yet include pid
- t is reconstructed from scattered e and VM
- **ECCE plot:** note how at higher \sqrt{s} it's harder to get to the minima (same confirmed by ATHENA)

Study of neutrons with light nuclei

- Possibility to study neutron structure
- \blacktriangleright DVCS on neutron compared to proton is important for flavor u/d separation

DVCS on incoherent D (D breaks up) but coherent on the neutron, the "double tagging" method

- Tag DIS on a neutron (by the ZDC)
- Measure the recoil proton momentum
- The recoil proton momentum cone is

-
$$lpha_R = ig(E_R + p_{R||} ig) / ig(E_D + p_{D||} ig)$$
 and p_{RT}

• Gives you a free neutron structure, not affected by final state interactions

ATHENA – DVCS on e+D:

- 80-90% acceptance at low |t|,
- |t|-acceptance loss at higher value mostly due to the loss in tagging the active neutron in ZDC.
- Alternatively, |t| can be measured via scattered e and γ → higher acceptance at large |t|.
- Proton momentum is well reconstructed

A window into the Gluon Saturation regime

Saturation via Di-hadron correlations

[∆]ø [rad]

Saturation via Diffraction

Diffraction

High sensitivity to gluon density in linear regime $\sigma^{[g(x,Q^2)]^2}$

S. Fazio (University of Calabria & INFN Cosenza)

Summary

The EIC (with a state of art detector) will allow us to obtain the answers to the big questions discussed

- ✓ Solve the proton spin puzzle
- ✓ How visible matter emerges from quarks and gluons, confined in hadrons?
- ✓ 3D imaging in momentum and coordinate space of nucleons and nuclei
 - ✓ Investigate the origin of proton mass
- ✓ Map the region of the transition from non-saturated to saturated regime
- And much more I had no time to cover: e.g. Spectroscopy, Cold Nuclear matter, Wigner fnc., separation of Y states...
- Excellent proposals have been presented for possible collider detector with high resolution, wide acceptance and good particle identification

+ However the selection process goes... let us remember:

- we are one single dedicated and enthusiastic community worldwide.
- we made through the site selection process together
- we aim to remain together for many decades to come!