
Exercises APCG school

Phase transitions in the early universe

Philipp Schichoa,∗

1. Electroweak phase transition beyond the Standard Model

Without supplemental particles the Standard Model (SM) has no first-order thermal phase

transition. In fact it is a cross-over [1]. Beyond the SM extensions could, however, allow

for a first-order phase transition. While supplementing the SM with additional scalars is one

viable option to achieve this, also higher-dimensional operators can alter the phase transition.

This exercise follows closely the calculations of [2].

Inspect the pure scalar sector of the Minkowskian SM Lagrangian

LM = (Dµφ)
†(Dµφ)− V (φ) , (1.1)

V (φ) = µ2
hφ

†φ+ λ
(
φ†φ
)2

, (1.2)

where Dµ is the covariant derivative acting on the SU(2) Higgs doublet φ. Using a constant

background field φ̄, we parameterise

φ =

(

G+

1√
2
(φ̄+ h+ iG0)

)

, (1.3)

where h is the physical Higgs field and G+, G0 are Goldstone bosons with G− = (G+)†.

Exercise 1.1. Construct the tree-level effective potential V
(0)
eff (φ̄) by employing the parame-

terisation (1.3) in the Higgs potential (1.1). For this analysis assume vanishing h,G±, G0 → 0.

From the resulting potential, relate the MS -renormalised parameters of the Lagrangian to

physical observables using the vacuum expectation value of the Higgs v = 246 GeV and the

physical Higgs mass Mh = 125 GeV.

The Euclidean Lagrangian LE follows from the Minkowskian Lagrangian LM by setting

LE = −LM(t → −iτ) such that

LE = (Dµφ)
†(Dµφ) + V (φ) . (1.4)
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Then by setting φ =
(

0, 1√
2
φ̄
)

the tree-level effective potential is

V
(0)
eff (φ̄) =

µ2
h

2
φ̄2 +

λ

4
φ̄4 . (1.5)

The tree-level relations can be solved from

∂2

∂φ̄2
V

(0)
eff (φ̄)|φ̄=v = M2

h , (1.6)

∂

∂φ̄
V

(0)
eff (φ̄)|φ̄=v = 0 , (1.7)

resulting in

µ2
h = −

1

2
M2

h , λ =
1

2

M2
h

v2
. (1.8)

Exercise 1.2. The effective potential receives loop corrections such that Veff(φ̄) = V
(0)
eff (φ̄)+

V
(1)
eff (φ̄). The one-loop contribution to the effective potential then takes the finite-temperature

form

V
(1)
eff =

∑

i

ni
∑
∫

P

ln(P 2 +m2
i ) , (1.9)

where D = d + 1 = 4 − 2ǫ, the Euclidean four-momenta P = (ωn,p), Σ
∫

P = T
∑

ωn

∫

p
, and

∫

p
=
( µ̄2eγ

4π

)ǫ ddp
(2π)d

. The summation runs over all species {i} that couple to φ and ni is the

number of degrees of freedom of the i-th field with mass mi.

Show that the one-loop contribution to the effective potential (1.9) is of the form

V
(1)
eff (φ̄) =

∑

i

ni

[∫

P
ln
(
P 2 +m2

i (φ̄)
)
+ JB,F

(m2
i (φ̄)

T 2

)]

, (1.10)

where
∫

P =
( µ̄2eγ

4π

)ǫ dDP
(2π)D

, µ̄ is the MS -renormalisation scale, and γ is the Euler-Mascheroni

constant. The first term of eq. (1.10) is the zero-temperature Coleman-Weinberg potential [3]

and temperature effects [4] are encoded in the thermal functions

JB,F(m
2
i ) = −T

∫

p

ln
(
1±nB,F(ε

i
p, T )

)
, nB,F(ε

i
p, T ) =

1

eε
i
p/T ∓ 1

, εip =
√

p2 +m2
i . (1.11)

Here, nB,F are the bosonic and fermionic distribution functions, respectively. Show that their

expansion at high temperature i.e. z ≪ 1 with z2 = m2(φ̄)/T 2 follows

JB(z
2) = −

π2

90
+

1

24
z2 −

1

12π
(z2)

3
2 +O(z4) , (1.12)

JF(z
2) = +

7

8

π2

90
−

1

48
z2 +O(z4) . (1.13)

where JB,F(z
2) = JB,F(z

2)/T 4. Using the above expressions,
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• derive the one-loop effective potential at leading order in the high-temperature expan-

sion z2 = m2(φ̄)/T 2.

• determine the functional form of the effective potential as a function of φ̄ through the

corresponding leading-order terms at φ̄2, φ̄4 and φ̄6.

The correspondence between eqs. (1.9) and (1.10) is established by first solving the differ-

entiated ∂m2
i
V

(1)
eff and thereafter integrating the result. A full discussion is found in chapter 2

of [5].

For the one-loop effective potential at leading-order at high-T , we need the mass eigenvalues

of the Higgs field and the Goldstone bosons

m2
h = µ2

h + 3λφ̄2 , (1.14)

m2
G = µ2

h + λφ̄2 , (1.15)

where the mass eigenvalue of the Goldstones is triple degenerate. The one-loop effective

potential takes the form

V
(1)
eff = JB(m

2
h) + 3JB(m

2
G) , (1.16)

and at leading-order at high temperature becomes

V
(0)
eff + V

(1)
eff =

1

2
C2φ̄

2 +
1

4
C4φ̄

4 , (1.17)

with the corresponding coefficients Ci

C2 = −
1

2
M2

h −
1

4
M2

h

T 2

v2
, C4 =

1

2

M2
h

v2
. (1.18)

Exercise 1.3. By adding the sextic interaction |φ|6 of dimension six, the Higgs poten-

tial (1.1) in the symmetric phase is augmented by the operator

O6 = M−2
(
φ†φ

)3
, (1.19)

this is the minimal SM effective theory (SMEFT). In relation to the SM in Exercise 1.1 and

Exercise 1.2

• visualise the difference between the tree-level effective potentials of the pure SM and

the SMEFT.

• include the M -dependence in µ2
h and λ. For the additional parameter M there will be

now a barrier in the effective potential already at tree-level. Determine how the global

minimum depends on M .

• derive the one-loop effective potential at leading order in the high-T expansion.

3



By setting φ =
(

0, 1√
2
φ̄
)

the tree-level effective potential is

V
(0)
eff =

µ2
h

2
φ̄2 +

λ

4
φ̄4 +

1

8M2
φ̄6 . (1.20)

By using eqs. (1.6)–(1.7) the bare parameters are

µ2
h = −

1

2
M2

h +
3

4

v4

M2
, (1.21)

λ =
1

2

M2
h

v2
−

3

2

v2

M2
. (1.22)

The change with M of the mass eigenvalues of the Higgs field and the Goldstone bosons is

m2
h = µ2

h + 3λφ̄2 +
15

4

φ̄4

M2
, (1.23)

m2
G = µ2

h + λφ̄2 +
3

4

φ̄4

M2
. (1.24)

The one-loop effective potential is then

V
(0)
eff + V

(1)
eff =

1

2
C2φ̄

2 +
1

4
C4φ̄

4 +
1

6
C6φ̄

6 , (1.25)

with the corresponding coefficients Ci

C2 = −
1

2
M2

h +
3

4

v4

M2
−

1

4

(

M2
h − 3

v4

M2

)T 2

v2
, (1.26)

C4 =
1

2

M2
h

v2
−

3

2

v2

M2
−

T 2

M2
, (1.27)

C6 =
3

4M2
. (1.28)

2. Dimensionally reduced EFT of the SM

Construct the corresponding dimensionally reduced EFT starting from the pure scalar SM

Lagrangian (1.1); see e.g. [2, 6].

Exercise 2.1. In this scenario only two effective parameters need to be matched, namely

λ3 and µ2
h,3. In the symmetric phase, first draw the corresponding Feynman diagrams for

the 2-point and 4-point scalar correlator in the pure scalar sector both in the 4d and 3d

theory. Then using Feynman rules relate the diagrams to an integral expression. Since both

the effective theory and the full theory are matched at the low energy scale, expand in soft

momenta and masses p,mi ≪ 2πT .
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There are two distinct diagrams at one-loop level that contribute to the 2-point and 4-point

correlator

= δij
(
−6λZ1

)
, (2.1)

= ∆ijkl

(
24λ2 Z2

)
, (2.2)

where directed dashed lines are the Higgs-doublet, φ, with the isospin indices ijkl and isospin

tensor ∆ijkl = δikδjl+δilδjk. The resulting master integrals are discussed in the next exercise

in eq. (2.3).

Exercise 2.2. By following the derivation in the lecture, show that a general sum-integral

can be expressed in d = 3− 2ǫ as

Zα ≡
∑
∫ ′

P

1

[P 2]α
=

(
µ̄2eγ

4π

)ǫ

2T
[2πT ]d−2α

(4π)
d
2

Γ(α− d
2)

Γ(α)
ζ2α−d , (2.3)

with P = (ωn,p) and by using the d-dimensional vacuum integral

Iα(m
2) ≡

∫

p

1

[p2 +m2]α
=
( µ̄2eγ

4π

)ǫ [m2]
d
2
−α

(4π)
d
2

Γ(α− d
2)

Γ(α)
, (2.4)

with the sum representation of the Riemann zeta function ζs =
∑∞

n=1 n
−s.

Rewrite the sum-integral as

∑
∫ ′

P

1

[ω2
n + p2]α

= T
∑

n

Iα(ω
2
n) =

( µ̄2eγ

4π

)ǫ
T

1

(4π)
d
2

Γ(α− d
2)

Γ(α)

∞∑

n=−∞
ωd−2α
n

=
( µ̄2eγ

4π

)ǫ
2T

[2πT ]d−2α

(4π)
d
2

Γ(α− d
2)

Γ(α)

∞∑

n=1

nd−2α

︸ ︷︷ ︸

ζ2α−d

, (2.5)

by using bosonic Matsubara modes ωn = 2πTn.

Exercise 2.3. Schematically the matching can be illustrated for the quartic terms of the

effective action
(

λ+ Γ4d

)

ϕ4
4d = T

(

λ3 + Γ3d

)

ϕ4
3d , (2.6)

where ϕ3d = ϕ4d(1 + O(λ)) and loop corrections are collected in Γ. Argue that the loop

corrections in the EFT, Γ3d, vanish in the matching and extract the corresponding matching
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coefficients.

Since the matching is done by expanding in IR quantities, the Γ3d contribution is scaleless

and vanishes in dimensional regularisation. The matching coefficients are determined by the

purely hard contribution on the left hand side of eq. (2.6) and amount to

µ2
h,3 = µ2

h +
T 2

2
λ , (2.7)

λ3 = λ−
1

(4π)2
12λ2Lb , (2.8)

where the matching of λ required renormalisation through a counterterm λ(b) = λ+ δλ. The

resulting logarithms of Z2 are collected in

Lb ≡ 2 ln
( µ̄

T

)

− 2
(

ln(4π)− γ
)

. (2.9)

Exercise 2.4. With the 3d effective theory constructed above, compute the 3d effective

potential from

V3d(φ̄) ≡
∑

i

ni J3d(m
2
i ) , (2.10)

J3d(m
2) =

∫

p

ln(p2 +m2) = −
1

2

( µ̄2eγ

4π

)ǫ [m2]
d
2

(4π)
d
2

Γ(−d
2)

Γ(1)

= −
(m2)

3
2

12π
+O(ǫ) . (2.11)

How does the resulting expression differ from the effective potential from Exercise 1.

We indicate three dimensional fields by a subscript “3”. Then, by setting φ3 =
(

0, 1√
2
φ̄3

)

,

the tree-level effective potential is

V
(0)
eff =

1

2
C2φ̄

2
3 +

1

4
C4φ̄

4
3 . (2.12)

The corresponding coefficients Ci agree with eq. (1.18). The one-loop effective potential takes

the form

V
(1)
eff = J3d(m

2
h,3) + 3J3d(m

2
G,3

) , (2.13)

where the mass eigenvalues for the Higgs field and the Goldstone bosons are given by their

3d EFT equivalents

m2
h = µ2

h,3 + 3λ3φ̄
2
3 , (2.14)

m2
G,3 = µ2

h,3 + λ3φ̄
2
3 . (2.15)
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3. Surface tension of a bubble

In the thin-wall limit, the difference in free energy if a bubble exists or not is given by

∆F = σAb −∆pVb , (3.1)

where σ is the surface tension and ∆p = −∆Veff is the pressure difference. Ab is the surface

area and Vb the volume of the bubble. Below we will derive this correspondence.

Assume the limit where the bubble has a thin wall that separates the new stable true

vacuum on the inside from the false vacuum in the exterior. The radius of the bubble is R

and r = |x| will be the radial coordinate of the bubble, such that

φ(r) = φ̄broken , Veff(φ) = Vtrue , for r ≪ R ,

φ(r) = 0 , Veff(φ) = Vfalse , for r ≫ R . (3.2)

Exercise 3.1. Derive an expression for ∆F = Fbub−Fnobub. By ignoring the wall curvature

of the bubble, rewrite the free energy difference in spherical coordinates.

From SE[φ] ≈
∆F [φ]

T the free energy for a given configuration by using the Euclidean action

is

∆F [φ] = TSE[φ] =

∫

x

[1

2

(
∂iφ
)2

+ Veff(φ)
]

= Ωd−1

∫ ∞

0
drrd−1

[1

2

(dφ

dr

)2
+ Veff(φ)

]

, (3.3)

where
∫

x
=
∫
ddx and Ωd−1 is the d-dimensional surface area.

Exercise 3.2. In the thin wall limit, the wall of the bubble is assumed to be small com-

pared to its radius R. In other words, one is close to the limit of Tc → T−
c . For a wall

of extent 2δ, show that the resulting expression is of the form (3.4) and identify the term

∆VeffVb and the remaining integral as σAb.

The resulting expression is

∆F [φ] = Ωd−1

(∫ R−δ

0
drrd−1

[

Veff(φ̄broken)
]

+

∫ R+δ

R−δ
drrd−1

[1

2

(dφ

dr

)2
+ Veff(φ)

]

+

∫ ∞

R+δ
drrd−1

[

. . .
]

︸ ︷︷ ︸

→0

)

= Ωd−1

∫ R+δ

0
drrd−1

[

Veff(φ̄broken)
]

+Ωd−1

∫ R+δ

R−δ
drrd−1

[1

2

(dφ

dr

)2
+ Veff(φ)− Veff(φ̄broken)

]

︸ ︷︷ ︸

∆FT

. (3.4)
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The first term is the volume-dependent pressure difference

Ωd−1

∫ R+δ

0
drrd−1

[

Veff(φ̄broken)
]

= Vd(R)Veff(φ̄broken) , (3.5)

where Vd is the d-dimensional volume. The second term in eq. (3.4) is the area-dependent

surface tension.

Exercise 3.3. Use the Euler-Lagrange equations to derive the corresponding equation of

motion (e.o.m.) for φ in d-dimensions and extract from it an expression for dφ
dr . What is the

correct sign of the derivative in the regime [R−δ,R+δ]? Using the found derivative, compute

the remaining integral from Exercise 3.2 and identify from it the surface tension.

The Euler-Lagrange equation is

d

dr

∂LE

∂
(∂φ
∂r

) =
∂LE

∂φ
, (3.6)

and gives rise to the equation of motion

d2φ

dr2
+

d− 1

r

dφ

dr
=

dVeff(φ)

dφ
, (3.7)

close to r ≃ R the linear-in-φ term can be ignored since (d− 1)φ′/R is small. By multiplying

both sides of eq. (3.7) by dφ
dr and subsequently integrating over r gives rise to

1

2

(dφ

dr

)2
≃ Veff(φ)− Veff(φ̄broken) . (3.8)

Given the boundary conditions (3.2) the sign of the derivative of φ(r) at r ≃ R has to be

negative in the wall region [R− δ,R+ δ]. Therefore, one can evaluate the remaining integral

∆FT = Ωd−1

∫ R+δ

R−δ
drrd−1

[1

2

(dφ

dr

)2
+ Veff(φ)− Veff(φ̄broken)

]

= Ωd−1R
d−1

∫ R+δ

R−δ
dr
(dφ

dr

)2

= Ωd−1R
d−1

∫ φ̄broken

0
dr
√

2
(
Veff(φ)− Veff(φ̄broken)

)
, (3.9)

where the second line changes the integration variable from r → φ(r).
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