
Exercises APCG school

Phase transitions in the early universe

Philipp Schichoa,∗

1. Electroweak phase transition beyond the Standard Model

Without supplemental particles the Standard Model (SM) has no first-order thermal phase

transition. In fact it is a cross-over [1]. Beyond the SM extensions could, however, allow

for a first-order phase transition. While supplementing the SM with additional scalars is one

viable option to achieve this, also higher-dimensional operators can alter the phase transition.

This exercise follows closely the calculations of [2].

Inspect the pure scalar sector of the Minkowskian SM Lagrangian

LM = (Dµφ)
†(Dµφ)− V (φ) , (1.1)

V (φ) = µ2
hφ

†φ+ λ
(

φ†φ
)2

, (1.2)

where Dµ is the covariant derivative acting on the SU(2) Higgs doublet φ. Using a constant

background field φ̄, we parameterise

φ =

(

G+

1√
2
(φ̄+ h+ iG0)

)

, (1.3)

where h is the physical Higgs field and G+, G0 are Goldstone bosons with G− = (G+)†.

Exercise 1.1. Construct the tree-level effective potential V
(0)
eff (φ̄) by employing the parame-

terisation (1.3) in the Higgs potential (1.1). For this analysis assume vanishing h,G±, G0 → 0.

From the resulting potential, relate the MS -renormalised parameters of the Lagrangian to

physical observables using the vacuum expectation value of the Higgs v = 246 GeV and the

physical Higgs mass Mh = 125 GeV.

Exercise 1.2. The effective potential receives loop corrections such that Veff(φ̄) = V
(0)
eff (φ̄)+

V
(1)
eff (φ̄). The one-loop contribution to the effective potential then takes the finite-temperature

form

V
(1)
eff =

∑

i

ni
∑

∫

P

ln(P 2 +m2
i ) , (1.4)
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where D = d + 1 = 4 − 2ǫ, the Euclidean four-momenta P = (ωn,p), Σ
∫

P = T
∑

ωn

∫

p
, and

∫

p
=
( µ̄2eγ

4π

)ǫ ddp
(2π)d

. The summation runs over all species {i} that couple to φ and ni is the

number of degrees of freedom of the i-th field with mass mi.

Show that the one-loop contribution to the effective potential (1.4) is of the form

V
(1)
eff (φ̄) =

∑

i

ni

[

∫

P
ln
(

P 2 +m2
i (φ̄)

)

+ JB,F

(m2
i (φ̄)

T 2

)]

, (1.5)

where
∫

P =
( µ̄2eγ

4π

)ǫ dDP
(2π)D

, µ̄ is the MS -renormalisation scale, and γ is the Euler-Mascheroni

constant. The first term of eq. (1.5) is the zero-temperature Coleman-Weinberg potential [3]

and temperature effects [4] are encoded in the thermal functions

JB,F(m
2
i ) = −T

∫

p

ln
(

1± nB,F(ε
i
p, T )

)

, nB,F(ε
i
p, T ) =

1

eε
i
p/T ∓ 1

, εip =
√

p2 +m2
i . (1.6)

Here, nB,F are the bosonic and fermionic distribution functions, respectively. Show that their

expansion at high temperature i.e. z ≪ 1 with z2 = m2(φ̄)/T 2 follows

JB(z
2) = −

π2

90
+

1

24
z2 −

1

12π
(z2)

3
2 +O(z4) , (1.7)

JF(z
2) = +

7

8

π2

90
−

1

48
z2 +O(z4) . (1.8)

where JB,F(z
2) = JB,F(z

2)/T 4. Using the above expressions,

• derive the one-loop effective potential at leading order in the high-temperature expan-

sion z2 = m2(φ̄)/T 2.

• determine the functional form of the effective potential as a function of φ̄ through the

corresponding leading-order terms at φ̄2, φ̄4 and φ̄6.

Exercise 1.3. By adding the sextic interaction |φ|6 of dimension six, the Higgs poten-

tial (1.1) in the symmetric phase is augmented by the operator

O6 = M−2
(

φ†φ
)3

, (1.9)

this is the minimal SM effective theory (SMEFT). In relation to the SM in Exercise 1.1 and

Exercise 1.2

• visualise the difference between the tree-level effective potentials of the pure SM and

the SMEFT.

• include the M -dependence in µ2
h and λ. For the additional parameter M there will be

now a barrier in the effective potential already at tree-level. Determine how the global

minimum depends on M .

• derive the one-loop effective potential at leading order in the high-T expansion.
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2. Dimensionally reduced EFT of the SM

Construct the corresponding dimensionally reduced EFT starting from the pure scalar SM

Lagrangian (1.1); see e.g. [2, 6].

Exercise 2.1. In this scenario only two effective parameters need to be matched, namely

λ3 and µ2
h,3. In the symmetric phase, first draw the corresponding Feynman diagrams for

the 2-point and 4-point scalar correlator in the pure scalar sector both in the 4d and 3d

theory. Then using Feynman rules relate the diagrams to an integral expression. Since both

the effective theory and the full theory are matched at the low energy scale, expand in soft

momenta and masses p,mi ≪ 2πT .

Exercise 2.2. By following the derivation in the lecture, show that a general sum-integral

can be expressed in d = 3− 2ǫ as

Zα ≡
∑

∫ ′

P

1

[P 2]α
=

(

µ̄2eγ

4π

)ǫ

2T
[2πT ]d−2α

(4π)
d
2

Γ(α− d
2)

Γ(α)
ζ2α−d , (2.1)

with P = (ωn,p) and by using the d-dimensional vacuum integral

Iα(m
2) ≡

∫

p

1

[p2 +m2]α
=
( µ̄2eγ

4π

)ǫ [m2]
d
2
−α

(4π)
d
2

Γ(α− d
2)

Γ(α)
, (2.2)

with the sum representation of the Riemann zeta function ζs =
∑∞

n=1 n
−s.

Exercise 2.3. Schematically the matching can be illustrated for the quartic terms of the

effective action
(

λ+ Γ4d

)

ϕ4
4d = T

(

λ3 + Γ3d

)

ϕ4
3d , (2.3)

where ϕ3d = ϕ4d(1 + O(λ)) and loop corrections are collected in Γ. Argue that the loop

corrections in the EFT, Γ3d, vanish in the matching and extract the corresponding matching

coefficients.

Exercise 2.4. With the 3d effective theory constructed above, compute the 3d effective

potential from

V3d(φ̄) ≡
∑

i

ni J3d(m
2
i ) , (2.4)

J3d(m
2) =

∫

p

ln(p2 +m2) = −
1

2

( µ̄2eγ

4π

)ǫ [m2]
d
2

(4π)
d
2

Γ(−d
2)

Γ(1)

= −
(m2)

3
2

12π
+O(ǫ) . (2.5)

How does the resulting expression differ from the effective potential from Exercise 1.
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3. Surface tension of a bubble

In the thin-wall limit, the difference in free energy if a bubble exists or not is given by

∆F = σAb −∆pVb , (3.1)

where σ is the surface tension and ∆p = −∆Veff is the pressure difference. Ab is the surface

area and Vb the volume of the bubble. Below we will derive this correspondence.

Assume the limit where the bubble has a thin wall that separates the new stable true

vacuum on the inside from the false vacuum in the exterior. The radius of the bubble is R

and r = |x| will be the radial coordinate of the bubble, such that

φ(r) = φ̄broken , Veff(φ) = Vtrue , for r ≪ R ,

φ(r) = 0 , Veff(φ) = Vfalse , for r ≫ R . (3.2)

Exercise 3.1. Derive an expression for ∆F = Fbub−Fnobub. By ignoring the wall curvature

of the bubble, rewrite the free energy difference in spherical coordinates.

Exercise 3.2. In the thin wall limit, the wall of the bubble is assumed to be small compared

to its radius R. In other words, one is close to the limit of Tc → T−
c . For a wall of extent 2δ,

show that the resulting expression is of the form (3.1) and identify the term ∆VeffVb and the

remaining integral as σAb.

Exercise 3.3. Use the Euler-Lagrange equations to derive the corresponding equation of

motion (e.o.m.) for φ in d-dimensions and extract from it an expression for dφ
dr . What is the

correct sign of the derivative in the regime [R−δ,R+δ]? Using the found derivative, compute

the remaining integral from Exercise 3.2 and identify from it the surface tension.
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