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It was the wonders of the night sky, observed by Indians, Sumerians or Egyptians, that started science several
thousand years ago. It was the question why the wanderers - the planets - moved as they did that triggered off
the scientific avalanche several hundred years ago. [. . . ] if the night sky on which we observe them is at a high
latitude, outside this lecture hall - perhaps over a small island in the archipelago of Stockholm - we may also
see in the sky an aurora, which is a cosmic plasma, reminding us of the time when our world was born out of
plasma. Because in the beginning was the plasma. (H. Alfvén Nobel lecture, 11/12/1970)

The main goal of the present lectures is to outline the main mechanisms and processes through which high-energy (or
non-thermal) particles evolve in space and momentum in typical galactic and extragalactic environments. This realm is
much more rich and hard to describe than the thermal one you are most familiar with, where the collisional interactions
are frequent enough that the distribution in momentum/energy attains the universal Maxwell-Boltzmann function (or
Fermi-Dirac/Bose-Einstein when quantum effects are relevant). Clearly we are dealing with systems which are not at
thermodynamical equilibrium. The important concept of collisionless diffusion of charged particles will be tackled, followed
by a description of particle interactions and loss mechanisms in the Galactic and extragalactic medium. These interactions
are an important ingredient entering the propagation equation and contribute shaping the spectrum of high-energy charged
particles, whose population observed at the Earth (top of the atmosphere) is known as ”Cosmic Rays” (CR). The neutral
byproducts of the charged energetic particle interactions (gamma rays and neutrinos) point back to their production point,
and are themselves signals one can look for and study.

A gentle introduction to the topic is [1]. For the CR propagation part, classical texts like [2] remain useful. Specialised
literature, such as [3–5], or reviews like [6, 7] can and should be addressed for more advanced concepts, but hopefully will
not be required to make you grasp the fundamentals of this wide topic, which is my goal here. An original recent book, that
fills the widening gap in modern physicists’ training in advanced classical physics notions, is [8]: I would like to recommend
notably Part II and Part VI on statistical physics and plasma physics, respectively. It may be the single best reference to
go also to consolidate auxiliary concepts I must introduce very quickly and that may be unfamiliar to you.

These lecture notes also include other references (including reviews and articles), but have not undergone a deep proof-
reading, nor can be considered complete. Their essential goal is to make you focus on following the arguments (rather than
frantically taking notes) and ease the task especially of those following remotely. Exercises are typically not very advanced
since you do not have much time, so are meant to help you consolidating the notions and guide you through some literature.
Some more advanced projects are also suggested, notably for after the school. Obviously, the only way to learn is by doing,
so I invite you to repeat all derivations presented below. Do not hesitate to signal me typos and mistakes, if you find any.
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Part I

Introductory notions
I. PROLEGOMENA

A. On Units

As in particle physics, astroparticle physics practitioners tend to use natural units for microscopic scales (where c =
kB = h̄ = 1), so that e.g. energy, mass, momenta, temperature, inverse length and inverse time have the same unit.
Astrophysical units are instead common for astrophysical distances, in particular. Typically, energy is measured in eV (and
multiples) for microscopic applications or ergs for macroscopic/astrophysics scales; distances are given in parsecs (and
multiples), cross sections in barns (and multiples), etc. On the other hand, differently from some convention frequent
among quantum gravity aficionados, in astroparticle we retain GN ≡M−2

P = (1.22× 1019 GeV)−2. Finally, in agreement
with most astrophysical literature, the Gaussian electromagnetic convention is used (with the 4π’s in Maxwell equations,

not in Coulomb or Biot-Savart laws). The charge of the positron is e '
√
α '

√
1/137 ' 0.085. The magnetic field energy

density is for instance B2/(8π), etc. Some rough conversions are

• 1 s= 3×1010 cm=1.5× 1015 eV−1

• 1 J= 107 erg=6.25× 1018 eV

• 1 pc=3.1× 1016 m

• 1 barn=10−24 cm2

• 1 G=10−4 T' 0.069 eV2

If you are unfamiliar with natural units, practice a bit!

Exercises

• Compute your typical body temperature (assuming you are still alive) and your mass in eV.

• Check the working frequency of your mobile phone. Rephrase it into eV.

• Compute your height and age in eV−1.

• Compute your density (estimated with O(10%) error!) in eV4.
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B. The Galactic and extragalactic environments

These environments are extremely rarified, if compared with terrestrial conditions. Typical benchmark densities of matter:

• <∼1 cm−3 in the Galaxy, apart in regions close to the center and in dense molecular clouds.

• <∼10−6 cm−3 on average, in a cosmological setting.

Sizes and distances are also much bigger than terrestrial scales. Typical benchmark distances are (1pc ' 3.26 lyr '
3.086× 1016 m):

• Several kpc, for Galactic objects (Earth-Gal. Center is '8 kpc).

• hundreds of Mpc, or Gpc, for cosmologically distant objects (at low redshift, the relation d ' 40(z/0.01) Mpc holds).

System can also evolve over very long timescales. Typical benchmark timescales are:

• ∼230 Myr for a solar orbit in the Milky Way.

• ∼14 Gyr, age of the Universe.

Besides via the “general-purpose” equatorial coordinate system 1, Galactic and extragalactic astronomers locate objects
in angular space via Galactic coordinates, illustrated in Fig. 1. Another (less standardised!) frame used is the Galactocentric
one, here intended as the cylindrical coordinates centered on the Galactic Center, where r denotes the distance in the plane,
θ is the angle as illustrated in Fig. 2, and z is the height above the plane. More precise and operational definitions, as
well as algorithms for conversions, can be found at https://docs.astropy.org/en/stable/coordinates/index.html#module-
astropy.coordinates .

FIG. 1: Illustration of Galactic coordinates; NGP: North Galactic Pole; SGP: South Galactic Pole; l: galactic longitude; b:
galactic latitude; from https://auger.org/education/Auger Education/galacticcoordinates.html.

1 The eq. coord. system is a celestial ‘projection’ of the terrestrial coordinate systems, with the role of latitude played by declination and the
longitude by Right Ascension; instead of El Hierro or Greenwhich, the prime meridian (zero R.A.) is taken as the vernal equinox point of the
intersection of the equatorial plane with the ecliptic (=plane of Earth revolution orbit in the sky, or solar motion plane in geocentric frame).
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FIG. 2: Galactocentric (cylindrical) coordinates, r is the distance from the Galactic center in the plane, z the distance above
the plane, θ the angle shown measured starting at zero along the GC-Sun direction. The indicative (in the sense that these are
defined wrt to a frame centered on the Sun, see Fig. 1!) galactic longitudes are shown by comparison. From [9].

1. Magnetic fields

The interstellar medium (ISM) of our Galaxy, as well as external ones, is magnetized. This is most clearly revealed by
radio observations (Faraday rotation, synchrotron radiation) but also via polarized light emission (due to dust grains) or, in
some cases, via Zeeman splitting. A magnetic field coherent (at least) up to scales comparable to several kpc-long Galactic
structures, such as spiral arms, has been detected. Radio observations of external Galaxies as well as our own, notably
via synchrotron emission (see below), indicate several kpc thick magnetized halos embedding the stellar disks, as alfajores
embed their dulce de leche. The ISM magnetic field extends to small scales down to at least the typical pc-scale distance
between neighbouring stars, where the field orientation is believed to fluctuate following the turbulence of the ISM. Typical
inferred intensities of Galactic fields (typically via radio synchrotron emission, its polarization and its Faraday rotation) are
in the 1-10µG range, where 1 G is the order of magnitude of the Earth magnetic field. There are also indications that the
extragalactic medium is magnetized, with magnetic fields exceeding 10−19 G at least [10], and not exceeding ∼ 2 nG in
the truly extragalactic medium [11]. Fields reaching µG in proximity of Galaxy clusters have been inferred. For a relatively
recent review and ample references on Galactic and cosmic magnetism, including microphysics and simulations, see for
instance [12]. Another review worth looking at is [13].

2. Photon fields

The most important extragalactic backgrounds are (see Fig. 3, left):
• The CMB (blackbody of cosmological origin and temperature of about 2.7 K), pervading the whole universe (Galaxy and
extragalactic sky alike). While today its energy density is only ∼ 0.3 eV/cm3, it scales with redshift as (1 + z)4 (number
density of photons as (1 + z)3).
• The extragalactic background light (EBL), pervading the whole universe, due to primary stellar emission and secondary
radiation from reprocessing, with a benchmark number density of roughly a photon /cm3; a recent determination of its
spectral energy density can be found in [15]. Other backgrounds also exist (e.g. radio) but are less important for what
follows.

For the Galactic environment, besides the CMB, UV, optical, and IR backgrounds are important (comparable or larger
than the CMB, in energy density) and non-homogeneously distributed (peaking towards inner Galaxy), see Fig. 3, right.

Sometimes, a different classification is made in terms of “starlight” (SL) or primary emission and “dust” or reprocessed
emission, with SL loosely covering the UV and optical range, while the dust, responsible for absorbing SL and re-emitting
it at longer wavelengths, mostly contributes in the IR. Note however that this “matching” is not absolute in physical units,
as considering emission of the same object at higher redshift makes obviously clear.

It turns out that energy densities of magnetic fields, radiation and cosmic rays are roughly comparable (equal within less
than one order of magnitude) in our Galaxy, amounting to about <∼ 1eV/cm3 each.
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FIG. 3: Left: Typical energy budgets of extragalactic photon backgrounds, in the optical, infrared and microwave band,
from https://www.ias.u-psud.fr/irgalaxies/SpitzerPR2006/Dole v7.html. Numbers in the boxes provide the relative brightness.
Right: Typical photon densities in the Galactic regions, from [14].

II. SOME DATES AND FACTS ABOUT COSMIC RAYS

• 1785: Coulomb observes that insulated electroscopes discharge over time.

• 1879: Crookes finds that the discharge rate scales with pressure of gas.

• 1896: Becquerel discovers spontaneous radioactivity (Radioactive materials known to cause discharge of electroscopes)

• 1911: Pacini measured the ionisation level in the deep sea of the Genova gulf, finding that there was 20% less
radiation 3 metres below the water compared to on the surface, concluding that the ionizing radiation must come
from the atmosphere rather than the ”terrestrial radioactivity”.

• 1912: Victor Hess performed a series of balloon flights measuring the discharge rate at increasing altitude, discovering
that it increases with altitude: Evidence of ionising extraterrestrial radiation that penetrates the atmosphere, no
correlation with day/night, i.e. Sun: “Galactic” origin?

• 1926: Millikan confirms findings and, favouring photon interpretation over charged particles one (Compton’s view,
instead), named them “cosmic rays”.

• 1932: Anderson discovers the positron in magnetized cloud chambers; positron is produced by cosmic ray interactions
in the atmosphere.

• 1933: Latitude effect, first observed by Clay in 1929: The cosmic ray intensity grows with the geomagnetic latitude.
Bothe and Kolhoerster correctly interpreted this effect as evidence that (the primary) cosmic rays are charged, see
compilation by Compton [16].

• 1934: East-West effect: low-energy CR preferentially arrive from the West than the East, suggesting an excess of
positively charged particles (For a review of these earlier phenomena, see [17]).

• 1936: Nobel Prize in Physics for Hess & Anderson.

• 1936: Anderson & Neddermeyer discover the muon.

• 1938: Auger (and, independently, Rossi) discovers extended air showers (via coincident measurements in ground
arrays) from CR interactions in atmosphere.

• 1947: Powell & Occhialini discover the pion in photographic emulsions.

• 1947: First strange hadron (Kaon) discovered in CR by G. Rochester and C. Butler.

• 1949: First “theory” of cosmic ray origin, by Fermi.

• 1953: Cosmic Ray Conference at Bagnères de Bigorre, marking the divorce entre particle and CRs, see [18].

• 1970: Nobel Prize in Physics to Alfvén for his work on magnetohydrodynamics.
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• 1998: the Super-Kamiokande experiment discovers atmospheric neutrino oscillations.

• 2012: the IceCube experiment discovers a diffuse astrophysical neutrino flux at PeV energies.

FIG. 4: Illustration of the East-West effect at the Super-Kamiokande location, from http://hep.bu.edu/˜superk/ew-effect.html

Exercise: Argue that cosmic rays impinging on the Earth along the magnetic field (fraction of a G) direction travel
unimpeded, while CR arriving along the magnetic equator suffer a deflection. Compute the radius of curvature and
determine the momentum/charge (known as rigidity, measured in GV) below which this radius is smaller than the Earth
radius. Discuss how this depends on the latitude. A charged CR nature clearly predicts that an isotropic flux far away from
Earth would be observed in a “magnetic-latitude” modulated way. The critical rigidity is known as rigidity (or magnetic)
cutoff. For estimates, you can use the following dipole model of the Earth:

Br = − 2B0

(
RE
r

)3

cos θ (1)

Bθ = −B0

(
RE
r

)3

sin θ (2)

|B| = B0

(
RE
r

)3√
1 + 3 cos2 θ (3)

where B0 = 3.12 × 10−5 T=0.321 G, RE is the mean radius of the Earth (approximately 6370 km), r is the ra-
dial distance from the center of the Earth, and θ is the geomagnetic co-latitude measured from the north mag-
netic pole (if λ is the magnetic latitutde, θ = π/2 − λ). For more professional modeling and links with ge-
ographical coordinate systems, you can have a look at https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html Be aware
that the magnetic dipole is tilted (by something like 11◦, but depends on time!) with respect to the rotation axis
of the Earth. For rough calculations you can confound the two, otherwise please use dedicated software like at
http://www.geomag.bgs.ac.uk/data service/models compass/coord calc.html for conversions.

Advanced reading suggestions: The motion of a charged particle in a magnetic dipole-field is today called the Størmer
problem (e.g. https://dynamical-systems.org/stoermer/info.html) in honor of Størmer’s pioneering studies [19]. Stoermer
problem. Since a long time, physicists and mathematicians have been interested in how a charged particle moves in the
magnetic field of the Earth, in the context of the northern lights and cosmic radiation. After decades of searching for an
additional integral besides the energy and the angular momentum, it has been realized that the problem is not integrable.
In an early example of qualitative study of diff. equations, Størmer showed the existence of an inner forbidden region that a
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particle arriving from a large distance away cannot access. Have a look at a modern take on the problem in [20]. Numerical
calculations of magnetic cutoffs remain nonetheless of importance today for many reasons (from computing dose rates of
astronauts to atmospheric neutrino fluxes).

A. Cosmic ray spectra, fluxes, and observational techniques

FIG. 5: Synoptic view of CR fluxes (in a broad sense, i.e. including neutral particle components), compiled by C. Evoli. The
total spectrum (all constituents) is shown, as well as some elemental constitutents, notably the dominant proton flux, the
leading antiparticle components (e+ and p̄), the overall photon flux, its isotropic flux, and the diffuse neutrino flux.

What we typically care about are CR above the Earth atmosphere, to avoid contaminations by secondaries produced in
collisions of CRs with the atmosphere. Instead, this is exactly what was used in the early days to do particle physics with
CRs! Apart from effects due to the geomagnetic field, the CRs appear to be rather isotropic in arrival directions (anisotropies
typically <∼ O(0.1%) level), with an energy spectrum well-distinct from thermal, closely resembling a decreasing broken
power-law (spectral index around 2.7 or so, albeit with a few changes of slopes) above about a few GeV. Their fluxes range
from 1 cm−2s−1@ 1 GeV to 1 m−2day−1@ 100 TeV to 1 km−2century−1@ 1020 eV, the highest energies at which they have
been detected (see Fig. 5 for a synoptic view). This means that a transition from direct (i.e. high-atmosphere, space) to
indirect techniques (from ground) is needed around 100 TeV to cope with the tiny fluxes.

1. Units

• Momentum: p, with p ≡ |p| = mβγ in terms of velocity β and gamma-factor γ = (1− β2)−1/2. Measured in GeV
in natural units, GeV/c otherwise. Used often in theoretical considerations, when working in phase space.

• (Total) Energy E = mγ =
√
m2 + p2 '

√
A2m2

N + p2, measured in GeV (latter approximate relation for nuclei, in
terms of the nucleon mass mN ' (mp +mn)/2 ' 0.939 GeV and mass number A). Useful e.g. if gauging the type
of particle processes CR can be involved in.

• Energy per nucleon, EN = E/A, measured in GeV/nuc: Useful especially in the GeV-TeV energy range, when caring
about spallation processes, since this variable is roughly preserved in these interactions.
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• (Total) Kinetic energy: T = E −AmN , less frequently used, apart from low energies.

• Kinetic energy/nucleon: TN = T/A = EN −mN , as above.

• Rigidity: R = p/q, momentum over charge, measured in GV. Useful if focusing on “magnetic” properties of CRs,
since CR of the same rigidity are deflected the same way (via Lorentz force).

Exercise: Practice to compute the Jacobians relating such quantities, if you want to convert a flux given in some units
into another one, or rely on dedicated software (e.g. the CR DataBase https://lpsc.in2p3.fr/crdb/ does that for you
on actual databases, upon request!)

2. Direct techniques

In principle, ordinary particle physics detectors onboard balloons and satellites can be used to measure the relevant
information on CRs: direction, charge, momentum, energy, velocity via:

• Spectrometers, magnets & trackers: determine Q and p of the particles.

• Calorimeters: measure E of particles & allow for particle discrimination.

• Cherenkov detectors: measure the particle v from width of the Cherenkov cone.

• Transition radiation detectors: measure the mass of particles via its Lorentz factor γ.

• Time of flight: measure the time difference and thus the velocity.

Some peculiar difficulties & differences wrt colliders: weight and size matter! Unusual backgrounds (for example number
e.m. particles � hadrons!), challenges in assuring alignment in space (cannot go out there to measure...), etc. The
most advanced detector of this class for CR currently running is AMS-02, onboard the International Space Station, see
https://ams02.space . For photons, Fermi-LAT is the best example: https://fermi.gsfc.nasa.gov

3. Indirect techniques

What can be measured from the ground are (the effects of) secondary particles (notably γ, e±, µ±, some hadron
like nucleons and pions) produced when the primary CR interacts in the atmosphere, triggering a multiplicative cascade
(known as extensive air shower, EAS), first characterised via coincidence detections over an extended area. Quantities like
the fluorescent light in clear moonless nights allow one to infer the longitudinal development of the showers in dedicated
telescopes, otherwise a “EAS slice” can be inferred by the timing of the signals, the number of particles, and the types of
particles detected (e.g. mostly electrons via scintillators, mostly muons via Cherenkov tanks). This allows one to reconstruct
the incident direction of the primary, its energy and to some extent learn about the nature of the primary. Below, we will
give a brief sketch to some of the principles. Both the Pierre Auger observatory and the Telescope Array for UHECRs are
of this class. Among gamma-ray detectors, Imaging Atmospheric Cherenkov Telescopes like HESS, MAGIC, Veritas (and
the forthcoming CTA) as well as non-pointing gamma detectors like HAWC, Tibet-ASγ and LHAASO belong to this class.

Due to the highly indirect inference method, models of hadronic interactions in EAS development are needed. Simple,
semi-analytical models are possible for purely QED showers, such as the ones triggered by primary γ, impinging on the
atmosphere, generating a pair after crossing a characteristic grammage λ (The grammage is defined as density integrated
along trajectory

∫
d`ρ(`), and measured in g/cm2); each lepton in turn generates a γ via bremssthralung after crossing

about the same λ (Heitler model, see Fig. 6). After crossing a grammage X = nλ, the shower will contain a number of
particles of the order of N(X) = 2n = 2X/λ, each one with average energy 〈E〉 = E0 /2

n. Under the assumption that
there is a (sharp) critical energy Ec below which particles lose energy collisionally (e.g. via ionization) rather than radiating
new particles, the shower reaches a maximum number of particles

Nmax = E0/Ec @Xmax = λ log2(E0/Ec) . (4)

A more elaborated cascade theory developed around 1940 (see [21]) corroborates at least qualitatively these results. Since
λ ≈35 g/cm2 (see PDG, at chapter E-losses in matter) and Ec ≈80 MeV are “atmospheric constants”, once calibrated,
the method can provide an estimate e.g. of primary energy via an estimate of Xmax or the number of particles at a given
depth X. Anyway, nowadays such a pure QED cascade can be simulated in a rather reliable way. Hadronic processes
are more challenging, especially at the highest energies. A simple generalisation of Heitler’s model to the hadronic case
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can be found in [22]. A first approximation is to assume that pions dominate the particles produced in the hadronic
interaction; neutral pions promptly decay into photons (thus triggering secondary e.m. showers), while charged pions
initiate new hadronic cascades, until their energy falls below a characteristic energy Ed, below which they rather decay than
interact. Eventually, when decaying they generate muons, which are very penetrating and useful for diagnostics. For an
isospin-symmetric production, after n steps we expect the energy still in hadronic particles to be Ehad = (2/3)nE0, while
Ee.m. = [1− (2/3)n]E0. The average energy of charged pions at step n in terms of the multiplicity ν± is

〈E±〉 (X) =
E0(

3
2ν±

)n , (5)

while the maximum number of particles is reached when average E drops to Ed:

n±max =
ln (E0/Ed)

ln (3ν±/2)
, (6)

which also leads to the prediction for the number of muons

Nµ = N± = ν
n±max
± ⇒ lnNµ = n±max ln ν± = β ln (E0/Ed) , (7)

where

β =
ln ν±

ln (3ν±/2)
≈ 0.85 . (8)

Also, under the assumption that a nucleus of mass number A and energy E0 acts like A independent nucleons of energy
EN = E0/A, one deduces

NA
µ = A

(
E0/A

Ed

)α
≈ Np

µA
0.15 (9)

and

XA
max = Xp

max − λp lnA (10)

while

Nmax = AEN/Ec = E0/Ec (11)

i.e. the maximum number of particles is independent of the chemical nature of the primary (at fixed energy), but the
maximal depth is smaller for heavier nuclei 2 and the number of muons expected larger.

While this picture is qualitatively ok, more refined predictions are heavily based on simulations and are subject to
uncertainties not easy to quantify. In fact, they rely on extrapolations of “shaky” models of non-perturbative QCD, not
based on first principles! Over the past decade, the calibration of some observables to LHC results has helped, but note
that most LHC results not applicable since focused on the rare, hig-pT results instead of the dominating forward physics of
interest for CRs (more on that in Part IV on Collisions).

Exercise: Consider an isothermal (exponential) model for the (upper) atmosphere,

ρ(h) ' ρ0 exp (−h/h0) h0 ' 6.4 km ρ0h0 ' 1300 g/cm2 (12)

X(`, θ) =

∫ ∞
`

dlρ(h(l, θ)) (13)

h(l, θ) =
√
R2
⊕ + 2lR⊕ cos θ + l2 ≈ l cos θ +

l2

2R⊕
sin2 θ . (14)

• Estimate what is the height in the above model of atmosphere, Eqs. (12)(13),(14) at which the first interaction of a
downgoing energetic photon takes place.

• Based on the Heitler model, how many particles are expected in a 1 TeV (100 GeV) gamma-ray induced shower? In
the above model, what is the typical height of this maximum for a downgoing photon?

2 One can also prove, as intuitively clear, that once considered as a stochastic variable, also the variance of XA
max is smaller.
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FIG. 6: Sketch to illustrate the Heitler model for a shower development.

B. Chemical composition

In short, the CR composition is overall consistent with solar system abundances, see Fig. 7, apart for Li-Be-B and sub-
iron species overabundances (plus deuterium and helium-3, also overabundand; isotopic measurements are however rather
difficult, so we will not discuss that in details). Nuclei such as Li-Be-B are fragile from the thermonuclear point of view:
Due to their small nuclear binding energy, they are easily burned in stellar thermonuclear processes and are only present
in traces in conventional astrophysical environments, such as the ISM. Their sizeable presence among CR nuclear fluxes
is interpreted as the consequence of spallation of heavier nuclei, such as C or O—which are common in the ISM—onto
the ISM gas during their propagation. This is also why such nuclei are also referred to as “secondary” CR species, in the
sense that ISM mimics (in a much more rarefied settings!) the kind of processes that take place in the Earth atmosphere.
Given the known density of the ISM medium of O(1) cm−3, the abundances of these species at the tens of percent of
their progenitors require CR residence times in the Galaxy which are orders of magnitude larger than the ballistic crossing
time, as outlined in the exercise below. This is the oldest (and still perhaps the most convincing) evidence for some sort of
diffusive CR propagation.

FIG. 7: Relative abundances of CR species, compared to Solar System values, normalized to Si = 106. From [23].
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Exercise: Consider two CR species: primaries with number density np and secondaries (initially not produced!) with
number density ns. If the two are coupled by the spallation process p→ s+ . . ., then

dnp
dX

= −np
λp

(15)

dns
dX

= −ns
λs

+
pp→snp
λp

(16)

where X ≡
∫

d`ρ(`) is the grammage, the density integrated along the actual path followed by the particle, measured in
g/cm2; λi = ρISM/(nISMσi) = mISM/σi is the interaction length of the species i in the ISM medium, in terms of the
effective ISM mass mISM ' mp, and total inelastic cross-section σi (appropriately weighted by the medium composition);
it is measured in g/cm2, as X; pp→s is the probability that, in an inelastic interaction of species p, the species s is
produced (the relevant b.r.), and is dimensionless. Note that λi are dependent from laboratory measurements and the ISM
composition, not really from the CR path. For instance, one has σCNO ' 6.7 g/cm2, σLiBeB ' 10 g/cm2, and p ' 0.35
between these two groups. From the measured value ns/np ' 0.25, deduce X, and compare with the predictions for X for
straight lines crossing the Milky Way disk with an angle between 30◦ and 60◦, assuming a density of 1 hydrogen atom/cm3

and a Galactic half-thickness h '100 pc. Based on this, estimate the typical timescales the CRs spent in the gaseous disk.

Part II

Cosmic ray propagation
III. ELEMENTARY CONSIDERATIONS

A. Motion in a constant field

In order to gain an intuitive understanding of the CR movement, let us start with the description of the evolution in a
constant (large scale) field of intensity B0 ≡ |B0|, neglecting (small scale) field fluctuations. The trajectory of a particle
of charge q = Z|e| of mass m moving with velocity v (associated to Lorentz factor γ(v)) obeys the EoM

d(mγv)

dt
= qv ×B0 ⇒ mγ

dv

dt
= qv ×B0 , (17)

since (Exercise: prove it, from γ = (1− vjvj)−1/2)

d(mγv)

dt
= mγ

dv

dt
+mγ3v

d(v · a)

dt
= mγ

dv

dt
, (18)

the last step following from the fact that in a B0 field, the acceleration is always orthogonal to the velocity. This is
equivalent to the fact that γ is constant, which we can see also from

mγ
d(v · v)

dt
= 2mγv · dv

dt
= 2v · (qv ×B0) = 0 . (19)

So, both v and p = mγv are constant. The EoM also imply that the velocity component parallel to B0 is constant. If we
choose the z direction aligned with B0, this means vz =const. and pz = mγvz =const. If we denote with µ (the cosine
of the angle (dubbed pitch angle) formed by the particle momentum p with the magnetic field direction, this means that

µ = pz/p is also constant. Hence, the momentum component in the x − y plane, p⊥ ≡
√
p2
x + p2

y =
√

1− µ2p is also

constant. In the x− y plane, the particle gyrates with a radius given by equating the acceleration in the x− y plane to the
centripetal acceleration

dv⊥
dt

=
q

mγ
v⊥B0 and

dv⊥
dt

=
v2
⊥
r
⇒ r =

mγ v⊥
q B0

. (20)

With respects to the non-relativistic Larmor radius or gyroradius rg, angular gyrofrequency or cyclotron frequency ωg, and
gyrofrequency νg defined as

rg ≡
v⊥
ωg

, ωg ≡
q B0

m
, νg =

ωg
2π
≡ q B0

2πm
= 2.8 HzZ

(me

m

)(B0

µG

)
, (21)
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the relativistic generalizations are thus

rL = γrg =
√

1− µ2
R
B0
' 10−6

√
1− µ2

R
GV

µG

B0
pc , (22)

where we introduced the rigidity R, or momentum over charge (measured typically in GV), and

Ω =
ωg
γ

=
q B0

E
' 10−2 Z

B0

µG

GeV

E
rad/s . (23)

Note that the timescales or equivalently spatial scales of this movement are very small for Galactic astrophysics standards. . .

Exercise
. . . up to which rigidity? Compute the energy at which a proton and a iron nucleus gyroradius exceeds the kpc scale, if

B0 = 3µG. If I told you that the skymap of CRs at E ' 1019 eV looks roughly isotropic, what would you infer about the
source locations?

The gyrating motion means that (with a suitable choice of initial time)

vx = v⊥ cos(Ω t) , vy = v⊥ sin(Ω t) , vz = vµ = const. (24)

and equivalenty

x = xg + rL sin(Ω t) , y = yg − rL cos(Ω t) , z = zg + vz t = zg + v µ t , (25)

with the point {xg, yg, z(t)}, around which the particle rotates, which is called guiding center.

B. Heuristic derivation of the diffusive propagation

Let us now add an ensemble of small-scale, stochastic perturbations to the B-field, orthogonal to its regular value, i.e.
|δB| � |B0| and δB ⊥ B0. For clarity and simplicity, the perturbation has been chosen so that pz—or better µ = pz/p—is
affected by the perturbation since the new term yields the leading non-vanishing force, while the x − y trajectory is left
unchanged. Also, assume the magnetostatic limit for the field perturbation, which should capture the dominant effect in
the ultrarelativistic limit for the CR (under which one also has E ' p). Under these conditions, for a single plane wave
perturbation of wavenumber k and phase ψ, δB = {cos(−kz + ψ), sin(−kz + ψ), 0} one gets

dµ

dt
=
q
√

1− µ2 |δB|
E

[cos(Ω t) cos(−kz + ψ)− sin(Ω t) sin(−kz + ψ)] = C cos [w t+ ψ] , (26)

where at the second step we defined the quantities C ≡ q
√

1− µ2 |δB|/E and w ≡ (Ω − k vµ). Below, we assume a
random phase approximation for the perturbations; ensemble-averaging over phase ψ:〈

dµ

dt

〉
ψ

∝
∫ 2π

0

dψ cos(A+ ψ) = 0 . (27)

If we compute however the variance after some finite interval of time

∆µ2(t) = C2

∫ t

0

dt′
∫ t

0

dt′′ cos [wt′ + ψ] cos [t′′ + ψ] . (28)

We can express the integrand as a sum of cosine of the sum and the difference of the arguments, i.e. use

cos(A) cos(B) =
cos(A−B) + cos(A+B)

2
, (29)

the piece depending on the sum ensemble-averages to zero; but the one depending on the difference survives. As a
consequence, one can prove that in the limit ∆t� Ω−1

d
〈
∆µ2

〉
dt

→ πC2δ(w) = π (1− µ2)Ω
|δB|2

B2
0

kresδ (k − kres) , kres ≡
Ω

vµ
. (30)
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FIG. 8: Example of the perturbed B-field, with static perturbation orthogonal to the background.

(remember that πδ(w) = limε→0
sin(w/ε)

w )
We see that on average µ remains constant, but its variance linearly grows with time: This is the typical behaviour of a

diffusive process, see Eq. (A7). We also deduce that the diffusion process is (quasi)resonant [there are corrections to that
at least due to the fact that 1/(∆tΩ) is not zero!], with the momentum direction along the regular field only changing if
the CR finds a fluctuation whose wavelength matches the gyroradius of the CR in the field, modulo a geometric projection.
In Fig. 9 we provide a cartoon interpretation of this effect: a CR “surfs” along field lines whose fluctuations have very
long wavelengths, “ignores” fluctuations of the field at too small scales compared with its Larmor radius, but undergoes
a significant deflection with respect to its unperturbed trajectory if the perturbation matches rL. It is straightforward

k-1>> rL

k-1<< rL

k-1~ rL

FIG. 9: Sketch of the resonant CR diffusion mechanism. The direction of the CR is significantly affected when the Larmor
radius marches the wavelength of the perturbation (bottom panel); otherwise the CR just ’surfs’ the wave if its Larmor radius
is very small (top panel) or “ignores the perturbation”, if its Larmor radius is very large (middle panel).

to generalize the previous derivation to an ensemble of perturbations with different wavelengths. From the analogy with
the random-motion (see Appendix A and in particular Eq. (A7) for a reminder), it makes sense to introduce the diffusion
coefficient of the cosine of the pitch angle, Dµµ, according to

Dµµ(k) = (1− µ2)νθθ ' (1− µ2)Ω
1

B2
0

∫
dxeikxδB2(x) . (31)

which essentially means that the typical frequency νθθ (or inverse timescale τ−1
θθ ) over which the pitch angle (as opposed

to its cosine) of CRs whose resonant wavenumber is kres changes by order one is given by the intuitive formula

νθθ(kres) ∼ Ω

(
δB

B0

)2

(kres) . (32)

We will not need precise numerical factors, also because this simplified approach cannot account for quantitative subtleties
of the CR propagation problem.
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For a relatively broad distribution of magnetic field fluctuation power, we can thus expect CRs to lose complete memory
of their initial velocity with respect to the regular magnetic field over a few gyroperiods, which is a very short timescale if
compared to astrophysical times, see Eq. (23). It can also be readily checked that this timescale is significantly shorter than
the collisional timescale for a typical interstellar plasma with order of magnitude number density of O(1) cm−3. Despite the
simplifications and unavoidable limitations of our treatment above, it correctly captures two features of the CR propagation
phenomenon in an astrophysical medium such as the Galactic ISM:

• The CR movement is essentially a diffusive process.

• It is a collisionless (rather than a collisional) diffusion. Namely, CR do not scatter on other particles, but on
inhomogeneities of the magnetic field.

A few words on the properties of the magnetic field fluctuations, which in general one can write in terms of Fourier
transform,

δBj(x, t) =

∫ ∞
−∞

d3kδB̃j(k, t)e
−ık·x

with the real condition for the B-field requiring

δB̃∗j (k) = δB̃j(−k)

Under the assumption of homogeneity and stationarity, the two point function

ξij = 〈δBi(x, t)δBj (x′, t)〉

only depends on position difference or time differences, i.e. ξij = ξij(|x− x′|, t− t′) thus implying〈
δB̃i(k, t)δB̃

∗
j

(
k′, t′

)〉
= δ(3)

(
k − k′

)
ξ̃ij (k, t− t′) ,

where

ξ̃ij (k, t− t′) = (2π)−3

∫ ∞
−∞

d3r ξij (a, t− t′) eık·a .

Note that in the magnetostatic approximation, the above quantities are time-independent.
In the rather idealised case of 3D isotropic turbulence, the magnetostatic correlation tensor in absence of helicity takes

the form

ξ̃iso
ij (k) = g(k)

(
δij −

kikj
k2

)
with g(k) related to the energy density in the fluctuations (and the spectral density E(k)) by the relations

δB2

8π
≡ 〈δB(x)〉

8π
=

∫
dk k2g(k) ≡

∫
dk E(k) . (33)

All indications are for a typical magnetic turbulence which is not isotropic (not surprisingly, since the background magnetic
field singles out a preferred direction), so that more complex modeling involves e.g. some slab turbulence (i.e. no turbulence
along z, turbulence along x−y only dependent on z). What is more generic is that the spectral density E(k) has a power-law
dependence (g(k) ∝ k−q, or E ∝ k−α , with α = q − 2) in the so-called inertial regime between some outer scale (low
k) characteristic of injection and some lower scale (large k) where dissipative phenomena kick-in. Turbulence (magnetic
turbulence even more) is not a closed field of research. It was defined by Feynman as the most important unsolved problem
of classical physics. We cannot do justice to this topic, but you should be at least aware of some nomenclature and facts: For
a turbulence associated to E ∝ k−α, we have δB2 ∝ k1−α and Dµµ ∝ Ω2−α ∝ Rα−2: The simplest model of turbulence
(inspired by hydrodynamical considerations!) due to Kolmogorov is associated to α = 5/3 and is thus associated to a
rigidity-dependence of the pitch-angle diffusion coefficient Dµµ ∝ R−1/3. Another model of turbulence, due to Kraichnan,

has α = 3/2 and thus predicts Dµµ ∝ R−1/2.
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IV. CR PROPAGATION IN PHASE SPACE

The key quantity in terms of which we want to describe CR theoretically is the (single-particle) phase space density,
f = f(t,x,p), defined so that the number dNα of particles of species α at time t in a given phase-space volume element
dΠ ≡ d3xd3p is

fα =
dNα
dΠ

. (34)

Note that f is a relativistic invariant, since both the number of particles and the phase-space element (but not d3x and
d3p separately!) are relativistic invariants (see e.g. [24]). Which equation does f obey to? It is sometimes said that f
obeys the “Liouville equation” (or its relativistic generalisation),[

∂

∂ t
+ ẋ · ∇x + ṗ · ∇p

]
f = 0 , (35)

but this is: a) A misnomer, in the sense that it is not the Liouville equation as typically defined in analytical mechan-
ics, although it has a similar structure; b) strictly speaking false, in the sense that Eq. (35) is only true when we can
neglect two-body (or more in general 3-body,. . . N-body) interactions, such as (possibly short-range) collisions or more
in general microscopic processes of the kind you have learned to describe in particle and nuclear physics (e.g. decays,
pair-productions,. . . ).

A form of eq. (35) is used in fact to describe collisionless aspects of CR acceleration and transport, but must be
supplemented by a non-vanishing right-hand-side (RHS), often denoted as C[fα] and dubbed Boltzmann or collisional
operator, in order to account for collisional aspects important to describe particle generation/absorption, secondary particle
production, etc. We will first concentrate on the collisionless transport, before returning to the collisional aspects in Parts
IV and V of the lectures. If you are curious on how Eq. (35) follows from first principles, have a look at Appendix B. The
species index α will only be made explicit when ambiguity can arise.

Since CRs are empirically close to isotropic (and we will justify why), it makes sense to introduce appropriate angular
averages. It is useful to re-write the element of momentum phase space in spherical coordinates

d3p = p2dpdΩ (36)

and define

φ(t,x, p) ≡ 1

4π

∫
dΩf(t,x,p) (37)

and

Φ(t,x, p) ≡ 1

4π

∫
dΩ p̂ f(t,x,p) , (38)

where p̂ ≡ p/p. If we also decompose the space volume element in the length element parallel to the direction of motion
(or any other reference axis) and the surface element orthogonal to it:

d3x = βdtdA⊥ , (39)

starting from f , one can define some quantities closer to observational ones:

• The spectral intensity

F (t,x, E,Ω) =
dN

dtdA⊥dEdΩ
=

fd3xd3p

dtdA⊥dEdΩ
= βp2 dp

dE
f = p2f (40)

where we used dp/dE = E/p = 1/β with p2 and f expressed in terms of the new variables of interest.

• The spectral density

n(t,x, E) =
1

β

∫
dΩF =

4πp2

β
φ (41)

with p2 and f expressed in terms of the new variables of interest, notably E instead of p.
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A. Diffusion in the phase space description

Let us assume CRs of charge q propagating in an externally assigned, static magnetic field B, however complicated; we
also assume vanishing macroscopic electric field. The CRs obey hamiltonian dynamics, and their phase space distribution
f obeys Eq. (35), which we specify into (note that we use the relativistic version of the Lorentz force!)

df

dt
=
∂f

∂t
+ v · ∇xf + q

(p×B)

E
· ∇pf = 0 . (42)

The truth is that we have no precise idea of what the field configuration B(x) is. At best, we have some idea of the “coarse
grained” or (ensemble) average field configuration 〈B〉, often taken as a constant (along the z direction, implicitly in the
following), so that the field can be decomposed into B = 〈B〉+ δB, with the δB only known (or simply parameterised) in
a statistical sense. If we ensemble-average Eq. (42), we get:

d〈f〉
dt

=
∂〈f〉
∂t

+ v · ∇x〈f〉+ q
(p× 〈B〉)

E
· ∇p〈f〉 = −q

〈
(p× δB)

E
· ∇pδf

〉
6= 0 , (43)

i.e. the ensemble-averaged phase space density is not conserved! This is not particularly surprising, in the sense that the
ensemble-average is associated to a loss of information (and ultimately to an entropy increase). Also note that, formally,
the RHS of Eq. (43) looks like a collisional operator for 〈f〉. Indeed, the simplest description of this term relies on
assuming [25, 26]

−q
〈

(p× δB)

E
· ∇pδf

〉
' −νθθ (〈f〉 − φ) , (44)

which is a form of the BGK Ansatz [27], amounting to say that the fluctuations in the field are responsible for isotropisation
of 〈f〉 (i.e. it tends to φ) with a characteristic frequency νθθ. In general, we expect that 〈f〉 is dominated but not fully
described by its isotropic part; a better approximation consists in adding a dipolar term, i.e. to write 〈f〉 ' 〈φ〉+ 3p̂ · 〈Φ〉,
with ensemble averages defined analogously to Eqs (37, 38). It is also useful to define the current j = β〈Φ〉. Keeping in
mind that v = βp̂, the transport equation with the approximation of Eq. (44) reduces then to

∂t〈φ〉+ β∇x · 〈Φ〉 = 0 ,⇐⇒ ∂t〈φ〉+∇x · j = 0 (45)

∂t〈Φ〉+
β

3
∇x〈φ〉+ Ω× 〈Φ〉 ' −νθθ〈Φ〉 ⇐⇒ ∂tj +

β2

3
∇x〈φ〉+ Ω× j ' −νθθj . (46)

where we introduced Ω ≡ q〈B〉/E. As long as the relaxation time ν−1
θθ is much shorter than the astrophysical flux evolution

time, in the second equation we can neglect ∂tj with respect to the other terms, and the equation reduces to ji ' −Kij∂jφ
(Fick’s law), yielding a diffusion equation for 〈φ〉

∂〈φ〉
∂t

=
∂

∂xi

(
Kij

∂

∂xj
〈φ〉
)
, (47)

where the spatial diffusion tensor is

Kij =
β2

3νθθ

ν2
θθδij + νθθΩkεijk + ΩiΩj

ν2
θθ + Ω2

, (48)

with eigenvalues β2/3νθθ and β2/3(νθθ ± iΩ) corresponding to diffusion parallel and perpendicular to the magnetic field,
respectively. Note that the spatial diffusion coefficient is inversely proportional to the pitch angle scattering diffusion
coefficient, which is physically reasonable since the easier it is to change momentum direction, the harder it is to propagate
away from the original direction in physical space. Also, since in the limit of weak turbulence one has νθθ � |Ω|, this result
confirms that the predominant diffusion is parallel to the background field.

B. Alternative approach: Quasi-linear theory (QLT)

Let us subtract Eq. (43) from Eq. (42). We get

dδf

dt
=
∂δf

∂t
+ v · ∇xδf + (p×Ω) · ∇pδf ' −q

(p× δB)

E
· ∇p〈f〉 , (49)
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where we assumed (ok since difference is higher order in perturbation theory!)

q
(p× δB)

E
· ∇pδf ' q

〈
(p× δB)

E
· ∇pδf

〉
. (50)

Eq. (49), being a first order PDE for δf , can be integrated with the method of characteristics, the formal solution being:

δf = δf(t0,x,p)− q
∫ t

t0

dt′
(p× δB)

E
· ∇p〈f〉

∣∣∣∣
char(t′)

, (51)

where the integrand has to be evaluated along characteristic curves of eq. (49), which are the solutions of the EOM with
B replaced by the regular field 〈B〉: In practice, along helices along the axis z, in our convention. If we insert Eq. (51) into
Eq. (43), we get

d〈f〉
dt
'
∫ t

t0

dt′
〈
q2 (p× δB)

E
· ∇p

(
(p× δB)

E
· ∇p〈f〉

)〉
char(t′)

, (52)

where we dropped the term ∝ δf0 (we expect that this averages to zero over the ensemble, assuming the fluctuations are
uncorrelated with them). We see that the RHS looks like a diffusion term (pay attention to the two momentum derivatives)
and that it depends on a quadratic ensemble average of turbulent magnetic field, integrated along the unperturbed trajectory.
It can actually be shown that under some additional hypotheses, namely

• Smallness of perturbations, |δB| � |〈B〉|;

• Gyrotropy: 〈f〉 does not depend on the azimuthal angle around the guiding center, so that 〈f〉 = 〈f〉(t,x, p, µ), with
µ the cosine of the pitch angle (i.e. 〈f〉 is intended as gyrophase-averaged, so to speak);

• Adiabaticity: 〈f〉 only varies on time-scales much larger than the correlation time of the turbulent magnetic field, τc,
i.e. 〈f〉/∂t〈f〉 � τc;

• Finite correlation times: the turbulent magnetic field remain correlated over timescales much larger than the Larmor
period, i.e. τc � Ω−1;

• Homogeneous and stationary turbulence;

then Eq. (52) reduces to the Fokker-Planck form:

∂〈f〉
∂t

+ v µ
∂〈f〉
∂z

=
∂

∂µ

(
Dµµ

∂〈f〉
∂µ

)
, (53)

describing diffusion in pitch-angle; due to the magnetostatic approximation Dµp = Dpµ = Dpp = 0. Loosely speaking, in
the simplest situation described we expect Dµµ to be given by eq. (31) above, i.e. it is proportional to the dimensionless
power-spectrum of magnetic inhomogeneities. In practice, diffusion coefficients (a form of transport coefficients) are
computed e.g. numerically in a given turbulence realisation via the Taylor-Green-Kubo relation, like

Dµµ =

∫ ∞
0

dt〈µ̇(0)µ̇(t)〉 . (54)

By definying the zeroth and first moment of 〈f〉 with respect to the pitch angle,

f0(t, z) =
1

2

∫ +1

−1

dµ〈f〉 , (55)

f1(t, z) =
v

2

∫ +1

−1

dµµ〈f〉 , (56)

and the quantities

K0 ≡
v

4

∫ +1

−1

dµ
1− µ2

Dµµ
(1 + µ) , K ≡ v2

8

∫ +1

−1

dµ
(1− µ2)2

Dµµ
, (57)
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one can prove that

∂f0

∂t
' ∂

∂z

[
K
∂f0

∂z

]
, (58)

confirming that the spatial (actually, parallel) diffusion coefficient K ∝ D−1
µµ , in addition to

f1

f0
∼ −K

f0
∇f0 ∼ O

(
K

cH

)
� 1 (59)

which is always smaller than 1 as long one the diffusive approximation is fulfilled (see exercise below). This ratio can be
used as an estimator of the anisotropy level expected in the CR flux, in terms of the diffusive halo thickness H; this is why
we reinstated c in the last step.

Exercise (more advanced, suggested for when you have time): Try to prove Eq.s (58),(59), via appropriate
manipulations of the Fokker-Planck equation. A good reference to help you through is Sec. 4.2 in [7].

Finally, it is worth noting that the QLT approach can be extended to tackle higher-order correlators of phase-space
densities, such as 〈fAfB〉. This has been successfully used to gain insight into the anisotropy pattern of CRs, see [28].
Also, it it tacitly assumed that in comparing theoretical ensemble expectations on 〈f〉 with data (providing us the local
value of f) is meaningful, in the sense that the difference between the two is anyway smaller than experimental errors.
However, in recent years several works have revised this approach, trying to assess this difference quantitatively, often with
monte carlo techniques. This applies to magnetic field realisations, but also to other aspects only known probabilistically
at best, such as the distribution of sources, spectra, etc. For some exemples, see [29–31].

C. Solving the diffusion problem

Eq. (47), supplemented by a source term Q at the RHS, is the paradigmatic case of a diffusion equation. In our case,
diffusion is expected to be strongly anisotropic as long as δB � B0. However this expectation holds over the scales where
the large-scale field B0 does not change. If this happens over scales much smaller than the distance from the sources (say,
of O(100) pc vs. several kpc) the diffusive propagation is often modelled as an effective isotropic diffusion coefficient,
Kij → Kδij . A good fit to actual data yields is obtained for K = 0.3(R/10GV)0.5kpc2/Myr [32]. We will not indulge in
techniques to solve similar equations, which deserve a course of its own. Let us simply recall here that, if K is homogeneous
and stationary, only dependent upon energy,

∂φ

∂t
−K∇2φ = Q(p, t,x) , (60)

can be solved with the Green’s function technique, i.e. if we know Gp(t, t
′,x,x′) such that

∂Gp
∂t
−K(p)∇2Gp = δ(x− x′)δ(t− t′) , (61)

and satisfying appropriate boundary conditions, then

φ(p, t,x) =

∫
d3x′dt′Gp(t, t

′,x,x)Q(p, t′,x′) . (62)

In the simplest case of free escape boundary (i.e. vanishing at infinity), we can take the Fourier transform of Eq. (61)
and obtain

Gp =

∫
dnkdω

(2π)4

exp [ik · (x− x′)− iω(t− t′)]
K(p)k2 − iω

=
1

(4πK (t− t′))n/2
exp

[
− (x− x′)2

4K (t− t′)

]
Θ(t− t′) , (63)

n being the spatial dimensionality, and the latter step follows from taking the residue in the ω integral. Hence, we see that
the mean square displacement from the initial position is 〈r2〉 ≡ 〈

∑n
i (xi − x′i)2〉 = 2nK t. For actual problems obeying

e.g. different geometric boundary conditions, a generalization of the above procedure applies (see e.g. [2]).
Exercise A CR source is at a distance d. For d ' H ' 3kpc (a typical Galactic distance), assuming the value of the

average Galactic diffusion coefficient is K = 0.3(R/10GV)0.5kpc2/Myr, a) compute the time it takes for the CR of rigidity
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10 GV to reach us; compare it with the estimated age of a few famous supernova remnants that you can search on the
web: Are you surprised? b) Reverse the previous exercise: For a few SNRs that you found by browsing some catalogue
online, take their distance and age, and estimate the minimum energy of CRs that could have reached us. c) The rigidity
at which the diffusion approximation breaks down, since the diffusion speed nominally exceeds the speed of light.

Suggestion to go beyond: You can easily convince yourself that the previous diffusion equation leads to superluminal
propagation at sufficiently small timescales (compute d

√
〈r2〉/dt, you’ll find superluminal motion for t < tc: Determine tc

in terms of K). This has to do with the approximation of dropping the term ∂tj in Eq.(46): It takes some time for the
distribution to relax to its isotropic average, a timescale controlled by νθθ, as we know. This problem can be amended by
replacing

∂φ

∂t
→ ∂φ

∂t
+

1

νθθ

∂2φ

∂t2
. (64)

The corresponding transport equation is known as telegrapher’s equation, due to its similarity with the differential equation
describing the propagation of electromagnetic waves in electrical transmission lines with losses due to finite resistivity. Some
articles on the subject are refs. [33, 34].

D. Basics of Galactic propagation

In general, the spatial and temporal scales associated to the acceleration of CRs are much smaller than the propagation
scales from the sources to us. As such, one typically factorises the problem of CRs into: 1. Acceleration. 2. Galactic
propagation. 3. Propagation within the Solar system. We shall omit dealing with 3. in these lectures; it suffices to say
that not only the Sun has a magnetic field, but this is dynamical, with a magnetized wind propagating outwards from the
Sun, and whose pattern is subject to a quasi-periodic cycle of 11 yrs. Under some simplifying assumption, its main effect
(within the so-called Force-field approximation, introduced by Gleeson & Axford in1968 [35]) is to slow-down the CRs,
corrisponding to a momentum shift of the momentum at the Earth, p⊕, with respect to the momentum outside the Solar
System, p, p⊕ = p−ZeΦ�. eΦ� <∼ 1 GeV is computable based on the radial velocity of the solar wind, and of the diffusion
coefficients within the Solar System. It is often estimated via proxies (search for “neutron monitors”). The flux at the
top of the atmosphere (TOA)—now expressed as spectral intensity, FTOA(E), is suppressed with respect to the interstellar
intensity FIS(E) by

FTOA(E) =
E2 −m2

(E + |Z|eΦ)2 −m2
FIS(E + |Z|eΦ) , (65)

where (Z e) is the charge and m the mass of the CR species.
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disc 

Halo 
Particle escape 

All sources are assumed to be in the disc and are assumed to be SNRs  

which explode in the Galaxy at a rate R  per unit time FIG. 10: Propagation setup. The thin disk of sources and interstellar gas of half-thickness h is contained within a cylindrical
cosmic ray halo of half-height H and radius Rd (with a hierarchy of scales Rg > H � h) within which cosmic rays diffuse.

Concerning Galactic CR propagation, it is often considered to be limited to a cylindrical volume of radius Rd and half-
height H, where the Galactic thin disk of matter of half-thickness h is contained in, see Fig. 10. Given the rough hierarchy
h : H : Rd ∼ 0.1 : 5 : 20 between the three scales, the gaseous disk of the Galaxy containing the most plausible sources
is often considered infinitesimal, and sometimes a further simplification to an effective 1-D models, allowing one to obtain
quite transparent analytical solutions. In the 1D case, the Galaxy is considered as a (radially) “infinite” gas thin disk of
uniform surface density, sandwiched in a thicker diffusive halo, only the vertical coordinate is relevant. This allows one to
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write (omitting 〈〉 in what follows):

∂ ϕ

∂t
− ∂

∂z

(
K
∂ ϕ

∂z

)
= Q . (66)

Exercise:“Leaky box” from slab model
Let us assume that sources are confined to an infinitesimal disk. The steady state transport equation simplifies into

− ∂

∂z

(
K
∂φ

∂z

)
= 2 q0(p)hδ(z) . (67)

Find the CR flux φ(z, p). Compare it with the solution of a “leaky box” type of model, where injection at rate Q happens
in a homogeneous and isotropic medium from which cosmic rays take a (momentum dependent) time τesc(p) to escape,
leading to the steady state solution φ(p) = Q(p)τesc(p).

Part III

Cosmic ray acceleration
V. TOWARDS A THEORY OF COSMIC RAY ACCELERATION

A. Moving scattering centers

A major limitation of the previous derivations is that the magnetic field fluctuations are considered static in the Lab
(Galactic) frame. You know that a gas supports longitudinal “sound” waves (with frequencies well below the gas collisional
frequency) which, in the ideal gas limit, are dissipationless. Continuity eq. (mass conservation) Euler eq. (momentum eq.)
and the equation of state (EOS) which write respectively as:

∂ρ

∂t
+∇ · (ρv) = 0 , (68)(
∂

∂t
+ v · ∇

)
v = −∇P

ρ
, (69)

P = P (ρ, . . .) , (70)

admit a simple a homogeneous and isotropic solution ρ̄ = const., P̄ = 0, v̄ = 0, for instance. If we perturb it to
ρ(t,x) = ρ̄(t) + δρ(t,x), P (t,x) = δP , v = δv, one can derive e.g. in terms of δρ the well-known wave equation(

∂2

∂t2
− c2s∇2

)
δρ = 0 , (71)

where the speed of sound cs depends on the EOS via c2s ≡ δP/δρ. Its solution is oscillatory with constant amplitude, i.e.
in Fourier space one has

δρ(t,x) =

∫
d3k

(2π)3/2
δρ̃k(t)eik·x , (72)

where

δρ̃k = Ake
iωkt +Bke

−iωkt , (73)

with dispersion relation

ω2
k = c2s k

2 . (74)

Similarly, the ISM—as any other magnetized plasma—can support a number of collective excitation modes, with fre-
quencies well below the cyclotron ones. To see this, the simplest way is to write the ideal MHD equations (i.e. we use
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Maxwell equations in a condition of infinite conductivity and vanishing dissipation)

∂ρ

∂t
+∇ · (ρv) = 0 , (75)

ρ

(
∂

∂t
+ v · ∇

)
v = −∇P − B× (∇×B)

4π
, (76)

P = P (ρ, . . .). (77)

∂B

∂t
= ∇× (V ×B) (78)

(with ∇ ·B = 0, of course), obtained adding the electromagnetic force term j×B at the RHS of the Euler equation. If, as
before, we search perturbed solutions around the homogeneous case in a cold medium (but this time, not isotropic due to
a background field!) ρ̄ = const., P̄ = 0, v̄ = 0, B = B0, one can reduce oneself to a second-order differential equation for
δv. By Fourier-transforming it, we obtain a system of equations equivalent to the matrix form A(ω,k) · δvk=0, with A a
3x3 matrix. It admits non-trivial solutions when the determinant of A vanishes, which determines the dispersion relations
for the different modes, generalising Eq. (74). The most peculiar of the three types of waves found are the Alfvén waves,
which are transversal waves (with the ion motion as well as the magnetic field perturbation perpendicular to the velocity)
propagating along the magnetic field direction 3, and the restoring force is provided purely by magnetic tension, with field
lines behaving just like plucked strings. Their characteristics speed is

vA =
B0√
4πρ̄

, vA ' 2.2
km

s

B0

µG

√
1 cm−3

n̄
. (79)

In the ideal MHD limit, they are dissipationless. Physically, their long-lived nature is also understandable since—unlike
sound waves—they are not associated to a gas compression, which cannot thus radiate, channelling away its energy. The
other modes in the above example would be magnetosonic modes, compressional waves subject to both pressure and
magnetic tension (fast or slow according if the two forces act together or in opposition), more similar to sound waves. In
general, many types of modes can be excited in the medium, whose properties (such as dispersion relation, propagating
nature, etc.) depend on the properties of the medium like temperature, composition, etc. The crucial information to
retain, however, is that perturbations to the magnetostatic picture we used before are dynamical, i.e. they propagate with
finite speed in the Lab (Galaxy) frame. This can happen in an incoherent way or also along organised, coherent fronts
such as along a shock front. This modifies the transport equation previously derived, and has also some qualitatively new
consequences that we will explore in the following.

B. The CR transport equation: moving scattering centers

(This is a sketch; for more, you may want to look at specialised literature, such as [6, 7] and some monographs like [2–4].)
Let us consider the case where scattering centers move with some velocity (in general space-dependent) u. For now, take
this velocity as coherent, e.g. of the velocity of a SNR shock front. The goal is, starting from our Vlasov equation (42),
to write an equation for the distribution function of the same space and time variable as before (this dependence will thus
be omitted in the arguments), but of momentum variable p̄ = p−E u(x), i.e. momentum measured in the plasma frame
(or scatterers’ frame; in the example above, the shock frame). Correspondingly, v̄ = v− u. Our function of interest, f̄ , is

f̄(t,x, p̄) = f(t,x, p̄ + Eu) . (80)

Let us assume for now that dp̄
dt · ∇p̄ = dp

dt · ∇p, i.e. that the force term is the same as in the original case. This not exact
(although it would be so in the limit of constant energy and non-relativistic relative motion, i.e. |u| � 1) for a series of
reasons, but we will discuss below the main correction to our conclusions that would follow from this term. Given that,
Eq. (42) rewrites in terms of f̄ as

∂f̄

∂t
+ (v̄ + u) · ∇xf̄ + (v̄ + u)i

∂f

∂p̄j

∂p̄j
∂xi

+
dp̄

dt
· ∇p̄f̄ = 0 (81)

3 The perturbation considered in previous sections had this property!
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from where, considering that ∂p̄j/∂xi = −E∂uj/∂xi, and neglecting terms of order u2 (so that ∂f/∂p̄j = ∂f̄/∂p̄j)

∂f̄

∂t
+ (v̄ + u) · ∇xf̄ − p̄i

∂uj
∂xi

∂f̄

∂p̄j
+

dp̄

dt
· ∇p̄f̄ = 0 . (82)

From now on, one can proceed as in the static scattering centers case, writing a monopole plus dipole approximation, and
taking an ensemble average,

〈f̄〉 ' 〈φ̄〉+ 3〈Φ̄〉 · ˆ̄p . (83)

As a result, one gets a system of two equations by integrating Eq. (82) (with the replacement Eq.(83)) over Ωp̄ and the
product of Eq. (82) (with the replacement Eq.(83)) with p̄i over Ωp̄; then, by the same approximation done previously

∂〈φ̄〉
∂t
− ∂

∂xi

(
Kij

∂〈φ̄〉
∂xj

)
+ ui

∂〈φ̄〉
∂xi
−1

3

∂ui
∂xi

(
p̄
∂〈φ̄〉
∂p̄

)
= 0 , (84)

where we defined the spatial diffusion coefficient as in Eq. (48). From now on, let us drop the bar over the quantities,
to avoid a too cumbersome notation. But don’t forget that the functions of interest have their momenta measured with
respect to the scattering centers!

This is not the end of the story, however (remember that we have neglected modifications to the force term, in particular!):
If the movement of the scattering centers is not coherent (e.g. a distribution of waves with different directions) there is a
residual velocity (rather, velocity distribution) of the waves even in the plasma frame. These moving magnetic perturbations
are then associated to electric fields; for an ensemble of “stochastic” waves, we expect a diffusion term in momentum space.
The more complete equation becomes

∂〈φ〉
∂t
− ∂

∂xi

(
Kij

∂〈φ〉
∂xj

)
+ ui

∂〈φ〉
∂xi
−1

3

∂ui
∂xi

(
p
∂〈φ〉
∂p

)
=

1

p2

∂

∂p

(
p2Kpp

∂〈φ〉
∂p

)
, (85)

where, schematically, one can show that

Kpp '
νθθE

2〈δv2〉
3

, (86)

with 〈δv2〉 being the variance of the velocity distribution of the scattering centers.
Compared to the previously derived Eq. (47), we see three new terms, identified by color-code:

• convection/advection: It accounts for spatial transport due to large scale movements like Galactic winds. This therm
is usually considered mostly perpendicular to the Galactic plane and antisymmetric with respect to it, u(−z) = −u(z).
For typical values of u = O(10) km s−1 it is relevant at O(1) GeV, but its relevance decreases at higher energies.

• adiabatic energy losses/gains: Diverging flows lead to adiabatic energy losses, while converging flows to energy
gains. While this effect may be important in propagation models with non-uniform galactic winds, it is particularly
crucial as a way to accelerate particles i.e. in our factorized production-propagation scenario, as a way to produce
effectively a source term Q.

• reacceleration: If we adopt for the spatial diffusion coefficient its parallel value, we arrive at the estimate KzzKpp =
p2〈δv2〉/9 where 〈δv2〉 is typically set to the square of the the Alfvèn velocity vA. Acceleration in the ISM via this
term cannot be the main source of CR acceleration because e.g. of the observed energy dependence of secondary-to-
primary ratios (see later). However this term is important in determining the momentum shape of CR fluxes below a
few GeV, and this “turbulent” acceleration may also play an important role for acceleration at the sources. A modern
treatment of the role of this term in the evolution of the CR distribution (essentially, a diffusive broadening of the
energy spectrum) can be found in [36]. An alternative approach to the role of this term is given below, in Sec. VI 2.

In the 1-D case we discussed before, generalising Eq. (66) (but neglecting reacceleation) leads to:

∂ ϕ

∂t
− ∂

∂z

(
K
∂ ϕ

∂z

)
+ u

∂ ϕ

∂z
− 1

3

du

dz
p
∂ ϕ

∂p
= Q . (87)

To go beyond: Generalize the solution found to Eq. (66) for the stationary solution in the case u = ±const. 6= 0 (+|u|
above and −|u| below the plane, respectively). You should find a closed-form for the altered z-profile, and a first order
differential equation replacing the algebraic Eq. (??) to determine φ0(p). Compare the z profiles and the spectra at z = 0



24

for some values of u, keeping the diffusion time and H fixed. If you consider the simplified solution in the limit where
ζ(p) ≡ uH/K � 1, how does the profile look like? Also, plot the ratio φ0/q (solution in the plane to source term) for a
few values of u and the benchmark choice K = 0.3(R/10GV)0.5kpc2/Myr, H = 4 kpc, comparing with the same ratio for
the solution found in Eq. (??): In which momentum range do these ratios differ?

Remember that the inhomogeneous first order differential equation:

y′ + a(x)y = b(x) . (88)

admits the general solution

y(x) = e−A(x)

(∫ x

x0

eA(x′)b(x′)dx′ + y(x0)

)
, (89)

where

A(x) =

∫ x

x0

dx′a(x′) . (90)

VI. HOW TO ACCELERATE CRS?

How to accelerate particles in astrophysics? We need to satisfy several requirements:

• Energetics: we must take energy somewhere! For example:
• Kinetic Energy (translational in SNRs, rotational in pulsars)
• Gravitational Energy (accretion disks)
• Magnetic (solar flares)

• Mechanism for Energy Transfer: in general, we need to envisage how to transfer energy from macroscopic objects
into the (microscopic) acceleration of particles. Ultimately it must be electromagnetic.

• Confinement: need to check that the particle stays in the accelerator for the time needed to accelerate it.

• Lack of (significant) E-losses: accelerating particles is useless for explaining CRs if they lose Energy too quickly.

While we have several candidates to supply the needed energy, and in astrophysics there is no shortage of objects of large
scale, surviving long enough, and with sufficiently rarefied media (first, third and fourth problem), the trickiest problem
is the second one, first addressed by Fermi [37]. We start tackling it in the following, which is really introductory. More
details can be found for instance in [5].

Almost all 4 acceleration mechanisms known are electromagnetic in Nature. Since magnetic field cannot make work on
charged particles, one needs electric fields, either coherently on large (astrophysical) scales, or stochastically on small scales.
Electric fields are typically not generated by separating charges, since being in a plasma, the unbalance would be quickly
compensated/short-circuited. Electric fields are thus due to moving magnetic fields.

A coherent generation of electric fields can happen if a front of magnetic disturbances moves coherently in the plasma
frame (as in the shock acceleration studied in the following). An alternative is provided by violent transients, like magnetic
reconnection: Imagine a situation where the pressure of the magnetic field dominates the total pressure; when regions with
opposite orientation of magnetic field encounter and merge along a surface (sheet), the decrease of the magnetic pressure
due to the dissipation of the magnetic field drives the plasma toward the sheet (dubbed indeed “current sheet”), creating
a local electric field E ∼ vAB over the size L of the reconnection region. Of course, this reconnection involves the finite
conductivity of the medium, so that perfect MHD conditions are broken. It is a mechanism known to be operational in the
sun or in pulsar wind nebulae (PWN).

Another example is the fast rotating magnetic fields in pulsars, acting as a unipolar rotators and which are responsible for
establishing an electric potential ∆V between the pole and the equator, but also between the surface and infinity. The naive
estimate for a pulsar of size R and rotating at angular frequency ω is ∆V ∼ ωΦB ' ωBR2, although the usable potential
turns out to be a factor ωR smaller. This is essentially linked to the fact that there is a region of size RL = c/ω, known
as light cylinder, within which charges are present, co-rotating with the NS (this region is known as pulsar magnetosphere,

4 In principle, some acceleration is associated to weak or strong processes. Think of the byproducts of a strong or weak decay.
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where e.m. forces dominate over gravitational ones in determine the physics), while magnetic lines extending beyond RL
leave to infinity (and particles escape to infinity along these lines). Beyond RL co-rotation would be impossible, exceeding
the speed of light.

The most widely considered acceleration mechanism is however the one associated to shocks. First of all, what is a
shock? A shock wave is a propagating disturbance in a medium that moves faster than the local speed of sound in the
medium. It is a physical realisation of a mathematical discontinuity, i.e. abrupt changes in macroscopic variables, achieved
over microscopic distances. Far from being exotic, shocks arise quite naturally once the non-linear nature of the continuum
equations of fluidodynamics or MHD is taken into account. If the disturbance becomes large enough, then nonlinear terms
become important: The crest of a wave propagates faster than the leading or trailing edge; The sound speed is greater at
the crest, the wave front steepens and a shock may form. Even if the “physics at discontinuities” cannot be understood
but in microscopic terms (e.g. finite conductivity determines its actual size), obviously conservation laws continue to hold.
Assuming planar geometry, and in the frame of the shock, the conservation of fluxes of mass, momentum energy across
the shock write (for stationary conditions ideal fluids)

[ρu] = 0[
ρu2 + Pgas

]
= 0[

1

2
ρu3 +

γPgas u

γ − 1

]
= 0

(91)

where I am using the rather standard notation [O]⇐⇒ O|2 − O|1 and γ denotes here the adiabatic index, equal to
1+(2/# dof) = 5/3 for a monoatomic gas. This is a special case of the Rankine-Hugoniot conditions. The dynamical
eqs. in this type of solutions express conservations across the shock, i.e. links between physical quantities at the two sides.
For an ideal fluid and using u for upstream (i.e. the unshocked medium) and d for the downstream (post-shock):

ρd
ρu

=
vu
vd

=
(γ + 1)M2

(γ − 1)M2 + 2
→ (γ + 1)

(γ − 1)
≈ 4 (92)

where M = vshock/cs is the Mach number. Similarly, the limit conditions for pressure and temperature jump are

Pd
Pu
→ 2γM2

(γ+1)
Td
Tu
→ 2γ(γ−1)M2

(γ+1)2

which allow us to conclude that the condition for entropy increase requires M > 1: Shocks can only form in supersonic
motion. In shocks, there is a large pressure and T jump; also, the kinetic energy contributes to heating the gas. Shock
waves are huge heating machines!

In case e.m. fields are present, similar jump conditions hold in MHD, remembering from elementary courses on electro-
magnetism that the B-field normal to this surface (i.e. parallel to the normal, hence indicated with B‖) and the E-field
parallel to the shock surface (again, indicated with E⊥ since perpendicular to the normal) and are continuous. In MHD for
a planar shock, one gets

[ρu⊥] = 0[
P + ρu2

⊥ +
B2
‖−B

2
⊥

8π

]
= 0[

ρu⊥u‖ +
B⊥B‖

4π

]
= 0[

ρu⊥

(
1
2u

2 + γP
(γ−1)ρ

)
+ u⊥B

2−B⊥(u·B)
4π

]
= 0

[B⊥] = 0[
B⊥u‖ −B‖u⊥

]
= 0

So that, in particular when u‖ = 0, B‖ jumps as density since [B‖/ρ]=0; as a consequence this component of the field gets
compressed by '4 in strong shocks.

1. (First order) Fermi acceleration theory.

We want to study what Eq. (87) implies for φ in presence of a shock front, at z = 0, assuming that CR are sources/injected
only at the shock, i.e. a δ(z) like before. Far from the discontinuity, at steady state, it holds

u
∂ ϕ

∂z
=

∂

∂z

(
K
∂ ϕ

∂z

)
(93)
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FIG. 11: Scheme to describe the planar shock wave, our SNR proxy.

with the values of u and K different at the two sides of the shock. Let us denote with 1 the upstream, unshocked medium
(negative z coordinates), and 2 the downstream (post-shock) positive z coordinates (see sketch in Fig. 11). Upstream we
can balance convection and diffusion and, after imposing boundary conditions, one obtains

φ(z, p) = φ−∞(p) + [φ0(p)− φ−∞(p)] exp

(
−u1 |z|

K1

)
, z < 0 , (94)

which gives an exponentially vanishing profile upstream away from the shock. Downstream (post-shock) the only acceptable
solution is φ = const.

φ(z, p) = φ0(p) , z > 0 . (95)

If we integrate Eq. (66) across the shock, we find:(
K
∂φ

∂z

)
2

−
(
K
∂φ

∂z

)
1

+
1

3
(u2 − u1) p

∂φ0

∂p
= q0(p) =⇒ 0− u1φ0 +

1

3
(u2 − u1) p

∂φ0

∂p
= q0(p) , (96)

from which, setting r ≡ u1/u2 and assuming a monochromatic injection q0 = κu1piδ(p− pi) we deduce (see eq.(89))

φ0(p) =
3κ r

r − 1

(
p

pi

)− 3r
r−1

. (97)

Since r → 4, the spectrum tends to φ0(p) ' p−4, equivalent to p−2 in spectral intensity or spectral density. This is known
as Fermi spectrum. Note that:

• The spectral shape is actually independent of the injected momentum at the shock. A superposition of Fermi spectra
will be a Fermi spectrum.

• The result does not really depend on the diffusion coefficient at the shock (great, since we know so little about that!).

• The spectrum of accelerated particle is a power-law extending formally to infinite momenta: without E-losses, in the
stationary approach theres no limit!

• The slope depends uniquely on the compression factor, is universal for strong shocks and is notably independent of
the diffusion properties.

• The normalization (equivalently, the efficiency of the acceleration, if expressed in terms of the background plasma
density) is a free parameter, depending on the details of the injection in the acceleration zone.

• The scattering centers have been assumed to be at rest in the shock frame. That is not necessarily true.

• A planar geometry was assumed, and implicitly that the shock is “parallel”, i.e. the field responsible for diffusion is
along the shock normal.

• The universal “Fermi spectrum” is obtained for energetic particles at the source (hence should reflect in remote
observations as gamma rays), does not necessarily hold for the CRs escaping in the ISM!
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2. Generalities of stochastic acceleration and (Second order) Fermi mechanism.

One can also analyse the mechanism previously described from a “microscopic” point of view, i.e. looking at the particles
undergoing acceleration. To understand how, let us be more generic, first.

Think of any cyclic process, requiring a time τ per cycle, with escape probability Pesc, repeating for a time T leading to
an average fractional energy gain ξ per cycle. Then, with probability (1−Pesc), a particle with energy En will be accelerated
to En+1 = (1 + ξ)En, which implies that a particle with initial energy E0 will have reached energy En = E0(1 + ξ)n

with probability (1− Pesc)n, where the number of cycles n ' T/τ . This takes into account that reaching higher energies
requires longer times. After a sufficiently long time, the resulting (cumulative) spectrum of non-thermal particles above
energy E = E0(1 + ξ)n can be obtained as the sum of a geometric series with x = (1− Pesc), i.e.

φ(> E) ∝
∞∑
m=n

(1− Pesc)m =
(1− Pesc)n

Pesc
=

(1− Pesc)
ln(E/E0)

ln(1+ξ)

Pesc
=

1

Pesc

(
E

E0

)−α
(98)

where (remember that aln b = bln a, just take the logs!)

α =
ln (1− Pesc)

−1

ln(1 + ξ)
' Pesc

ξ
, (99)

the last equality holding when escape probability and gain are small. Historically, the first process of this type proposed to

FIG. 12: Scheme to describe the second order Fermi acceleration theory, with the energy at the exit of the cloud E′′ sometimes
greater and sometimes smaller than the one at the entrance E.

accelerate CR is due to Fermi [37], who made the hypotheses that the CR gain energy in colliding with “magnetised clouds”
in the Galaxy, in modern terms disturbances in the magnetic field such as Alfven waves. Denoting by β = Vc/c ' vA the
cloud velocity wrt the Lab, the initial particle energy, which is Ei in the Lab/Galaxy frame, i in the cloud frame writes
E′i = γEi(1− βµ) where µ = cos(relative angle) of incoming particle momentum with respect to the cloud direction.

The particle is only subject to elastic scattering in the cloud, so that its energy E′f at exiting the cloud is unchanged in

the cloud frame, E′f = E′i. Back into the Lab (ISM), its energy Ef at exiting the cloud writes

Ef = γE′(1 + βµ̃) = γ2Ei(1− βµ)(1 + βµ̃) (100)

(obviously, if β is the cloud velocity wrt the Lab, −β is the Lab velocity wrt the cloud).
Both losses and gains are possible in this context, since µ and µ̃ are random, but the clever observation by Fermi is that

they do not compensate, on average! Taking into account that the exiting angle is isotropically distributed (flat distribution
of µ̃ between -1 and 1), one gets 〈

Ef − Ei
Ei

〉
µ̃

= γ2(1− βµ)− 1 . (101)

Since the probability P of entering the cloud depends on the (non-relativistic) relative velocity between cloud and particle,
which is given by

P (µ) ∝ v − βµ
1− vβµ

= 1− βµ+O
(
β2
)
⇒ P (µ) =

(1− βµ)

2
, (102)

as a result, we get on average a net gain of energy of the particles at the expense of the cloud bulk energy:

ξ =

〈
∆E

E

〉
µ

=

∫ 1

−1

dµ
(1− βµ)

2

[
γ2(1− βµ)− 1

]
=
γ2β2

3
+ γ2 − 1 =

4

3
β2 +O

(
β4
)
. (103)
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The quadratic dependence of the energy gained per cycle from the cloud velocity gives the mechanisms its name. Note that
for β ' vA ' 10−5 ÷ 10−4, the mechanism is poorly efficient. Also, the value of the predicted power-law index is rather
uncertain, depending in particular on how long the particle remains in the cloud, and their mean free path between a cloud
encounter and the next, see eq. (99). While historically important, we do not believe that the bulk of CR acceleration in
our Galaxy is due to this mechanism, which is thought of more as “post-processing” of already accelerated CRs.

However, the shock acceleration mechanism previously introduced can also be described in similar terms, with Eq. (100)
yielding the final energy in terms of β = (u1 − u2)/c. The difference is essentially geometric, since the coherent shock
motion only allows for some angles: In particular in order to exit the shock, the particle must go to the right, i.e. restricted
to µ̃ > 0, while in order to enter it, the particle must go to the left, i.e. restricted to µ < 0. As a consequence, by projecting
an isotropic flux through a plane shock, one infers the probabilities as being

P (µ) = −2µΘ(−µ)Θ(1 + µ) , P (µ̃) = 2µ̃Θ(µ̃)Θ(1− µ̃) , (104)

hence the net gain of energy of the particles is first order in the velocity difference across the shock:

ξ =

〈
∆E

E

〉
=

∫ 0

−1

dµ(−2µ)

∫ 1

0

dµ̃2µ̃
[
γ2(1− βµ)(1 + βµ̃)− 1

]
=

4

3
β +O

(
β2
)

(105)

Note that for an isotropic flux of particles, we have j = φ c/(4π). The rate of particles thus entering the shock (in the
right direction to get accelerated) is ∫

dΩshj =

∫ 0

−1

dµ

∫ 2π

0

dφ(−µ)j = πj =
φCRc

4
(106)

On the other hand, the rate of particles advected away downstream, is given by φCRu2.
The probability that a particle will escape (and not return to the shock) is

Pesc =
φCRu2

φCRc
4

= 4
u2

c
(107)

This allows us to compute the cumulative spectral index

α ' Pesc
ξ

= 3
u2

u1 − u2
=

3

r − 1
' 1 +

4

M2
(108)

we recover the universality of the Fermi spectrum consistent with eq. (97), but now starting from a microscopic consideration
rather than a distribution function approach.

Exercise Starting from Newton’s law in presence of electromagnetic fields, show that the rigidity of a particle obeys the
equation

d ~R · ~R
dt

= 2 ~R ·E (109)

i.e. any electromagnetic acceleration process orders particle distribution functions with respect to their rigidity. Use this to
justify why, in the relativistic limit (EN � mN ), we must expect that electrons are subleading to the hadronic (approximate,
protonic) CR component, and estimate by how much, expressing them in terms of ratio of fluxes with respect to kinetic
energy, J(T ). Consider both species accelerated from a non-relativist bath with typical kinetic energy T0 � me, for which
charge neutrality applies (so that equal numbers of particles are accelerated above T0 for both species). For momentum
power-spectra of index s, you should find

Je(T )

Jp(T )
→
(
me

mp

)(s−1)/2

(110)

in the relativistic limit.

3. Some notions on supernova remnants.

In the core-collapse of a massive star at the end of its lifetime, its gravitational energy

Ugrav '
3

5

GNM
2

RNS
' 3× 1053 erg (111)
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is released. Most of it is in the form of neutrinos of O(10) MeV, diffusing out of its core within O(10) s; about 1% of it
(i.e. about the fraction of the neutrino energy deposited in the stellar layers on their way out) is enough to make the star
explode and is eventually carried by the kinetic energy of the remnant 5. We can estimate thus

vSNR =

√
0.01

2Ugrav

MSNR
' 10−2 . (112)

This velocity, while non-relativistic, is clearly much larger than the sound speed in the ISM, and leads to a shockwave. The
remnant follows different phases

• Ballistic expansion, during a few centuries, with vSNR ' const. and thus a radius of the SNR given by R(t) ∝ t

• Sedov-Taylor phase 6, once the SNR has swept a quantity of mass comparable to the ejecta mass: A self similar
solution relating the density, pressure, and temperature of the gas, and the distribution of the expansion velocity
exists; it lasts for about 105 yrs, with R(t) ∝ t2/5.

• Snow-plow phase: eventually, cooling (radiative) processes cannot be neglected anymore. When the radiative cooling
time of the gas becomes shorter than the expansion time, the SNR evolves conserving momentum at a more or
less constant temperature and the radius of the shell expands as R(t) ∝ t1/4. This phase lasts some million years,
typically. The name comes from the considerable mass accumulated behind the shock.

• ISM Merger: Eventually, the remnant dissipates into the ISM.

Most SNR we can “see” in radio, X, etc. are actually in the Sedov-Taylor phase. These observations show that they
host energetic particles. Additionally, they present suitable conditions for acceleration (shocks) and also a sufficient power-
budget to account for galactic CRs. They were recognised as a likely site for CR acceleration already in 1934, by Zwicky
and Baade [38].

Exercise : Knowing that SN are estimated to happen 2-3 times per century in the Galaxy, each releasing a few times 1051

erg in kinetic energy, what it their “kinetic” luminosity? Compare that with the power needed to sustain a steady-state
population of CRs, with integrated energy density of about 0.5eV/cm3 filling a confinement volume of the Milky Way
assumed to be a cylinder with radius 15 kpc and height 4 kpc, and typical “lifetime” of τCR '10 Myr. Is it enough for the
SNRs to power CRs? What is the ratio of the two, or if you wish the efficiency of macrocopic kinetic energy conversion
into CR acceleration?

Suggestion to go beyond: Study the Sedov-Taylor solution (can be found e.g. in [5]).

4. Confinement condition

One must require that the system must be able to contain the particle: its Larmor Radius rL must be smaller than the
size of the accelerator s. One can put different astrophysical objects in a log-log plot of magnetic field strength vs. size of
the accelerator (this is known as Hillas plot, since [39]); if they fall to the left of a given diagonal downgoing line, they can
at best contain and thus accelerate particles of the corresponding energy, since the product sB essentially determines the
maximum rigidty. This suggests for instance that objects other than SNR must be involved in the acceleration of UHECRs,
see fig. 13. One likely candidate are active galactic nuclei (at different possible sites, actually).

Part IV

Collisions
Tackling E-loss limitation on Emax, mentioned in the previous section, opens up a big topic, namely collisional effects in
CRs. These are crucial not only to set one limitation to the maximal energy of acceleration (in a finite time), but also yield
a number of diagnostic channels, including acting as source term for high-energy neutrinos and photons.

5 A similar kinetic energy is also present in SNae triggered by thermonuclear explosions following e.g. a binary white dwarf merger, or accretion
onto a white dwarf. By the way, only about 1% of this kinetic energy is visible in optical photons. A SN event is much “brighter”, energetically
speaking, than its light curve.

6 This is a classical, self-similar solution applying to a pointlike release of energy E, conserved in the expansion in a medium of constant density.
It was found independently by the British Taylor and the Soviet Sedov around WWII time, in a completely different context than astrophysics,
that I let you imagine; just be aware that the book in which Sedov presented his solution had a B-52 bomber on its cover!
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FIG. 13: Hillas diagram, modern version of the one first presented in [39]; see text for details.

Let us start by reminding that in a (relativistic) two-body collision a + b → . . ., the following quantity is a relativistic
invariant (square of the COM energy):

s = (pa + pb)
2

= m2
a +m2

b + 2 (EaEb − papb) = m2
a +m2

b + 2EaEb (1− βaβb cosϑ) . (113)

If equated to the (square) of the sum of masses of the final state, this allows one to estimate threshold energies in the Lab
frame.

Exercise Calculate the minimum energy in the lab for a CR proton, hitting another one at rest, to produce one antiproton.
Hint: remembering that baryon number is conserved, what is the lightest final state containing an antiproton, i.e. what is
the lightest X in pp→ p̄ X?

Another useful invariant in a+ b→ c+ d is the (square) of the momentum transferred

t = (pa − pc)2
= (pb − pd)2

. (114)

For the case of an electron scattering with another charged particle (a proton, for instance) one has (prime is for outgoing
quantities)

t = (pe − p′e)
2

= 2m2
e − 2EeE

′
e (1− βeβ′e cosϑ)→ −4EeE

′
e sin2 ϑ/2 , (115)

where the last step is valid in the high-energy limit. Note that its value is negative, while the squared four-momentum of any
real photon has q2 = 0 (it’s a virtual photon!). If you remember the strong angular dependence of Rutherford scattering,
with dσ/dΩ ∝ Z1Z2α/ sin4 θ/2, this implies dσ/dΩ ∝ 1/t2: the cross-section is dominated by small-angle scatterings! On
the other hand, if one wants to produce a particle of mass M in a collision, a rough criterion must be |t| > M2. So, the
‘bulk” of the cross-section (what is mostly relevant for cosmic ray physics in the atmosphere, for instance) is dominated by
small angle scatterings; machines like LHC focus instead on large-angle scatterings, which are associated to large exchanged
momenta. Besides the relative rarity of very energetic CR, this is also the reason why CRs and high-energy collider physics
have largely complementary targets. Nonetheless, there is a smaller community at LHC that is devoted to the so-called
forward physics (the name comes from the fact that, loosely speaking, θ in formulae like the one above is very small). If
curious, have a look e.g. at [40].

A collision can be associated to a catastrophic loss, when the primary particle disappears or has most of its energy
transferred to other particles. In this case, the mean-free-path ` and its associated collision rate Γ are the key quantities
to describe also the energy-loss spatial and time scales, respectively. ` is the average distance travelled in a medium of
number density n before interacting. If σ is the cross-section of the interaction process, and β is the particle velocity, its
mean-free-path and interaction rate are

` =
1

σ n
, Γ = σ β n =

β

`
(116)
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One can also associate to a distance or size R, of background target density n, the dimensionless optical depth:

τ =
R

`
. (117)

Losses can also be continuous, if actually the primary particle retains its nature and most of its energy in each elementary
process, so that a continuous description is more appropriate, characterised by the loss rate per unit time −dE/dt (or
analogously loss rate per unit space −dE/dx)

It is useful to define a characteristic loss timescale,

τloss ≡
E

−dE/dt
, (118)

which is often a quick way to compare the relative importance of various processes, and can be compared with Γ−1 for
catastrophic processes to gauge what is more important, energetically.

We will discuss collisional processes within the following scheme:

• Lepton interactions with fields/radiation (Synchrotron/Inverse Compton, basics of multimessenger approach).

• Lepton interactions with matter (Ionisation/Bremsstrahlung).

• Hadron interactions with photon fields (essentially for extragalactic CR propagation, as well as multimessenger astro-
physics).

• Hadron interactions with matter (crucial for Galactic propagation, as well as for multimessenger astrophysics).

• Including interactions in the diffusion-loss equation (implications for CR spectra, secondary productions. . . )

For leptonic processes and applications, a much more complete reference (to which the treatment below is partially inspired
to) is [41]. Before plunging into the list of processes, let us consolidate these concepts with the simple following application.

A. Pair production and the “gamma-ray horizon”

If we specialize Eq. (113) to the case γ + γ → e+e− for heads-on collision, we get

4Eγε = (2me)
2 =⇒ Eγ >

m2
e

ε
. (119)

The cross-sections behaves as

σγγ (β) =
3πσT

16

(
1− β2

) [
2β
(
β2 − 2

)
+
(
3− β4

)
ln

(
1 + β

1− β

)]
, (120)

where β is either lepton velocity in the COM frame. Graphically, it peaks at about σT /4 at about twice the threshold
energy, see Fig. 14.

Exercise Compute the energy of background photons at threshold for pair-production for incoming photons of 1 TeV
or 1 PeV energy. What type of “light” are these bands corresponding to? In the case of CMB, described by a blackbody
spectrum at 2.7 K, compute the mean-free path of a photon of typical PeV energies.

The exercise above is meant to illustrate the fact that the gamma-ray sky may not always be optically thin, with the e±

pair production mechanism constituting a serious limitation for the remote extragalactic sky already at hundred of GeV,
for the near extragalactic sky at about 10 TeV, and even for Galactic objects in the PeV range (see the photon horizon in
Fig. 15). Put otherwise, we expect that beyond the TeV range, we can only perform astronomy in the “local neighborhood”.

VII. SYNCHROTRON RADIATION

In the discussion of Sec. II, we have explicitly neglected any inelastic process. But, as we saw, in the presence of a
magnetic field such as the one threading the ISM, a charged particle follows a helicoidal trajectory, with a typical gyroradius
given by Eq. (22) and a typical gyrofrequency given by Eq. (23).

But a rotating charge is actually accelerated, and we know from basic electrodynamics that an accelerated charge radiates,
see Fig. 16 for a cartoon. In the non-relativistic limit, the radiated power (or −dE/dt) is described by the Larmor formula
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FIG. 14: Energy dependence of the pair-production cross-section.
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dP

dΩ
=
q2a2 sin2 φ

4π
⇒ P =

2

3
q2a2 , (121)

φ being the angle with respect to the acceleration vector (dependence consistent with cartoon in Fig. 16) 7. We shall assume
familiarity with it, without re-deriving it (for more details on this and related topics in this and the following section, see
also [41]). Note however how the dependence upon the square of the acceleration follows trivially from dimensional analysis
(and the impossibility of dependence upon position or velocity because of Galilean or Poincaré invariance). The appearance
of e2 is also trivially following from the basic e.m. interaction vertex, squared when taking the amplitude square.

In fact, this formula is also valid in the relativistic limit, provided that a2 is now replaced by the four-acceleation (or,
four-force over mass) a2 → aµa

µ. This is because the radiated power is a Lorentz-invariant, as one can guess from the
fact that dE and dt are both the 0-th components of four-vectors, transforming the same way.

A charge q moving with Lorentz factor γ with respect to the frame of the static magnetic field views an induced electric

7 This derives from
dP = S · d ~A = S · n̂R2dΩ , (122)

R being the distance from the radiating source, n̂ the normal to the crossed surface, and the Poynting vector

S =
E×B

4π
=
|E|2

4π
Ŝ , (123)

to be computed from the electrodynamics of a radiating charge moving non-relativistically, yielding |E|2 ∼ q2a2/R2.
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FIG. 16: Electric field due to a charge, initially in uniform motion, that is stopped within a short time δt. Nearby, the field had
time to adjust and points to where the charge is (red dot). Far away, the field points to where the charge would be if it had
not been stopped (orange point). There is then a region of space where the electric field has to change direction, corresponding
to the propagating e.m. wave: its front propagates radially outwards, and the field of the wave (the ∆E of the disturbance)
is orthogonal to the propagating direction, null along the direction of the braking (which is the initial velocity one, where the
two fields are already aligned), and the width of this region is cδt.

field equal to

E′ = −γv ×B , (124)

associated to the acceleration in the electron frame

a = − q

m
γv ×B , (125)

hence the synchrotron power (energy radiated away per unit time)

Ps =
2q4γ2

3m2
v2B2 sin2 θ . (126)

i.e., proportional to γ2 in the relativistic limit, as well as B2, itself proportional to the energy density stored in the B-field.

1. Beaming effect from relativistic motion

Remember the time dilation and space contraction by the same factor γ(v) in a (primed) frame moving at velocity v
with respect to the initial one, depending upon Lorentz transformation:

t′ = γ(t− βx) x′ = γ(x− βt) . (127)

From which one derives

dx

dt
=
γ(dx′ + βdt′)

γ(dt′ + βdx′)
=

u′x + β

1 + βu′x
, (128)

dy

dt
=

dy′

γ(dt′ + βdx′)
=

u′y
γ(1 + βu′x)

. (129)

This implies the aberration formula

tan θ ≡ uy
ux

=
u′y

γ(u′x + β)
=

u′ sin θ′

γ(β + u′ cos θ′)
. (130)

This means that a photon (u = c) emitted at θ′ = 0 travels at θ = 0, while a photon emitted at θ′ = π/2 travels at
sin θ ' θ ' 1/γ, as illustrated in Fig. 17.
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FIG. 17: Illustration of the beaming effect in the lab (unprimed frame) for an isotropic emission in the source (primed).

FIG. 18: Beaming effect.

2. Characteristic frequency of emission

To compute the spectrum of photons emitted in a time-varying emission process, one takes the Fourier transform of
the signal. In the non-relativistic limit, one has simply a circular uniform motion, thus emission at the single frequency νg
given (cyclotron line) given by Eq. (21). In the relativistic case, a major alteration is due to beaming (See sec. VII 1): The
frequency spectrum is different because of sizable boost effects affecting the radiation timing: One must take into account
that only during the fraction of the orbit within the beaming angle the emission is observed. The timescale of the observer
is further different from the timescale of the emission. The time difference from the passage at point B and and point A is
simply given by

∆t ≡ tB − tA =
AB

v
= rL

2

γ

1

v
. (131)

For an observer at distance well beyond B along the direction AB, the duration of signal detected is

∆tobs = tB + δtprop
B − (tA + δtprop

A ) = ∆t−AB/c =
AB

v
(1− β) =

AB

v

(1− β2)

1 + β
' AB

v

1

2 γ2
' rL
γ3

. (132)

As a poor man’s proxy for a Fourier transform, we can estimate the typical frequency of the radiation (known as synchrotron
radiation) as the inverse of the above, hence

νs '
γ3

rL
= γ2ωg

2π
⇒ Es ' 500µeV

B

µG

(
Ee

GeV

)2

. (133)

The more complete calculation leads to a power emitted per unit frequency which is not monochromatic, rather with a
behaviour ∼ ν1/3e−ν/νc , with the critical frequency νc of the same order as the νs above.

What about the spectrum from an ensemble of particles, say an electron population? For an electron spectrum of
energy-differential number density n(E) ∝ E−α, we have the following link

νs =

(
E

me

)2

νg ⇒ dE =
me

2
√
ννg

dν . (134)

The scaling of the synchrotron spectrum emitted with the B field and the index α can be estimated simply as follows
(remember that νg ∝ B). In particular, the specific emissivity (power per unit solid angle per unit volume per unit
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frequency) is

ε(ν)dν =
1

4π
Psn(E)dE ∝ E2B2E−αdE ∝ ν

1−α
2 B

1+α
2 dν . (135)

So, from the slope typically in the radio-microwaves band ((1 − α)/2) one can infer the slope of the parent electron
distribution (−α).

To go beyond: The Green catalog of SNR is a continuously updated catalog of Galactic SNR observed at different
wavelengths, available online at https://www.mrao.cam.ac.uk/surveys/snrs/ Have a look to the quantities listed and
find in particular the spectral index for the radio emission. What’s the typical mean value for observed SNR? Compute this
number, or take the value for some representative sources. Infer from this the slope of the parent electron distribution,
and discuss how this compares to the observed slope for the observed electron spectrum. Reconsider it after studying the
regime of energy loss dominated propagation (Sec.XI.C.1, notably eq. (172)).

VIII. INVERSE COMPTON

A. Thomson cross-section

Let’s start from the classical problem of interaction of a electromagnetic wave with a charged particle, computing the
power that this particle re-radiates. The acceleration is (Lorentz force over mass) q(E + v × B), which for v � 1 and
considering that the electric and magnetic field of the wave have the same amplitude, gives and acceleration q|E| along the
direction of the field. For a sinusoidal wave E = E0 sin(ωt + φ) along some direction, the acceleration is along the same
direction and of intensity a = qE/m, so that the Larmor formula gives for the (time-averaged) emitted power

〈P 〉 =
2

3
q2〈a2〉 =

2

3

q4

m2

E2
0

2
. (136)

In scattering theory, the cross-section is the ratio of the radiated power to incident flux,

σ =
〈P 〉
|〈S〉|

=
8π

3

q4

m2
≡ σT (if q = ±e) (137)

with σT is the well-known Thomson cross-section, and where the Poynting vector (incident energy per unit time and unit
surface) is

|〈S〉| = |〈E×B〉|
4π

=
E2

0

8π
. (138)

Note that in terms of u, the energy density in the e.m. field,

u =

〈
|E|2

8π
+
|B|2

8π

〉
=
E2

0

8π
, (139)

one can also write

〈P 〉 = σT u , (140)

which clearly suggests a more microscopic interpretation (scattering rate—remember c = 1!—onto the number of par-
ticles/photons in the field, times the average energy of the photons). Compare with Eq. (126): can you justify the
interpretation of synchrotron power as up-scattering of ’virtual’ photons associated to an external magnetic field?

1. Energy loss rate

The formula derived for the emission power in the non-relativistic case

〈P 〉 = σT ũ , (141)

is actually valid more in general since, loosely speaking, it’s a dE/dt and energy and time transform the same way. The
energy density ũ is the energy density in the frame comoving with the electron. In the lab frame where the electron is
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FIG. 19: Diagrams describing the Klein-Nishina process (tree-level electron photon scattering in QED).

moving at β, it can be expressed by remembering that [u] = [ε× n], and that the number density n transforms as a time
since both dtd3x (four-volume) and nd3x (number of particles) are relativistic invariants. So, u transforms as the square
of the energy,

ũ = uγ2(1− β cosα)2 , (142)

which, for a isotropic radiation field, yields the angular average

〈ũ〉 = uγ2

(
1 +

β2

3

)
(143)

since

〈cosα2〉 =
1

2

∫ +1

−1

d(cosα) cos2 α =
1

2

2

3
. (144)

The energy lost by the electrons per unit time being the difference of the scattered power minus incoming power σT u
(impinging photons had some energy, too!), we have

−dE

dt
= σT u

[
γ2

(
1 +

β2

3

)
− 1

]
=

4

3
γ2β2 uσT '

4

3
γ2 uσT . (145)

If u is interpreted as the energy density of both photon fields and magnetic field, this formula describes both synchrotron
and IC losses (in the Thomson regime)!

Exercise Consider a (globally neutral) plasma of electrons and protons (remember: the two species are in tight e.m.
coupling!), spherically symmetric of mass M and radius R, kept in equilibrium by the balance of gravity and radiation
pressure. What is the luminosity (called Eddington luminosity) supporting such a “star” on the verge of disruption? Does
our Sun satisfy that limit? If yes, it is close to it? If not, can you explain why?

B. The Klein-Nishina regime

Actually, one can look at the same process from a quantum point of view, as a two-body collision between a photon and
an electron. The more general formula for differential cross-section derived by Klein & Nishina in 1929, based on QED (see
the diagrams in Fig. 19):

dσ

dΩ
=

3

16π
σT

(
εf
εi

)2(
εi
εf

+
εf
εi
− sin2 θ

)
, (146)

σ = 2π

∫ π

0

dσ

dΩ
sin θdθ =

3

4
σT

[
1 + x

x3

(
2x(1 + x)

1 + 2x
− ln(1 + 2x)

)
+

1

2x
ln(1 + 2x)− 1 + 3x

(1 + 2x)2

]
, (147)

where x ≡ εi/me, so that

σ(x) ' σT (1− 2x+ . . .) for x� 1 (Thomson)

σ(x) ' 3

8
σT

1

x

(
ln 2x+

1

2

)
for x� 1 (extreme KN) .

(148)
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1. Compton kinematics

Let us focus on the kinematics of the quantum process. Impose energy momentum balance in a photon (momentum
k)-electron (momentum p) scattering:

kµi + pµi = kµf + pµf , (149)

and the on-shell condition for the electron mass, m2
e = p2

i = p2
f , and that k2

i,f = 0:

m2
e = (pi + ki − kf )µ(pi + ki − kf )µ =⇒ m2

e = m2
e + 2(piki − pikf − kikf ) . (150)

In the frame where the electron is at rest, pi = (me, 0, 0, 0). We choose the x-axis as the direction of the photon, and the
outgoing direction generates with that the x-y plane. Then kµi = εi(1, 1, 0, 0), while kµf = εf (1, cos θ, sin θ, 0), so that

me(εi − εf ) = εiεf (1− cos θ) =⇒ εf =
εi

1 + εi
me

(1− cos θ)
. (151)

Note that unless the energy of the photons is of the order of the mass of the electron or larger in the electron rest-frame,
the energy of the photons is only slightly altered (the ratio εi/me controls the energy change).

What happens if the electron is not at rest in the frame of interest (“lab”), rather has a velocity β? Well, the above
relation (151) is valid in a frame (let us denote it via a prime) boosted via γ(β) with respect to the lab:

ε′f =
ε′i

1 +
ε′i
me

(1− cos θ′)
, (152)

where ε′i = εiγ(1−β cosα), where α is the angle between photon and electron in the Lab frame (θ′, as above, is the angle
between outgoing and incoming photon directions). If we want to express ε′f in the Lab frame, we need to perform the

“reverse boost”, now accounting for the emission angle α′ in the comoving frame, such that

εf = γ(1 + β cosα′)
ε′i

1 +
ε′i
me

(1− cos θ′)
= γ2εi

(1 + β cosα′)(1− β cosα)

1 +
ε′i
me

(1− cos θ′)
. (153)

In the limit where ε′i/me � 1 (which requires εiγ � me, i.e. εiEe � m2
e in the Lab frame), one has

εf ' γ2εi(1 + β cosα′)(1− β cosα) . (154)

Also, for isotropically impinging radiation, the second (. . .) is averaging to 1 (and, as a consequence, also the first one,
since the outgoing direction will be essentially isotropic in the electron comoving frame). Hence, a good estimate is

εf ' γ2εi = 30
( εi

eV

)( Ee
GeV

)2

MeV (155)

For this approximation to be correct, one requires εiEe � m2
e which implies εf < Ee as well. Note that while the scattering

angle is arbitrary in the comoving frame, in the lab frame the outgoing radiation is beamed in the forward direction with
an angle 1/γ (now you should be familiar with that!)

Exercise What is the maximum final energy of a photon in the Thomson regime (ε� me), see Eq. (153)?
It is 4γ2εi
Exercise Have a look at Eq. (153): What is the typical energy in the KN regime?

C. Notions on SSC

Imagine that the synchrotron photons produced by an energetic electron populations also constitute the main target
for further upscatter via inverse Compton. The resulting spectrum corresponds is dubbed Synchrotron-Self-Compton. We
know the link between electron power-law index (−α) and Syn. spectral index ((1− α)/2), which is also the same for the
IC (check that you can repeat the same argument, at least in the Thomson regime!)

This means that, at least in the Thomson regime, SSC sources are expected to show a power law between γ2
minνg and

γ2
maxνg, and another power-law parallel to the previous one from γ4

minνg and γ4
maxνg, where the γ′is refer to the parent
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FIG. 20: The multiwavelength photon spectrum of the Crab nebula, also compared to models, taken from [43].

electron spectrum. Also note that the Syn. peak is proportional to the number of high-energy electrons, while the SSC
peak, is quadratic in it (since also the target photon number is proportional to the high-energy electrons). I won’t cover the
physics of the sources, but if we are confident that SSC is realized, a lot of information can be gathered from the spectrum.

Exercise The Crab nebula, associated to the explosion of a SN in AD 1054, presents a roughly broken power-law spectrum,
with a steepening around 5 eV, interpreted as synchrotron radiation, see Fig. 20. If we attribute this phenomenon to a
“cooling break” (i.e. the electrons producing the photons below the break have a cooling lifetime longer than its age, and
the ones producing photons above it have a shorter cooling timescale), determine the magnetic field in the source, and the
energy of the electrons associated to this “break point”. What is the energy of IC photons produced when those electrons
hit the very synchrotron photons at the break point?

IX. LEPTONIC INTERACTIONS WITH MATTER

A. Ionization and Coulomb interactions

When crossing a medium with density of electrons ne, on dimensional grounds an electron undergoes an energy loss per
unit length of the order of σT neme f(E/me), with the dimensionless function f(x) further depending on atomic or plasma
properties of the medium (such as the electron binding energy or the plasma frequency). A simplified estimate comforting
the above expression can be obtained as follows in a classical limit: Consider a non-relativistic electron crossing a medium
containing electrons (“almost at rest”) with density ne. If b is the impact parameter at which the energetic electron passes,
and v its velocity, the target electron feels an impulsive force due to the CR electron electric field F = e2/b2 over a time
δt ∼ b/v (factors of order unity are omitted), associated to a momentum gain ∆p = F ∆t ∼ e2/(b v), or equivalently a
gain of kinetic energy ∆E ∼ (∆p)2/me ∼ e4/(b2 v2me). The energy-loss rate per unit length for the cosmic ray electron
can be obtained by integrating over the individual losses,

−dE

dx
=

∫
2π b ne ∆Edb ' 2π ne

e4

v2me
ln
bmax

bmin
' σT neme

v2
ln
bmax

bmin
(156)

where, apart from factors of order unity omitted above, the formula also depends on the so-called Coulomb logarithm:
Qualitatively, bmin is determined by the distance at which the collision leads to a deflection angle of order unity (a “hard”
collision); bmax is clearly dependent on the type of medium, related to bound electron orbital characteristics, or the effective



39

FIG. 21: Diagrams for Bremsstrahlung process.

plasma screening length. Typically, ln bmax/bmin ∼ O(10). Also note that the derivation requires the energy transfer to be
non-relativistic, not the initial particle to be. In fact the result for a relativistic impinging particle is the same, since even if
there is a time contraction ∆t→ ∆t/γ, the electric force increases by the same factor F → γF (relativistic transformation
of the electric field).

A more correct formula was computed by Bethe within quantum mechanics, and should be familiar from elementary
physics courses,

−dE

dx
=

3

2

σT me ne
v2

[
log

(
E

me

)
+ κ− β2

]
(157)

where the dimensionless constant κ depends on the material crossed, but typically dominates the E-dependence. A number
of corrections are needed at both low and high velocities, which however are not particularly relevant for us since at higher
energy the electromagnetic energy transfer described here is hardly the dominant one, and at low-energy one exits the realm
of interest for most cosmic ray phenomenology. It suffices to notice that in the non-relativistic regime the E-loss becomes
less and less efficient with higher velocity, until it saturates (actually, grows logarithmically) at relativistic energies. But, by
the time a particle is relativistic, other E-loss mechanisms dominate.

Exercise Remember Eq. (118). Estimate the range (and timescale) over which an electron with a kinetic energy of 60
keV stops in a ISM with density of 1 cm−3.

The above considerations also apply to charged CRs, of course: We computed the energy transferred via interactions
with the electrons in the medium via the impulsive electric field. So, the same considerations apply, but for the change in
the force (now with factors e2 replaced by Z e2, so that the previous formulae acquire a factor Z2 more. Also, since me

sets the energy scale, these energy losses are in percentage way less efficient than for leptons of the same velocity.
Exercise Estimate the range (and timescale) over which a proton with a kinetic energy of 60 keV or 100 MeV stops in

a ISM with density of 1 cm−3.

B. Bremsstrahlung

The previously described process is a (quasi)elastic scattering between a charged energetic particle and electrons in the
medium. But the energetic particle can also radiate a photon under the braking action of the nuclear electric fields. Its
calculation requires a spectral decomposition of the Larmor formula, plus kinematical considerations similar to the ones
previously developed, and will not be reported here. It suffices to know that this is the dominant X-ray emission process
from clusters of galaxies.

A few heuristic considerations suffice: Since there is an extra photon leg attached (see Fig. 21) compared to the previous
process, we can quickly estimate that it should be suppressed by a factor α, i.e. its cross section scales as

σBrems ∼ αZ2σT , (158)

For relativistic electrons, it can also be shown that the energy loss rate scales linearly with energy, i.e.

−dE

dt
' σBrems nE . (159)
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FIG. 22: Elastic and inelastic cross-section for pp scattering, from the PDG.

X. HADRONIC INTERACTIONS

For a particle of mass m = Amp and charge Z e, the Thomson cross-section σT scales as σe.m.(m,Z) =
Z4A−2(me/mp)

2σT ' 3 × 10−7(Z4/A2)σT , which immediately shows how much more inefficient the direct scattering
photon-nucleus is compared to the photon-electron.

However, nucleons and nuclei are subject to the strong nuclear force, and the associated inelastic processes are much
more important for energy losses, in collisions with matter but also with radiation (if above appropriate thresholds). One
useful way to think intuitively about nuclear interactions is the good old Yukawa’s idea, of an exchange of massive mediators
(the pions), responsible for the relatively short-range of the interaction. Note that the numerous particle physics discoveries
in the cosmic rays between the thirties and the fifties of the XX century (the muon, the pion, the strange hadrons. . . ) are
due to hadronic interactions of primary protons or nuclei in the atmosphere.

A. Generalities and spallation

The key property of reactions involving nucleon-nucleon, or more in general nucleus-nucleus, is that they are strong, but
short range. Also, nucleons and nuclei, differently from leptons and photons, are not ‘pointlike’, but extended objects of
radius approximately given by

R ' 1.2A1/3 fm . (160)

Together, these properties suggest a total cross-section value of the order of

σtot ∼ πR2 ∼ 45A2/3mb , (161)

which is a good rule of thumb (see Fig. 22). At a more microscopic level, this can be thought to arise from (possibly
multiple) exchanges of pions with an interaction with “order 1” coupling, so that the nucleon nucleon cross-section is also
of the order of 1/m2

π. At nucleon-nucleon level, inelastic processes are dominated by the emission of one or more pions
(mostly in the forward direction). In a nuclear collision at GeV energies or above, however, the de Broglie wavelength
1/p ' 1/(γm) is well below the nucleus size, so the nucleus is resolved in its constituents, and the nucleon typically strikes
only one or a few nucleons 8 (for multiple scatterings, more frequent for heavier nuclei). This “quasi-elastic” process if

8 Of course, what matters is the momentum exchanged in the process. Eventually, hard processes with the production of pions, for instance,
become possible. Yet, remember that most interactions are relatively soft. . .
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FIG. 23: Spallation cross-sections, in mb, From [1].

seen at the nucleon-level is however sufficient to give enough energy to the nucleon(s) to escape the bound state: The
process where projectile or target nucleons are kicked out of the nucleus is known as spallation. Its cross-sections are only
weakly dependent on energy, apart at low energies (typically below 100 MeV/nuc) where nuclear details are important.
While more or less refined phenomenological models exist, these cross-sections are empirically measured and tabulated (see
Fig. 23.) In this “superposition model”, most of the target nucleus remains essentially unaffected. This is confirmed by the
fact that the energy per nucleon is approximately conserved, in such processes (this also explains the usefulness of plotting
nuclear fluxes in terms of this variable E/A, notably at low-energies.) Note how partial cross-sections are a fraction of the
estimate of Eq. (161), and typically the byproducts differing from the parent by a single nucleon or two are the preferred
final states (e.g. 11C and 11B from 12C, 14N, 15N from 16O, . . . ) These are the most relevant catastrophic interactions for
nuclei propagating in a “matter-rich” environment (as the Galactic disk, as opposed to the extragalactic space).

It is worth mentioning that quite often the projectile or target nucleus can end up in an unstable state and de-excite
e.g. by gamma-ray emission, at typical energies of few MeV for nuclei at rest. Although this has long been recognized
as a potential exquisite diagnostic tool for the study of energetic phenomena in the interstellar medium, the observational
challenges in MeV gamma-ray astronomy make this field still in its infancy.

B. Adiabatic energy losses

An ultrarelativistic particle propagating over distances undergoing the “cosmological” stretching (Hubble expansion wih
rate H(z)) sees its wavelength stretched similarly. Hence

− 1

E

dE

dt
= H(z) = H0

√
ΩΛ + ΩM (1 + z)3 . (162)

We expressed H(z) in terms of the matter energy density (normalised to the critical one) ΩM ' 0.3, and the cosmological
constant density parameter ΩΛ ' 1 − ΩM ' 0.7. H0 is the current Hubble parameter, whose value is roughly of 70
km/s/Mpc.
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FIG. 24: Feynman diagram for the Bethe-Heitler process.

FIG. 25: Attenuation lengths at z = 0 for the main energy loss mechanisms for UHECR protons, from [45].

C. Bethe-Heitler process

It is the process p+ γCMB → p+ e+e− (and, by extension, its analogous for nuclei). Its threshold is

m2
p + 2εγEp(1− cos θ) > (mp + 2me)

2 =⇒ Ep >∼
memp

εγ
' 2× 1018 eV . (163)

Its inelasticity is however rather low, of the order of 2me/mp ' 10−3 at threshold (where the energy repartition basically
follows the relative mass carried by the product, with the ensemble considered as a “decaying” particle). In its Feynman
diagram, shown in Fig. 24, there are three interactions vertices, so not surprising its cross-section is of the order α3 (or,
if you wish, parametrically suppressed by a factor α compared to the Thomson cross-section). A rough estimate of the
cross-section is

σBH '
α3

m2
e

Z2f(E,Z) , (164)

with f(E,Z) of order one. Some more detailed parameterization can be found e.g. in [44]. For particles propagating over
cosmological distances, if this channel is open onto the CMB photons it is important in limiting the range below the one
due to Eq. (162). At low redshift, the associated energy-loss length is shown in green Fig. 25, which we see becomes more
important than Eq. (162) above about E >∼ 1018.5 eV. This mechanism also affects nuclei, for which it is comparatively
more prominent since depending upon the nuclear charge as Z2.

D. Nuclear photodisintegration

For nuclei propagating over extragalactic distances, the photodisintegration process A + γ → (A − 1) + N + γ in the
EBL (first) and CMB (at higher energies) is kinematically open. For typical nuclear binding energies of O(10) MeV, it
is easy to check that the threshold lies at E > 1019eV (just think that the threshold should be one order of magnitude
higher than for the e± pair production for the Bethe-Heitler.) with details depending on the nucleus: It typically damps
the propagation of light nuclei before heavier one, with the Fe whose flux is only affected by this process closer to 1020 eV.
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E. Inelastic pp collisions

This is the main energy-loss phenomenon affecting protons of Galactic Cosmic rays. If we specialize Eq. (113) to the
case p+ p→ p+ p(n) + π0(π+), neglecting the neutron-proton mass difference we get

2m2
p + 2Epmp > (2mp +mπ)2 =⇒ 2mpEp > 2m2

p +m2
π + 4mpmπ =⇒ Ep > mp + 2mπ +

m2
π

2mp
' 1.2 GeV . (165)

Exercise: Without neglecting proton neutron mass difference, estimate the minimum energy needed to produce: i)
at least one positive pion; ii) at least one negative pion in a pp reaction. Hint: impose baryon number, lepton number
and electric charge conservation, and remember that free nucleons are not always the ground state of a multi-nucleon
configuration!

F. pγ collisions
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FIG. 26: The total photo-pion production cross section for protons (solid line) and neutrons (dashed line) as a function of the
photon energy in the nucleon rest frame, Elab.

If we specialize Eq. (113) to the case p+ γ → p+ π, we get

m2
p + 2Eγmp > (mp +mπ)2 =⇒ Eγ > mπ +

m2
π

2mp
' 145 MeV , (166)

where the numerical estimate is for π0. If the proton is instead relativistic, at threshold (heads-on)

m2
p + 4εγEp > (mp +mπ)2 =⇒ Ep >

2mpmπ +m2
π

εγ
' 4× 1019 eV , (167)

for CMB photons. The inelasticity of the order of mπ/mp ∼ 15% (actually a bit higher). The cross-section for this process,
shown in Fig. 26, is dominated by the resonant production of a spin-3/2 and isospin 3/2 ∆+ particle (of mass 1.232 MeV)
just above threshold. Multi-particle processes dominate at much higher energy.

This process onto CMB photons is the most important process limiting the propagation of extragalactic protons, so
dramatic to be known as Greisen-Zatsepin-Kuzmin limit or cutoff [46, 47] .

Exercise: Based on the cross-section value of Fig. 26, compute the mean free path of a proton propagating in the
CMB, and compare with Fig. 25. Differently from the BH process, here the inelasticity is quite high, hence losses are
“catastrophic” and the concepts of mean free path and energy loss length blur. This is even more prominent given the
steep CR spectrum, so that a proton losing a moderate fraction of its energy, even when surviving, contributes little to the
flux at the lower energy.
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XI. THE DIFFUSION-LOSS EQUATION: INCLUDING COLLISIONAL EFFECTS

In the light of what we have seen, the previously derived Eq. (85) requires some final generalizations concerning loss
terms (besides a source term Q, to be provided by some theory of acceleration and injection). The two types of terms
missing are “continuous energy losses” (such as Bremsstrahlung on the gas) and catastrophic ones, such as spallations and
pp inelastic processes.

A. Catastrophic losses

These are treated as ”source and sink terms” at the RHS of the propagation equation, since the species “changes nature”
(disappears and/or evolves discontinuously in energy space). In particular, you are familiar with the fact that a radioactive
species suffers of a term −n/τ (with n phase space density) at the RHS, where τ is its decay lifetime. Such a term is
obviously present for unstable nuclei, apart for the generalization that in the lab frame, the decay time is boosted by the
gamma factor of the nucleus: If τ0 is the proper decay time of the species there is a −φ/(γ(p)τ0) at the RHS. For a species
subject to collisional interactions that make it disappear, 1/(γτ0)→ Γ, with the interaction rate defined already in Eq. (A1),
with n the gas target and the σ the cross-section for the specific process. Note how, differently from a decay, this term is
in general space-dependent, and Γ→ 0 when the target density n→ 0. On the other hand, these interaction processes do
produce secondary particles, so that they are also associated to source terms for other species. Sometimes, in fact, a specific
channel may be negligible if considered a loss one for a species, but crucial as a source term for a secondary species (think
of antiprotons produced in CR proton collisions). We can symbolically write this “secondary” source term for a species α
as
∑
β Γβ→αφβ . For nuclei sourced via spallation, if the transport equation is written in terms of Energy/nucleon, then

this expression is almost exact, and not only symbolic. However, one should be aware that the true expression requires
a convolution over energies (and the differential cross sections) since the secondaries have a degraded energy distribution
with respect to the primaries.

B. Continuous energy losses

Under this category fall ionisation and Coulomb losses (however only important at energies below ∼GeV). In addition,
electrons and positrons interact with the ISM emitting bremsstrahlung (again, only important at ∼ few GeV energies), but
also synchrotron radiation on the galactic magnetic fields and inverse Compton scattering on interstellar radiation fields,
which are instead very important at tens of GeV or above. To deduce the form of such a term, let us consider the problem of
the spectral intensity of particles only subject to injection and energy-losses. Since particles do not disappear once injected,
a continuity equation in E space holds:

∂F

∂t
+

∂

∂E
(ĖF ) = Q(E) , (168)

where Q(E) is the injection term. If written in terms of phase space density or its angular average φ = F (E)/p2, the term

corresponding to ∂(ĖF )/∂E writes

− 1

p2

∂

∂p

[
p2

(
dp

dt

)
`

φ

]
. (169)

C. The“complete” diffusion-loss equation and some benchmark solutions

For a coupled set of species α, we can thus write the master equations

∂φα
∂t
− ∂

∂xi
Kij

∂φα
∂xj

+ui
∂φα
∂xi
− 1

3

∂ui
∂xi

(
p
∂φα
∂p

)
+

1

p2

∂

∂p

[
p2

(
dp

dt

)
`

φα

]
− 1

p2

∂

∂p

(
p2Kpp

∂φα
∂p

)
= q−Γφα +

∑
β

φβΓβ→α ,

(170)
where we have identified in color the terms introduced previously in this section. Note that each term in the above equation
has the dimension of φ/time. One can thus define “characteristic timescales” (analogous to Eq. (118)) which allow for a
quick parametric assessment of the importance of each term. Public available codes exist that allow for a numerical (such
as GALPROP, DRAGON) or semi-analytical (USINE) solution of the problem. It is important however to grasp the key
features of these terms via some analytical, limiting solution, notably of the steady state problem.
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1. E-loss dominated propagation

If continuous energy loss timescales are the shortest ones (or the only one of relevance, in “quasi-homogeneous” problems),
the steady state equation approximates to

− 1

p2

∂

∂p

[
p2

(
dp

dt

)
`

φα

]
= q =⇒ φ(p) ∝ − 1

p2(dp/dt)`

∫ p

dp′q(p′) p′2 , (171)

which, for q ∝ p−s and (dp/dt)` ∝ −p`, leads to

phi(p) ∝ p−s−`+1 . (172)

Namely, the resulting spectrum is `−1 softer than the injected one. It turns out that for CR leptons, the above situation is
close to truth, with ionization and Coulomb Energy losses (` ' 0) dominating at low-energies (spectrum is harder than the
source), eventually overcome by bremsstrahlung energy losses (` ' 1, spectrum matching the source one) and Compton-
Synchrotron energy losses (` ' 2 steeper spectrum). Note also that the diffusion-continuous loss problem (at least for
space-independent loss term) is reduced to the diffusion problem (and thus to Eq. (63)) via a variable transformation into
a “pseudo-time”, see for instance Sec. II in [48], where the adaptation of the Green’s function method to a geometry with
boundaries is also shown.

2. Catastrofic loss for diagnostics: Secondaries over primaries

Let us apply the previous equation to the case of secondaries, i.e. nuclei only produced by spallation during propagation,
such as the above-mentioned Boron, Lithium, and Beryllium. The distribution of secondaries in the plane, φS(p) is sourced
by the injected nuclides per unit time, i.e. q0(p) → φPΓP→S , φP being the primary population. Hence we obtain the
solution for the ratio of primary to secondary distribution; prove that

φS(p)

φP (p)
' ΓP→Sτeff,P ' ΓP→S

H h

K(p)
. (173)

where the second relation holds if collisions are subdominant with respect to diffusion (which is not true at low energies!).
Since, at least in principle, ΓP→S h can be inferred by independent means, from this ratio (for instance, Boron-to-Carbon
ratio in CRs) one can gauge the value of the “diffusive” ratio H/K, including its energy dependence.

Exercise: Modify eq. (67) to account for a catastrophic loss term, of the type −2hΓσ φP δ(z). Consider the same equa-
tion written for secondaries, i.e. without primary source term q, but sourced by primary spallation, i.e. 2hΓP→S φP δ(z).
Prove eq. (173).

3. Principles underlying dark matter searches via CRs

The previous exercise suggests that, by measuring some secondary to primary ratios (such as the “classical” Boron over
Carbon), one can infer the universal function τd(p) through which one should be able to predict all other secondary to
primary ratios, provided that the relevant nuclear data are known. This is essentially the case, so that within uncertainties
one finds that the τd(p) function inferred from analysing different S/P are consistent.

Now, imagine that there is some species that is purely secondary in conventional physics, but that admits some exotic
primary source: Observing the flux of this species in excess of the secondary prediction may offer a discovery tool. Al-
ternatively, if the species is observed in accordance with the expectations, bounds on such an exotic primary term can be
set.

The most widely considered exotic primary source of CRs is from dark matter annihilations 9, notably if DM is in the
form of WIMPs. In particular, these processes should produce equal yields of SM particles and antiparticles, so that the
search for DM in antiparticles (and antinuclei, in principle) is greatly enhanced by the lack of primary antiparticles in the
conventional scenario.

9 Other exotic mechanism sometimes considered are dark matter decays, or the evaporation via the Hawking process of rather light black holes
produced in the early universe.
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Positrons were once believed to be essentially secondary particles, but now it is universally acknowledged that there is
a primary component, probably due to PWN, becoming dominant in at E >∼ 10 GeV, so that their usefulness as a DM
discovery tool has been somewhat undermined (albeit they can be still used to set bounds).

Antiprotons are currently studied as a promising discovery channel. In principle, they are sources by mostly CR protons
(and to some extent He nuclei) impinging onto the ISM gas. Knowing the steady state fluxes of protons and He, and knowing
the propagation properties from studies such as S/P ones, should make us capable of predicting power on the secondary
contribution to antiprotons. However, you should be aware of the fact that this approach is not without difficulties. One
of these difficulties consists in the fact that primary fluxes turn out to depend upon astrophysical parameters in a different
way than secondary fluxes. Hence, further (astrophysical) constraints are typically needed for tight searches. To illustrate
this point, let us consider the following toy model

− ∂

∂z

(
K
∂φX
∂z

)
= qX(p)− 2hΓσ φXδ(z) . (174)

where the production of antiprotons qX is considered uniform over the vertical (diffusive) extent ±H. Although not
geometrically correct, since the whole, extended DM halo hosts the antiproton sources, this tries to capture the fact that,
for a DM origin the source is much more vertically extended than the thin disk for the conventional astrophysical model
where they arise as secondaries.

I invite you to show as a simple Exercise that eq. (174) implies

1

τeff(p)
φ0
X =

H

h
qX(p) , (175)

where τeff(p) is the same defined in Eq. (??). Note that now the expected antiproton signal from DM depends on one
extra parameter, the ratio H/h as opposed to the product H h entering τd. This extra dependence makes physical sense,
because it is linear in the size of the volume from which one collects injected particles.

Imagine now that the actual flux at the Earth is made of two contributions: An astrophysical one plus a DM one. Even
if the respective source terms were exactly known (which is not true, think for instance of cross-section uncertainties), one
has to account for propagation effects. And even if the “astrophysical” ones were under control (e.g. B/C ratio, etc.), so
that secondary to primary ratio allows one to determine τd from observations (but there are errors associated to that!),
the DM contribution is subject to further astrophysical/propagation uncertainties, which are more difficult to reduce, since
they depend differently from the astrophysical parameters. Although some handles exist (such as radioactive CRs for the
above example of H determination), this “propagation problem” is one of the main difficulties to keep in mind associated
to these types of searches. Put otherwise: Astrophysical uncertainties in new physics searches do not factor out, even when
“normalising” to other channels. These “systematic” uncertainties are the main limitations in pushing the sensitivity of
these probes.

D. On some limitations of the theory presented

Eq. (170) above is used in almost all phenomenological treatments of Galactic CR propagation. Needless to say, this is
still an approximation. The two major limitations of this treatment are:

• The requirement that the scattering centers are moving non-relativistically. This is crucial in obtaining a hierarchy
between the isotropic and anisotropic part of the CR distribution, the latter in turn being dominated by the dipole
term. This is certainly inadequate in relativistic environments (such as gamma-ray bursts, or most candidate sources
for ultra-high energy cosmic rays), where a technical difficulty is that the distribution function retains a non-trivial
angular dependence.

• At a more conceptual level, we have performed some further approximations. First, we assumed that a kinetic
description in terms of the single-particle distribution function is suitable, i.e. we neglected particle-particle correlations
terms (entering higher-order equations of the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy), implicitly
adopting the so-called plasma approximation. More importantly, even the single particle distribution functions fa (for
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the species a) are ruled by Maxwell-Vlasov equations

∂fa
∂t

+ v · ∂fa
∂x

+
qa
ma

(E + v ×B) · ∂fa
∂v

= 0 . (176)

∇×B =
∂E

∂t
+ 4π

(
jext +

∑
b

qb

∫
dp vbfb

)
(177)

∇×E = −∂B

∂t
(178)

∇ ·B = 0 (179)

∇ ·E = 4π

(
ρext +

∑
b

qb

∫
dpfb

)
(180)

(181)

where ρext and jext represent external charge densities and currents due to non-dynamical components of the medium,
such as the background thermal plasma. In general, we see that the CR themselves contribute to generate the fields
in which they propagate. This coupling has been ignored. A simple way to convince oneself that some coupling must
be accounted for, in order to guarantee the consistency of the previous description, is to think about the isotropisation
process. If CR tend to be isotropized in the frame of the plasma, where does the initial CRs momentum go? In fact,
it constitute a current, acting as one of the sources of the e.m. waves of similar type to the ones onto which CRs
scatter. Put otherwise, we have taken the magnetic perturbations as given externally, but truly they are dynamically
coupled to the CRs. This non-linear approach to CR acceleration and propagation is at the forefront of current
research.

Part V

Multimessenger astrophysics
The examples previously discussed combine different probes (e.g. B, C, proton . . . spectra) to make predictions on yet
another observable (antiproton flux) and make us acquire diagnostic power for a different phenomenon (indirect searches of
DM). This philosophy is extremely common in high-energy astrophysics. Often it also involves neutral particles, photons and
neutrinos, since they are produced by charged CRs. We saw examples of these channels when dealing with leptonic energy
losses. Here we focus on hadronic production channels, which are behind a key expectation in high-energy astrophysics:
The link of neutrino fluxes with (hadronically produced) high-energy photons, the link holding at the source. This has been
crucial to build expectations for both diffuse neutrino fluxes and point-like ones, and in the end to set the experimental size
of neutrino detectors, recently seeing the first detections.

XII. SPECTRA OF PION DECAY BYPRODUCTS

A. Gamma spectra emitted in neutral pion decays

Let us consider the neutral pion decay process, π0 → γγ: The photons are back-to-back in the π0 frame (momentum
conservation), each carrying Eγ = mπ/2 ' 67.5 MeV (energy conservation). If the pion moves at β, in the Lab frame
the energy of the photon emitted is mπγ(1 + β cos θ)/2, θ being the angle of the emitted photons with respect to the the
direction of flight of the pion. Hence, the maximal and minimal energy of the photons is

Emax
min =

mπ

2
γ(1± β) , (182)

i.e. from 0 to Eπ in the ultra-relativistic limit. Also note that there is a one-to-one correspondence between photon energy
and emission angle, whose law is

dE =
mπ

2
γβd cos θ . (183)

Since the pion is a scalar particle, its decay products are emitted isotropically, i.e. (just normalizing to one)

dN

dΩ
=

1

4π
=⇒ dN =

1

2
d cos θ , (184)
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hence the energy distribution of the photons is

dN

dE
=

1

mπγβ
=

1

Eπβ
=

1√
E2
π −m2

π

, (185)

i.e. flat in energy space, between Emin ' 0 and Emax ' Eπ in the relativistic limit. Basically, one expects a box spectrum,
symmetric around mπ/2. In log-Energy space,

1

2
(logEmin + logEmax) = log

√
EminEmax = log

(mπ

2

√
γ2(1− β2)

)
= log

(mπ

2

)
, (186)

i.e. the center of the interval is half the pion mass, independently of the pion energy distribution, hence of the parent
nucleon distribution. This is dubbed “pion bump” and considered in principle the cleanest signature of hadronic origin of
a gamma-ray spectrum. (In practice, very often one has only access to the high-energy tail of the spectrum!)

A useful approximation for the spectrum of pions from hadronic interaction is the delta approximation, where a fixed
inelasticity is considered,

Eπ ' κπEp . (187)

Then (assuming for simplicity a pure hydrogen target and relativistic projectiles)

qπ(Eπ) = nH

∫
dEpδ(Eπ − κπEp)σpp→π(Ep)Φ(Ep) =

nH
κπ

σpp→π

(
Eπ
κπ

)
Φ

(
Eπ
κπ

)
, (188)

where σpp→π(Ep) is the pion-production cross section, rising quickly above threshold to O(100) mb and then growing only
slowly with energy (logarithmically), not unlikely the overall inelastic cross-section (δ(. . .)σpp→π is a “simple” way to write
the differential cross section that a proton of energy Ep produces a pion of energy Eπ. For more advanced formulae, see
e.g. [49] or [50])

To a leading order, the pion source spectrum at Eπ is thus proportional to the proton flux at an energy Ep = Eπ/κπ
(with sizable corrections due to the cross-section energy dependence relevant close to threshold). The photon spectrum is
then trivially obtained as

qγ(Eγ) = 2

∫ ∞
Emin
π (Eγ)

dEπ
dN

dE
q(Eπ) = 2

∫ ∞
Eγ+

m2
π

4Eγ

dEπ
q(Eπ)√
E2
π −m2

π

, (189)

where the minimum energy of the pion to produce a photon of energy Eγ , Emin
π (Eγ), is given by the relation linking the

maximal energy of a photon produced by a pion of Eπ. Note that the last step follows from the properties

Emax
γ Emin

γ =
m2
π

4
, Emax

γ + Emin
γ = Eπ . (190)

For a given energy Eπ, the maximum energy of the photons is

Emax
γ = Eπ − Emin

γ = Eπ −
m2
π

4Emax
γ

, (191)

hence solving for Eπ by inversion it follows

Emin
π (Eγ) = Eγ +

m2
π

4Eγ
. (192)

To go beyond, optional exercise: Compute the shape of qγ(Eγ) for some test pion source term, such as a power-law,
a gaussian, etc. For a more advanced/realistic application, you can also use the fitting formula of Eq. (1) in [51] and the

approximation qπ(Eπ) ∝ Φp

(
Eπ
κπ

)
. Plot qγ(Eγ) in linear scale and E2

γqγ(Eγ) in log-log one. Compare with [51].

B. Neutrino spectra emitted in charged pion decays

For the process π → µ + ν, the spectrum is monochromatic in the pion rest frame, at an energy satisfying (neutrino
assumed massless)

(pπ − pν)2 = p2
µ =⇒ E∗ν =

m2
π −m2

µ

2mπ
' 29.8 MeV . (193)
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If the pion moves at β, in the Lab frame the energy of the neutrino emitted is Eν = E∗νγ(1 +β cos θ), θ being the angle of
the emitted neutrino with respect to the the direction of flight of the pion. Hence, the maximal energy of the neutrinos is

Emax
ν =

m2
π −m2

µ

2mπ
γ(1 + β) '

m2
π −m2

µ

2mπ
2γ =

(
1−

m2
µ

m2
π

)
Eπ ≡ λEπ ' 0.427Eπ , (194)

where the last equalities hold for very relativistic pions, β ' 1. Similarly to what seen for photons, inverting the latter given
the minimum pion energy yielding a given neutrino energy, hence

qν(Eν) =

∫ ∞
Emin
π (Eν)

dEπ
dN

dE
q(Eπ) =

∫ ∞
Eν/λ

dEπ
q(Eπ)

λEπ
. (195)

Note that Eq. (185) holds unchanged for neutrinos and, given that dEν = E∗νγβd cos θ, the energy distribution of the
neutrinos is

dN

dE
=

1

2E∗νγβ
' 1

λEπ
. (196)

For a power-law form of qπ(Eπ), the above expression indicates that the neutrino from pion decay has the same power-law.
Similar considerations (but a bit more involved) can be applied to the muon spectrum from the pion decay and, in turn,

to its three body decay µ→ e+νν̄ to yield the complete neutrino spectrum. Note that the muons from charged pion decays
are also the main parents of the so-called secondary electrons and positrons in CRs. In particular, until a few years ago, it
was believed that most CR positrons in the GeV-TeV range should originate via this mechanism (ultimately coming from
pp→ π+ reactions and analogous nuclear processes), while now a sizable contribution of primary sources seems favoured.

It is worth noting that each process producing a π0 is associated to a process producing a π+ (that is the case of
pγ → pπ0, associated to pγ → nπ+) or to both π+ and π−: For the pp process one is practically always well above
threshold, multipion production is frequent, and isospin symmetry yields equal numbers of π0, π+, and π−. For the pγ
process, one is often close to threshold and the number of π− is much lower than the one of π0 and π+, which are instead
comparable. Similarly, the energies of the two types of particles are similar, within a factor of 2: neutrinos carry a fraction
between 1/4 and 1/2 of the parent pion, while photons exactly a fraction 1/2 of it. We will discuss below some implications
of this link.

XIII. DIFFUSE EXTRAGALACTIC FLUXES

Since there is virtually no neutrino horizon (the optical depth = 1 is attained for cosmological epochs), any population
of neutrino sources will lead to a diffuse neutrino flux whose spectrum depends on the source spectrum and the cosmic
evolution of the population.

Let us consider a typical source with the (all flavor, but can be generalised to flavour-dependent) neutrino yield dNν
dεν

(εν , z)

in
[
GeV−1 s−1

]
, where εν is the energy of neutrinos at production. Its integral over energy gives the number of neutrinos

per second emitted at the source. In principle, the spectrum can have an intrinsic dependence on z, as indicated, but in
the following we assume that this is not the case (so that neutrino sources are “standard candles”). This means that the
luminosity, given by

Lν =

∫ εmax

εmin

dεν εν
dNν
dεν

= const. (197)

The differential diffuse neutrino flux at the Earth, dφν
dEν

(Eν) in
[
GeV−1 cm−2 s−1 sr−1

]
, from a population of these

sources with cosmic evolution F(z) (density in comoving volume) in
[
Mpc−3

]
or
[
cm−3

]
is given by

dφν
dEν

(Eν) =
1

4π

∫
dz

dVc
dz
F(z)

1

4πd2
c

dNν
dεν

[(1 + z)Eν ] =
1

4π

∫
dz
F(z)

H(z)

dNν
dεν

[(1 + z)Eν ] , (198)

where Eν is the neutrino energy at Earth, Vc = 4πd3
c/3 is the comoving volume and dc is the comoving distance, related

to the luminosity distance dL via dc(z) = dL(z)/(1 + z). dVc/dz = 4πd2
c(z)/H(z), and H(z) = H0

√
ΩΛ + ΩM (1 + z)3

is the Hubble rate. The total number of sources contributing is∫
dz

dVc
dz
F(z) = Ntot . (199)
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Note also that the total power received per unit surface and solid angle writes (in the second step, I set y ≡ (1 + z)Eν):

Pν ≡
∫

dEνEν
dφν
dEν

(Eν) =

∫
dy

y

4π

dNν(y)

dεν

∫
dz

F(z)

(1 + z)2H(z)
=
LνF(0)

4πH0

∫
dz

(1 + z)2

F(z)

F(0)

H0

H(z)
≡ LνF(0)ξz

4πH0

(200)
where the cosmological effect is encoded uniquely in the dimensionless coefficient ξz, usually an order 1 factor. Note the
degeneracy Lν vs. F(0): With the sole observable Pν we cannot disentangle fewer sources with higher luminosity from
numerous sources with lower luminosities (for that, other observables like the number of multiplets/clusters of events can
be used). Pν is fixed by the diffuse flux observations of IceCube.

Neutrino production through charged pion and kaon decay is associated to a γ-ray yield

εγ
dNγ
dεγ

=
4

3κ

[
εν

dNν
dεν

]
εν=εγ/2

, (201)

where the neutral to charged pion ratio κ ≈ 1 for the pγ scenario, since one has 1 neutral pion each π+ pion (negligible
production of π−) and neutrinos carry 3/4 of the energy of the (charged) pion, while photons carry the totality of the
(neutral) pion energy. For the pp channel, multi-pion production (in the isospin symmetric limit) dominates, so that κ = 2,
since there are twice as many charged pions per neutral one.

Note that Eq. (201) is a minimal Ansatz on the γ-ray flux, since it ignores any further leptonic contribution which
would have no neutrino counterpart. While propagating from the sources (assumed transparent) to the Earth, γ-rays
initiate electromagnetic cascades by pair-production on and inverse-Compton scattering off the CMB and EBL, resulting in
a diffuse γ-ray flux at the Earth with energies <∼ 1 TeV. The exact spectral shape of the diffuse γ-ray flux depends on the
cosmic evolution F(z) and the distance to the sources. In the limit of fully developed cascades, with some approximations
one can derive analytically a universal spectral shape for the diffuse γ-ray flux [2, 52]. This is given by:

nγ (Eγ) =


(K/EX) (Eγ/EX)

−3/2 at Eγ ≤ EX ≡ 1
3Eγ

εCMB

εEBL
' 1.2× 108 eV

(K/EX) (Eγ/EX)
−2 at EX ≤ Eγ ≤ Eγ

0 at Eγ > Eγ ≡ m2
e

εEBL
' 3.9× 1011 eV

(202)

where the normalisation is given in terms of the total injection energy Es as

K =
Es

EX (2 + ln Eγ/EX)
. (203)

In comparing different choices of F(z) it may be appropriate to compute the spectrum numerically, in order to account
for the spectra of the background photons and the fact that for the closest sources the cascade development may not be
complete. Barring these complications, the main message to retain is that even if photons are subject to energy reprocessing,
as long as there is no “leakeage” from the gamma-ray band, we should expect that Phad

γ = 4Pν/(3κ).
Fermi-LAT has measured the isotropic energy density above ∼ 1 GeV as being

4π

c
P>1 GeV
γ = 5.7× 10−7 eV/cm

3 (204)

which is basically fully accounted for (within errors) by the unresolved part of known populations of gamma-ray emitters
which do not show significant correlations with the arrival directions of IceCube neutrinos. Unless our understanding of
the gamma-ray sky is deeply flawed, we are currently in the situation where Pobs

γ − Pknown
γ

<∼ Pν . This has been used in
the literature to raise the possibility that most of the sources contributing to the IceCube flux are actually opaque (i.e. the
associated gamma-rays are degraded to MeV or even thermal energies before escaping the sources). See for instance [53]
and refs. therein.

A similar but slightly looser argument [54] was used at the end of past century to argue that, attributing UHE-

CRs above 1019 eV to extragalactic sources, one should expect a neutrino flux above ∼ 10 PeV of P
>∼10PeV
ν

<∼
2× 10−8 GeVcm−2s−1sr−1. Assuming a relevant cross-section of about 2× 10−33cm−2, a medium of density n ' 1g/cm3

(water, ice), the rate of events in a volume of V cm3 writes (assuming half-sky acceptance)

Γ = 2πσNA
P
>∼10PeV
ν

10 PeV
Vcm3 ' 1× 10−326× 1023 2× 10−8

107
events/s ' 10−15Vcm3events/yr . (205)

This implies that we need a detector of linear size V
1/3
cm3 ' (1015)1/3 ' 105 cm= km in order to detect a few events per

year! This was one of the arguments used to set the goal of a km3 telescope in order to start neutrino astronomy. Perhaps
coincidentally, perhaps not, it turned out to be correct!
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To go beyond (optional more advanced exercise): Study e.g. [52] to gain a deeper understanding of the origin of
the universal spectrum of Eq. (202).

To go beyond (optional more advanced exercise): Use Eq. (204), and the fact that the energy density that IceCube

has detected in PeV neutrinos is of 2.7× 10−9 eV/cm
3, to infer a bound on the possible violation of Lorentz-invariance in

the neutrino sector, according to the argument developed in [55].

Appendix A: Recap: Collisional random motions

The mean-free-path ` is the average distance travelled by a particle moving at velocity β in a medium of number density
n before interacting. It is associated to the collision rate Γ, which has the dimensions of an inverse timescale. If σ is the
cross-section of the interaction process, its mean-free-path and interaction rate are

` =
1

σ n
, Γ = σ β n =

β

`
(A1)

For an opaque source of radius R, the optical depth is

τ =
R

`
. (A2)

FIG. 27: Typical displacement vectors in a random motion.

For a “random motion” with vectors of average length ` and random direction after each bounce, see Fig. 27, the average
distance X a particle moves away from its initial position vanishes, i.e.

〈X〉N =
〈∑

~ri

〉
= 0 . (A3)

However, its variance is (vectors randomly directed and of comparable lengths `):

〈X2〉N =

〈(∑
i

~ri

)
·

∑
j

~rj

〉 =
∑
i

〈~r2
i 〉+ `2

∑
i6=j

〈cos θij〉 = `2N (A4)

How many scatterings are typically experienced by a particle before escaping a source with optical depth τ? One has to
require

〈X2〉N = R2 ⇒ N = τ2 (A5)

How long does it take to escape? Obviously

tesc = Γ−1N =
τ2

Γ
=
τ R

β
. (A6)
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The law of Eq. (A4) is the discrete version of a diffusive propagation, with N proportional to the time elapsed via the
constant Γ. We can thus guess the continuum limit

〈X2〉(t) = `2Γt = `βt , (A7)

or X2 ∝ K t with the diffusion coefficient K roughly given by K ∝ `β (We have been omitting numerical constants
depending on the space dimensions, see after Eq. (63) for a more rigorous calculation).

Appendix B: From Liouville equation to BBGKY hierarchy

a. Liouville Equation

Consider a classical 10 system of N point-like particles, whose evolution is dictated by the hamiltonian H. If we denote
by ~qk the canonical coordinate and by ~pk the conjugate momentum for the k−th particle, its motion is described by

~̇qk =
∂H

∂~pk
, (B1)

~̇pk = −∂H
∂~qk

. (B2)

For simplicity of notation, let us define collectively the coordinates {~qk, ~pk} as τk. The most general information on the
system is contained in its N−particle distribution function F(τ1, . . . , τk, . . . τN ), normalized to 1 over all the phase-space,
which describes the probability to find particle 1 around ~τ1, particle k around ~τk, etc. Of course, for identical particles the
function is invariant under name re-labelling, which we shall assume henceforth. The volume element in phase space is
preserved by the Hamiltonian evolution, which is equivalent to the following Liouville theorem

d

d t
F = 0 , (B3)

which can also be rewritten in terms of Poisson brackets {·} or the equations of motion,

∂

∂ t
F − {H,F} = 0 ,⇐⇒ ∂

∂ t
F −

N∑
k=1

[
∂ H

∂ ~qk
· ∂ F
∂ ~pk

− ∂ H

∂ ~pk
· ∂ F
∂ ~qk

]
= 0 . (B4)

In the simple case where H can be written as sum of kinetic energy Tk(~pk) plus (external) potential energy Uk(~qk), i.e.

H =
∑
k

(Tk + Uk) , (B5)

the Liouville theorem writes [
∂

∂ t
+ hN

]
F = 0 , (B6)

where

hN (~τ1, . . . , ~τk, . . . ~τN ) =

N∑
k=1

[
∂ Tk
∂ ~pk

· ∂

∂ ~qk
− ∂ Uk
∂ ~qk

· ∂

∂ ~pk

]
. (B7)

Note how this is the sum of N identical pieces, but for relabelling. If we integrate over all particle coordinate but the nr.
1, switch derivative and integral (and multiply times a factor N to ensure symmetrization over all particles, see below) we
get [

∂

∂ t
+ ~̇q1 ·

∂

∂ ~q1
− ∂U1

∂ ~q1
· ∂

∂ ~p1

]
f (1) = 0 , (B8)

10 Classical kinetic theory can be argued to provide a good approximation if particle densities n are low enough that inter-particle distances are
very large compared with the De Broglie wavelength, i.e. one is well above Heisenberg uncertainty limit: n−1/3p� 1.
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where we defined

f (1)(~τ1) = N

∫
F d~τ2, . . .d~τN . (B9)

This f (1)(~τ1) is the particle density distribution function that we introduced in Eq. (34). It obeys an eq. formally identical
to the Liouville eq. (B6) (with eq. (B7)), but this is valid only for this “separable” single particle hamiltionian.

In most cases, however, H can be written as sum of kinetic energy Tk(~pk), (external) potential energy Uk(~qk) and 2-body
interaction energy Vkl(|~qk − ~ql|) between particle k and l, namely

H =
∑
k

(Tk + Uk) +
∑
k<l

Vkl . (B10)

In this sufficiently general case the Liouville theorem writes[
∂

∂ t
+ hN

]
F = 0 , (B11)

where

hN (~τ1, . . . , ~τk, . . . ~τN ) =
N∑
k=1

[
∂ Tk
∂ ~pk

· ∂

∂ ~qk
− ∂ Uk
∂ ~qk

· ∂

∂ ~pk

]
+

1

2

N∑
k,l=1

~Wkl ·
(

∂

∂ ~pk
− ∂

∂ ~pl

)
(B12)

and we defined the 2-body “force” ~Wkl ≡ −∂ Vkl∂ ~qk
. To deal with that, let us sketch the more general treatment.

b. BBGKY hierarchy

Virtually in no case of physical interest (i.e. with interactions!) one has access to the complete information on the system
encoded in F . In order to describe a partial (incomplete) information of the system, it turns useful to define “reduced”
distribution functions by integrating over all but a few variables. In particular, we define f (1)(~τ1) ≡ 〈

∑
k=1 δ(τ

′
1 − τk)〉, so

that

f (1)(~τ1) = N

∫
F δ(τ ′1 − τk)d~τ1 d~τ2, . . .d~τN = N

∫
F d~τ2, . . .d~τN , (B13)

note the pre-factor N coming out in association to the labelling-invariance. More in general, one defines

f (`)(τ ′1, τ
′
2, . . . τ

′
`) ≡

〈
N∑
k=1

N∑
l=1,l 6=k

N∑
m=1,m 6=k,l...

δ(τ ′1 − τk)δ(τ ′2 − τl) . . . δ(τ ′` − τm)

〉

=
N !

(N − `)!

∫
f (N)(τ ′1, . . . τ

′
`, τ`+1, . . . , τN ) d~τ`+1 , . . .d~τN , (B14)

so that the pre-factor gives the number of ordered `−plets (f (1) gives a particle density, f (2) the density of ordered pairs,
etc.) It is also useful to rewrite the operator in Eq. (B12) as follows

hN (~τ1, . . . , ~τk, . . . ~τN ) = h`(~τ1, . . . ~τ`) + hN−`(~τ`+1, . . . , ~τN ) +
∑̀
k=1

N∑
l=`+1

~Wkl ·
(

∂

∂ ~pk
− ∂

∂ ~pl

)
. (B15)

The previous form of Liouville’s equation can be transformed into a chain of coupled equations, each one connecting the
`-th reduced distribution function to the (`+ 1)− density probability function as follows(

∂

∂ t
+ h`

)
f (`) = −

∑̀
k=1

∫
d~τ`+1

~Wk,`+1 ·
∂

∂~pk
f (`+1)(~τ1, . . . ~τ`+1) . (B16)

This set of coupled equations is known as the BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy and, without
further approximations, it contains in principle the same information as the Liouville equation from which it was derived.
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The set of Eqs. (B16) are equally challenging to solve as the Liouville Equation they were derived from. On the other
hand, in most practical cases only a few distribution functions are of interest. By a suitable truncation to some order `
(with an approximation for f (`+1) in terms of f (1), . . . , f (`)), the BBGKY hierarchy turns into a closed system made of
only a few equations. Which approximation is most suitable to a given problem is of course subject to physical or heuristic
arguments. In particular, the first equation writes[

∂

∂ t
+ ~̇q1 ·

∂

∂ ~q1
− ∂U1

∂ ~q1
· ∂

∂ ~p1

]
f (1) = −

∫
dτ2 ~W12

∂f (2)

∂~p1
. (B17)

which can be proven to reduce to the Boltzmann equation under the hypothesis that our system is only subject to binary
interactions from a potential V12 of range λ � d, with d being the typical distance between particles, and Boltzmann’s
“molecular chaos” hypothesis, or “Stosszahl Ansatz’

f (2)(t, τ1, τ2)→ f (1)(t, τ1)f (1)(t, τ2) . (B18)
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