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GW150914

As we have seen, using the quadrupole formula it is possible to measure
(at least approximately) the chirp mass of the binary. For GW150914, this
led (taking into account the cosmological expansion)

M = 28.6+1.6
−1.5M� .

The measurement of chirp mass does not tell us the values of the two
masses m1, m2, but it gives useful information. The function

M = µ3/2M 2/5 =
m

3/5
1 (M −m1)

3/5

M 1/5
= 28.6M�

can be drawn in the m1 −M plane, showing that

M ≥Mmin = 65.7M� .

Moreover, in GW150914 tge frequency of the signal increased from νGW ∼
35 Hz to νGW ∼ 150 Hz. So, just before merger, the frequency was νGW =
ν̄GW where

ν̄GW = 150 Hz .

Since (note that these formulae give just orders of magnitude, since the
weak field approximation is not stisfied)

νGW ∼
1

π

√
GM

l30
,

then the orbital distance just before merger was l0 ∼ l̄0

l̄0 =
(GM)1/3

(ν̄GWπ)2/3
.

Note that (if we only know the chirp mass) we don’t really know l0, since
we don’t know M , but we know a minimum possible value of l̄0:

l̄0 ≥ l̄min
0 =

(GMmin)1/3

(ν̄GWπ)2/3
= 340 km .
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On the other hand, the Schwarzschild radius corresponding to the total
mass is

Rs =
2GM

c2
≥ Rmin

s =
2GMmin

c2
= 194 km .

Therefore, just before mergeer,

l0
Rs
∼ l̄0
Rs

=
(GM)1/3

(ν̄GWπ)2/3
c2

2GM
≤ (GMmin)1/3

(ν̄GWπ)2/3
c2

2GMmin
=

l̄min
0

Rmin
s

= 1.75 ,

i.e., just before merger, l0 . 1.75Rs. Since the most compact stars are
NSs, for which R ∼ 2.5Rs, we can conclude that the two bodies are BHs.

Moreover, the velocities of the bodies just before merger are

v ∼ v̄ = l̄0
ν̄GW

2
≥ l̄min

0

ν̄GW

2
= 0.1c :

this analysis also tells us that these BHs move, near the merger, at rela-
tivistic velocities.

We stress that these conclusions rely only on the comparison of the ob-
servations with the quadrupole formula.
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Using more advanced models of the waveform (see later), it has been pos-
sible to understand most of the feature of this system. Let me summarize
these results.

GW150914 was emitted by two BHs with masses m1 = 35.6+4.6
−3.0M�,

m2 = 30.6+3.0
−4.4M�. After the merger, the remnant was a BH with Mfin =

63.1+4.3
−3.0M� and dimensionless angular momentum χ = cJ

GM2 = 0.69+0.05
−0.04.

Some remarks:

• m1 + m2 > Mfin; the difference ∆M ' 3.1M� has been emitted in
GWs. This is an enormous amount of energy: EGW ' 3.1M�c

2 '
5.5 · 1054 erg, about ten times the emission from the most energetic
supernovae.

• Near the merger, the orbital velocity was

v ∼ 0.5 c .

This is the only known case of an astronomical object at relativistic
velocities.

• χ = 0.69 is quite a large spin: the maximum allowed value for a
stationary (Kerr) BH is |χ| = 1. It arises, due to angular momentum
conservation, from the orbital angular momentum of the binary. In
BH-BH coalescences, this is a typical value for the spin of the remnant.
The measured values of the spins of the two bodies of the binary,
instead, is compatible with zero.

• The eccentricity of the observed orbits is e ' 0. This is due to the
fact that during the inspiral the orbit circularize, i.e. its eccentricity
decreases, thus in late inspiral the orbits are circular.
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In subsequent years, LIGO and the Italian detector Virgo observed tens
of such signals. In the third and last observation run, this occurred on a
weekly basis. Joint analysis with Virgo allowed, in some cases, localizaton
of the source in the sky, with a precision of a few degrees.

Observed masses range from & 5M� (but some candidates may be
lighter) to ∼ 100M�, and the spins of the final BHs are tipically χ ∼ 0.7,
but in some cases they can be in a larger range, from ∼ 0.14 to ∼ 0.83.

In subsequent years, LIGO and the Italian detector Virgo observed tens
of such signals. In the third and last observation run, this occurred on a
weekly basis. Joint analysis with Virgo allowed, in some cases, localizaton
of the source in the sky, with a precision of a few degrees.

Observed masses range from & 5M� (but some candidates may be
lighter) to ∼ 100M�, and the spins of the final BHs are tipically χ ∼ 0.7,
but in some cases they can be in a larger range, from ∼ 0.14 to ∼ 0.83.
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Let’s consider the noise curve of the interferometer. The coalescence
signal looks like the curves in the figure, with an amplitude which change
smoothly as the frequency increases, has a small bump at merger, and then
rapidly drops down. Roughly speaking, the maximim frequency is that of
the last stable orbit, after which there is the coalescence; typically, the
maximim frequency scales (like all frequencies involved in BH systems) as
the inverse of the mass.

For larger masses, on one hand h0 ∼ M5/3 is larger, on the other hand
νmax
GW ∼ 1/M is smaller. Therefore, a large mass leads to a louder signal,

but if the mass is too large the signal remains less in the sensitivity band
of the detector, and is more difficult to be observed.
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The first NS-NS signal, GW170817, has been detected in 2017. The
two bodies have m1 ∼ m2 ∼ 1.4M�: much smaller masses than those of
GW150914 (and in general of BH-BH binaries). On the other hand, there
are much more NS-NS than BH-BH binaries, and thus it has been possible
to observe a much close system, at just r ∼ 40Mpc. These two effects
compensate, and M/r is comparable.

However, other features of the signal are different: since νmax
GW is much

larger than for BH-BH binaries, the signal remained in the bandwidth
∼ 100 s. Besides that, while the early inspiral of a NS-NS binary is like
as that of a BH-BH binary, the late inspiral is sligthly different: tidal
interaction leads to observable finite-size effects (see later).

Moreover, in GW170817 (also thanks to Virgo) there was accurate local-
izaion in the sky; then, telescopes pointed in that direction, finding eletro-
magnetic counterparts of the signal, in optical, infrared, radio, gamma
bands (an approach called multimessenger astronomy). Note that BH-BH
binaries are instead not believed to be associated to significant electromag-
netic emission.

After GR170817, at least another NS-NS signal (may be more) has been
detected, together with two BH-NS signals, all of them without detectable
electromagnetic counterparts.



8

ON THE QUADRUPOLE FORMULA

Let us consider the quadrupole formula

hTTij (t, ~x) =
2G

rc4
Pijkl(θ, φ)

d2

dt2
Qkl

(
t− r

c

)
.

It tells that the GWs depend (mainly) on the changes of the (reduced)
quadrupole moment

Qij(t) =

∫
V

ρ(t, ~x)

(
xixj − 1

3
δijr2

)
d3x .

To better understand this fact, let us consider, in electrodynamics, a system
of charges {qr}r=1... at positions {~cr}. The electric dipole moment of the
system is

~dEM =
∑
r

qr~xr .

This system emits (mainly) dipolar radiation, whose field is ∼ ~̇dEM and

whose energy flux is ∼ ~̈dEM .
Let us now consider a system of masses {mr}r=1... at positions {~cr}. The

gravitational dipole moment of the system is

~dG =
∑
r

mr~xr .

Since

~̇dG =
∑
r

mr~vr = ~P

momentum of the system, which for an isolated system is constant (in

Newtonian physics, but our conclusions also apply to GR), then ~̈dG = ~0:
no gravitational dipole emission is present.

The GW radiation, instead, comes from the derivatives of the quadrupole
moment qij =

∑
rmrx

ixj, and (like in the elecromagnetic case) there are
subleading contribution from the higher-order multipole moments.

Summarize, in the multipole expansion, the electromagnetic emission
starts from the dipole, the gravitational emission starts from the quadrupole.
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Let us be more precise: where does the multipole expansion come from?

Let us assume weak field and distant source (r � ε and also r � λGW ),
but not slow motion. The typical velocities of the source are v ∼ νε < c;
we ask v/c to be small enough that an expansion in v/c is possible and well
defined, but large enough that the higher-order terms in this expansion are
not negligible.

Under these assumption,

hTTij =
4G

c4
Pijkl

∫
V

d3x′
Tkl

(
t− |~x−~x

′|
c , ~x′

)
|~x− ~x′|

and since

|~x′| < ε� r = |~x| ,

hTTij =
4G

c4r
Pijkl

∫
V

d3x′Tkl

(
t− |~x− ~x

′|
c

, ~x′
)
. (1)

Note that the Taylor expansion of |~x−~x′| around ~x′ = 0 is (since n̂ = ~x/r)

|~x− ~x′| = r

(
1− n̂ · ~x′

r
+O(ε2/r2)

)
and the second term is much smaller that the first, but it may be relevant if
Tkl is rapidly oscillating. Indeed, the Fourier transform of Tij is an integral
of terms like

e
iω
(
t− r

c+
n̂·~x′
c

)
where ω(t− r/c)� 1 being r � λGW , while

ω
n̂ · ~x′

c
∼ ω

ε

c
∼ 2π

v

c
which may be of the order of 2π and thus affect the complex exponential.

Be expanding Eq. (1) we get

hTTij =
4G

c4r
Pijkl

∫
V

d3x′
[
Tkl

(
t− r

c

)
+ Ṫkl

(
t− r

c

) ~x′ · n
c

+T̈kl

(
t− r

c

)(~x′ · n
c

)2

+ . . .

]
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where the first term is∫
x

V d3x′T ij =
1

2c2

∫
V

d3x′x
′ix
′jT̈ 00 =

1

2
q̈ij ,

the second is
1

c

∫
V

d3x′Ṫ ijx
′knk ,

the third is
1

2c2

∫
V

d3x′Ṫ ijx
′knkx

′lnl ,

and so on. If the motion of the source has typical frequency ν, and thus
typical velocities v ∼ εν,

Ṫ ij~x
′ · n
c
∼ v

c
T ij , T̈ ij

(
~x′ · n
c

)2

∼ v2

c2
T ij :

this is an expansion in the velocities of the source. If v � c, only the first
term is present, and we recover the quadrupole formula.

With derivations similar to that of the tensor virial theorem, it is possible
to express the integrals of this expansion in terms of the mass multipole
moments:

quadrupole: Qij(t) =
1

c2

∫
V

T 00 (t, ~x)x<ixj>d3x

octupole: Qijk(t) =
1

c2

∫
V

T 00 (t, ~x)x<ixjxk>d3x

. . .

and of the current multipole moments:

quadrupole: Sij(t) =
1

c

∫
V

T 0<i (t, ~x)xj>d3x

octupole: Sijk(t) =
1

c

∫
V

T 0<i (t, ~x)xjxk>d3x

. . .

The angle parentheses denote the symmetric trace-free (STF) part of an
Euclidean tensor:

x<ixj> = xixj =
1

3
δijr2
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and similarly

x<ixixk> = xixjxk − 3r2

15
(δijxk + δjkxi + δkixj) ,

and so on.
The mass moments are associated to the mass-energy distribution (in

the Newtonian limit 1
c2T

00 = ρ matter density); the current moments are
associated to the mass-energy motion (in the Newtonian limit 1

cT
0i = ρvi

matter flux).
The expansion in v/c of hTTij is an expansion in the multipole moments of

the source: it can be shown that this expansion (up to O(v/c)) is

hTT ij(t, ~x) =
2G

c4r
P ijkl(θ, φ)

[
Q̈kl − 2nr(θ, φ)S̈klr + nr(θ, φ)

...
Q

klr
+ . . .

] (
t− r

c

)
.

(2)
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Which is the angular dependence of the GWs, e.g. of Eq. (2) is complex.
This can be understood if the metric perturbation is expanded in tensor
spherical harmonics.

Let’s first consider a scalar field on flat space solution of the wave equation
with a source

�FΦ(t, ~x) = T .

Far away from the source, the solution has the form

Φ(t, ~x) =
1

r
ψ
(
t− r

c
, θ, φ

)
.

At t, r constant, this is a function defined on the two-sphere, and can be
expanded in scalar spherical harmonics

Φ(t, ~x) =
1

r

∞∑
l=0

l∑
m=−l

ψlm

(
t− r

c

)
Y lm(θ, φ) .

Similarly, a vector field defined on the two-sphere can be expanded in the
(complete) basis of vector spherical harmonics:

{V (+) lm
i (θ, φ), V

(−) lm
i (θ, φ)}

where ± stands for the behaviour under parity transformations (even or
odd). Finally, any rank two symmetric traceless Euclidean tensor on the
two-sphere can be expanded in the (complete) basis of tensor spherical
harmonics:

{T (+) lm
ij (θ, φ), T

(−) lm
ij (θ, φ)} .

In these bases, the tensors of a given l and different values of m form an
irredubicle representation of the rotation group. The representation with
l = 0 has one component and is called the monopole; that with l = 1 has
three components is called the dipole, that with l = 2 has five components
and is called the quadrupole, and so on.

It can be shown that any gravitational wave far away from the source
(requiring neither slow motion nor weak field on the source, although of
course far way from the source the weak-field approximation is satisfied)
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can be written as

hTTij (t, ~x) =
G

c4r

∞∑
l=2

l∑
m=−l

[
A

(+)
lm (t)T

(+)
ij (θ, φ) + A

(−)
lm (t)T

(−)
ij (θ, φ)

]
. (3)

Remarkably, this expansion starts from the quadrupole l = 2: no monopole
or dipole radiation is possible. Moreover, it can be shown that the coeffi-
cients A

(±)
lm (t) are related to the multipole moments of the source as follows:

A
(+)
lm (t) = C lm

i1,···il
dl

dtl
Qi1,···il(t− r/c)

A
(−)
lm (t) = C lm

i1,···il
dl

dtl
Si1,···il(t− r/c) .

where C lm
i1,···il are constants. Thus, the wave is mainly quadrupolar (un-

less v → c), because the quadrupole moment of the source generate the
quadrupolar component of the wave.
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