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In this course, I assume basic knowledge of general relativity (GR).
Most of the topics can be found here:

• Ferrari, Gualtieri, Pani, General Relativity and its Applications, CRC
Press;

• Maggiore, Gravitational Waves (Vol.I), Oxford Univ. Press.

Furthermore, the following are also useful:

• Shapiro, Teukolsky, Black Holes, White Dwarfs and Neutron Stars,
Wiley;

• Carroll. Spacetime and Geometry, Addison Wesley;

• Misner, Thorne, Wheeler, Gravitation, Freeman;

• Wald, General Relativity, Univ. Chicago Press.
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GRAVITATIONAL WAVES

I will briefly recall the main concepts of the theory of gravitational waves
(GWs).

General Relativity (GR) predicts the existence of GWs: any change
in a matter-energy distribution affects the gravitational field; to preserve
causality, such modification has to propagate through a wave at finite ve-
locity.

Since the gravitational interaction is described in GR by the spacetime
metric, GWs are metric waves, changing the proper distance between
events:

ds2 = gµνdx
µdxν (µ, ν = 0, . . . , 3) .

Let us consider a spacetime which is a small perturbation of Minkowski
spacetime:

gµν = ηµν + hµν |hµν| � 1 , (1)

where ηµν = diag(−1, 1, 1, 1). Note that we are using Minkwoskian coordi-
nates, {xµ} = (x0, xi) where x0 = ct and {xi} (i = 1, 2, 3) is an orthogonal
Cartesian frame. In general, I will use Greek indices µ, ν = 0, . . . , 3 as
spacetime indices, and Latin indices i, j = 1, 2, 3 as space indices in a
Minkowskian frame.

This is the weak-field approximation, satisfied by all astrophysical
phenomena except those close to the surface of a black hole (BH) or of a
neutron star (NS). In this approximation, hµν = ηµαhαν +O(h2),

Γαµν =
1

2
ηαβ(hβµ,ν + hβν,µ − hµν,β) +O(h2) = O(h)

and

hµν;α = hµν,α +O(h2) .

Therefore, if we neglect O(h2) terms with respect to O(1) terms, the oper-
ations of raising an lowering of indices and covariant derivatives of hµν are
like in flat spacetime: formally, we can consider hµν as a field on Minkowski
spacetime.
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Similarly, since the stress-energy tensor on the background vanishes,
Tµν = O(h): the stress-energy tensor is the source of the perturbation,
and can be treated as a tensor field in flat spacetime.

By replacing gµν = ηµν + hµν into Einstein’s equations

Rµν −
1

2
gµνR =

8πG

c2
Tµν

and neglecting O(h2) terms, i.e. linearizing Einstein’s equations, gives:

�F h̄µν = −16πG

c2
Tµν (2)

h̄µα,µ = 0 (3)

where �F = ηµν ∂2

∂xµ∂xν = − 1
c2
∂2

∂t2 +∇2 is the D’Alembertian operator in flat
space, and

h̄µν = hµν −
1

2
ηµνh (h = hµµ) .

Eq. (3), which is the linearization of Γαµνg
µν = 0, is the harmonic gauge

condition, and fixes the gauge freedom. Indeed, in general, we can de-
scribe the same physical system by changing coordinates; in particular,
for a coordinate transformation O(h), i.e. xα → x′α = xα + εα(x) with
εα = O(h), Eq. (1) is preserved: gµ

′ν′ = ηµ
′ν′ + hµ

′ν′ with |hµ′ν′| � 1.
The harmonic choice of the gauge has the advantage of simplifying the

GW equations to the form (2). Note that once it is fixed, there is some
residual gauge freedom: if, in the harmonic gauge, we change coordinates
xα → x′α = xα + εα(x) with �F ε

α = 0, the new coordinates are still in the
harmonic gauge.
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Let e us now consider linearized Einstein’s equations in vacuum:

�F h̄µµ =

(
− 1

c2
∂2

∂t2
+∇2

)
h̄µν = 0 .

It describes waves moving with velocity c: the GWs. This is a linear
equation, satisfying the superposition principle, then the solution space is
a vector space.

A basis of the solution space is given by monochromatic plane waves:

h̄µν = R
[
Aµνe

ikαx
α]

(eikαx
α

= e−iωt+
~k·~x)

with Aµν polarization tensor, kα =
(
ω
c ,
~k
)

wave 4-vector. The wave equa-

tion implies that kα is a null vector, while the gauge condition implies that
the wave is transverse: kαAαβ = 0. The space part of kα, ~k, is the wave
vector, and

kαk
α = −ω

2

c2
+ |~k|2 = 0 ⇒ |~k| = 2π

λ
=
ω

c

therefore the wavelength of the GW is λ = 2πc
ω .

Far away from the source, the wavefront is not plane, but locally it looks
like a plane wave; if the source-observer line is aligned with the x-axis, the
wave looks locally, near the observer, as a plane wave propagating along
x: h̄µν = h̄µν(x, t) = h̄µν

(
t− x

c

)
.

By imposing the harmonic gauge condition h̄µν,µ = 0 and exploiting the
residual gauge freedom, the GW can be put in the transverse traceless
(TT-) gauge:

h̄0µ = h̄xµ = h̄αα = 0

(note that the latter implies that h̄µν = hµν). Thus, in the TT-gauge the
only non-vanishing components of the metric perturbation are:

hyy = −hzz ≡ h+

hyz = hzy ≡ h× :

a GW has two degrees of freedom (two independent polarizations)

hTTµν =


0 0 0 0
0 0 0 0
0 0 h+ h×
0 0 h× −h+

 .
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GW DETECTION

Which is the effect of GWs on a distribution of matter? Can we detect
GWs?

Consider one or more free particles at rest in flat spacetime. Suddenly,
a GW passes. Each particle follows a geodesic xµ(τ), thus uµ = dxµ/dτ
satisfies the geodesic equation

duα

dτ
+ Γαµνu

µuν .

If we consider a single particle, we can always choose a locally inertial
frame (LIF) centered on it, where Γαµν = 0: the particle does not see any
gravitational field, and remains at rest.

If we want to measure the gravitational field we have to consider the
relative motion of different particles. Let us consider, then, two nearby
particles A,B. Let us choose the TT-gauge:

ds2 = gµνdx
µdxν = (ηµν + hTTµν )dxµdxν .

At τ ≤ 0, hTTµν = 0, uµA,B = (1, 0, 0, 0). At τ = 0,

duαA,B
dτ

= −Γα00 = −1

2
ηαβ[2hTT0β,0 − hTT00,β] = 0

being hTTµ0 = 0, therefore the particles, in this coordinate frame, remain at
rest and their space separation

δxi = xiB − xiA
is constant. However, this is just an artifact of the coordinate (gauge)
choice: the proper distance between A and B changes. If, for instance, the
GW propagates along x and the particle lies in the y-axis,

∆l =

∫
ds =

∫ yB

yA

√
gyydy ' (yB − yA +

[
1 +

1

2
hTTyy

(
t− x

c

)]
.
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The appropriate way to describe the motion of two free nearby particles
is in term of a tensor equation: the geodesic deviation equations:

D2δxα

dτ 2
≡ uγ(uβδxα;β);γ = Rα

βµνu
βuµδxν

where δxα is the separation 4-vector between the nearby geodesics, and uα

is their tangent vector.
Actual measurements by a local observer are performed on a LIF {ξα}

centered on a particle, e.g. A:

ξiA = 0 ξiB = ξi ds2 = ηαβdξ
αdξβ +O(ξ2) .

Solving the geodesic deviation equation in this frame, with ξi(t = 0) ≡ ξi0,
gives

ξj(t) = ξj0 +
1

2
δjihTTik ξ

k
0 .

For a wave propagating along the x axis,

hTTµν =


0 0 0 0
0 0 0 0
0 0 h+ h×
0 0 h× −h+

 .

If it is monochromatic, with period P = 2π/ω, a circular ring of particles
on the y−z plane deforms - for each polarization - into an ellipse after P/4;
returns circular after P/2, becomes an ellipse orthogonal to the previous
one after 3P/4; and returns circular after P . In the polarization ′+′, the
axes of the ellipses are aligned with the y, z axes, while in the polarization
′×′ they are inclined of 45o with respect to them. In the general case, there
is a superposition of these polarizations, and then a superposition of these
deformations.
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GWs can be detected using a Michelson interferometer: a beam of light
is separated in two by a beam splitter; the two beams move in orthogonal
arms, are reflected by mirrors, join again and are revealed by a detector.

This instrument was used in the XIX in the famous experiment leading
to the formulation of special relativity. Modern interferometers are much
more sophisticated, with laser light, going back and forth in a Fabry-Perot
cavity hundred of times before reaching the detector, which is not a simple
screen but is a photodetector. Moreover, more advanced systems isolate
the detector from the external noise. But the basic concept is the same

It is worth stressing that the numbers of wavelengths in the arm does
not change when the GW passes, since both the arm and the wavelength
change. Still, a dephasing is present because there is a time delay between
the two paths.

Let the arms be in the y − z plane, and let a wave with ′+′ polarization
(for simplicity) propagate in the x direction. Then,

ds2 = −c2dt2 + dx2 + (1 + h+)dy2 + (1− h+)dz2 .

Let l0 be the length of the arm, and ω the GW frequency. Moreover, let
us assume for simplicity

λGW =
2πc

ω
� l0 . (4)

Therefore, h+ is roughly constant through the arm.
By imposing ds2 = 0 for a light ray, we find that the ray along y and the

ray along z take, to go back and forth through the arm, a time (respec-
tively)

t(y) =
2l0
c

(
1 +

h+
c

)
t(z) =

2l0
c

(
1− h+

c

)
therefore the rays have a time delay

∆t = t(y) − t(z) =
2l0
c
h+

and a shift c∆t = 2l0h+. The same occurs for the ′×′ polarization.
In actual interferometers, Eq. (4) is not satisfied. The computation with-

out this simplification gives

c∆t ' 2l0h+
sin(ωl0/c)

ωl0/c
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which for a given ω = 2πc/λ is maximum for l0 = λ/4. For instance,
in LIGO-Virgo, the arms are 4 km long, but since the light is reflected
hundreds of times in the Fabry-Perot cavity, the effective length is l0 = 750
km. Thus, the detectos is best suited for GWs at frequency ν ∼ 100 Hz.
In the case of the space detector LISA, l0 = 2.5 · 106 km, best suited for
GWs at frequency ν =∼ 10−2 Hz.
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GW GENERATION

Let us consider linearized Einstein’s equations with source, Eqs. (??).
They can be solved in terms of retarded functions:

h̄µν(t, ~x) =
4G

c4

∫
V

Tµν

(
t− |~x−~x

′|
c , ~x′

)
|~x− ~x′|

d3x′ , (5)

where V is the volume of the source, and we assume Tµν = 0 on its bound-
ary ∂V . It can be shown that this solution automatically satisfied the
harmonic gauge condition (3).

Eq. (5) is derived on the assumption of weak field (1). We shall make
two further assumptions.

• We shall assume that the observer is far away from the source. Then, if
ε is the linear dimension of the source and r = |~x| is the source-observer
distance,

ε� r .

• We shall assume that the source is much smaller than the wavelength
of the emitted GWs:

ε� λ =
c

ν
⇒ εν � c . (6)

Since ν−1 is the timescale of source changes, εν ∼ v typical velocity on
the source, therefore the condition (6) is equivalent to v � c. For this
reason, it is called slow motion approximation.

Under these assumptions, with some simple manipulation (I’ll come
back later on this), Eq. (5) becomes:

h̄µν(t, ~x) =
4G

c4
1

r

∫
V

Tµν

(
t− r

c
, ~x′
)
d3x′ .
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Since Tµν = O(h), as I said it can be treated as a field on Minkowski
spacetime. Then, it satisfies the flat-space conservation law

T µν,ν = 0 .

By integrating over V ,

1

c

∂

∂t

∫
V

T µ0d3x = −
∫
V

∂T µk

∂xk
d3x = −

∫
∂V

T µknkdS = 0

because T µν = 0 on ∂V . Here nk is the unit vector normal to ∂V and dS
is the surface elment on ∂V .

Therefore,
∫
V T

µ0d3x = const. and

h̄µ0(t, ~x) =
4G

c4
1

r

∫
V

T µ0
(
t− r

c
, ~x′
)
d3x′ = const.

If we are interested only in the oscillating solution (remember that these
are solutions of a linear equation and form a vector space), we can consider
the solutions in which this constant is zero:

h̄µ0 = 0 .

With a similar derivation, using T µν,ν = 0 it is possible to demonstrate the
tensor virial theorem:∫

V

T ijd3x =
1

2c2
∂2

∂t2

∫
V

T 00xixjd3x .

Since we are in weak field, slow motion approximation, Newtonian physics
applies to the source, and 1

c2T
00 = ρ matter density. Then, if we define the

quadrupole tensor

qij(t) =
1

c2

∫
V

T 00(t, ~x)xixjd3x =

∫
V

ρ(t, ~x)xixjd3x , (7)

we have the quadrupole formula:

h̄µ0 = 0

h̄ij =
4G

c4r

d2

dt2
qij
(
t− r

c

)
. (8)
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