Giovanni Gramegna

Classical perceptro

perceptro Geometric

Statistical Physi

Approach

Perceptror Methods

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Storage capacity of a Quantum Perceptron

GIOVANNI GRAMEGNA

In collaboration with Fabio Benatti and Stefano Mancini

SM&FT 2022

December 20, 2022

Outline

Giovanni Gramegna

Derceptron Geometric approach

Statistical Physic Approach

Perceptror

Methods

Results

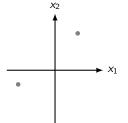
- Basic element of neural networs: perceptron
 - Linear separability problem
- Storage capacity
 - Geometric approach and Cover counting argument
 - Statistical Physics approach
- Quantum Perceptron
 - Model
 - Methods (statistical physics approach)
 - Results

Giovanni Gramegna

Classical perceptron Geometric

Statistical Phys

Quantum Perceptron Methods Results • The classical perceptron realizes the mapping input-output $\mathbf{x} \in \mathbb{R}^N \mapsto \sigma \in \{-1,1\}$, via



Giovanni Gramegna

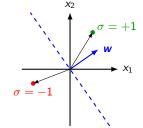
Classical perceptron

approach Statistical Physic

Quantum Perceptror Methods Results • The classical perceptron realizes the mapping input-output $\mathbf{x} \in \mathbb{R}^{N} \mapsto \sigma \in \{-1,1\}$, via

$$\sigma = \operatorname{sgn}\left(\frac{\mathbf{w} \cdot \mathbf{x}}{\|\mathbf{w}\|}\right) = \operatorname{sgn}\left(\frac{1}{\|\mathbf{w}\|} \sum_{j=1}^{N} w_j x_j\right),$$

where ${m w} \in \mathbb{R}^{{m N}}$ and ${
m sgn}(z)$ is the sign function



Giovanni Gramegna

Classical perceptron

approach
Statistical Physics
Approach

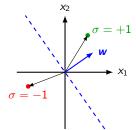
Quantum Perceptron Methods Results • The classical perceptron realizes the mapping input-output $\mathbf{x} \in \mathbb{R}^{N} \mapsto \sigma \in \{-1,1\}$, via

$$\sigma = \operatorname{sgn}\left(\frac{\mathbf{w} \cdot \mathbf{x}}{\|\mathbf{w}\|}\right) = \operatorname{sgn}\left(\frac{1}{\|\mathbf{w}\|} \sum_{j=1}^{N} w_j x_j\right),$$

where ${m w} \in \mathbb{R}^N$ and $\mathrm{sgn}(z)$ is the sign function

• A classification $\{x^{\mu}, \xi^{\mu}\}$, $\mu=1,\ldots,p$ can be realized by a classical perceptron if for some $\mathbf{w}\in\mathbb{R}^N$ such that

$$\xi^{\mu} = \operatorname{sgn}\left(\frac{\mathbf{w} \cdot \mathbf{x}^{\mu}}{\|\mathbf{w}\|}\right), \qquad \forall \mu = 1, \dots, p$$



Giovanni Gramegna

Classical perceptron Geometric

approach Statistical Physics Approach

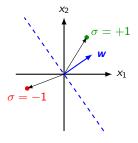
Quantum Perceptror Methods Results • The classical perceptron realizes the mapping input-output $\mathbf{x} \in \mathbb{R}^N \mapsto \sigma \in \{-1,1\}$, via

$$\sigma = \operatorname{sgn}\left(\frac{\mathbf{w} \cdot \mathbf{x}}{\|\mathbf{w}\|}\right) = \operatorname{sgn}\left(\frac{1}{\|\mathbf{w}\|} \sum_{j=1}^{N} w_j x_j\right),$$

where ${m w} \in \mathbb{R}^N$ and $\mathrm{sgn}(z)$ is the sign function

• A classification $\{ \pmb{x}^{\mu}, \xi^{\mu} \}$, $\mu = 1, \ldots, p$ can be realized by a classical perceptron if for some $\pmb{w} \in \mathbb{R}^N$ such that

$$\xi^{\mu} = \operatorname{sgn}\left(\frac{\mathbf{w} \cdot \mathbf{x}^{\mu}}{\|\mathbf{w}\|}\right), \qquad \forall \mu = 1, \dots, p$$



 Example: the XOR function can not be computed with a single perceptron:

$$x^{1} = (-1, -1)$$
 $\xi^{1} = -1$
 $x^{2} = (-1, 1)$ $\xi^{2} = 1$
 $x^{3} = (1, -1)$ $\xi^{3} = 1$
 $x^{4} = (1, 1)$ $\xi^{4} = -1$

F. Rosenblatt, "The Perceptron: A perceiving and recognizing automaton", Tech. Rep. Inc. Report No. 85-460-1

Giovanni Gramegna

Classical perceptron Geometric

approach
Statistical Physics
Approach

Quantum Perceptron Methods Results • The classical perceptron realizes the mapping input-output $\mathbf{x} \in \mathbb{R}^N \mapsto \sigma \in \{-1,1\}$, via

$$\sigma = \operatorname{sgn}\left(\frac{\mathbf{w} \cdot \mathbf{x}}{\|\mathbf{w}\|}\right) = \operatorname{sgn}\left(\frac{1}{\|\mathbf{w}\|} \sum_{j=1}^{N} w_j x_j\right),$$

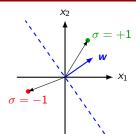
where $\mathbf{w} \in \mathbb{R}^N$ and $\mathrm{sgn}(z)$ is the sign function

• A classification $\{x^{\mu}, \xi^{\mu}\}$, $\mu=1,\ldots,p$ can be realized by a classical perceptron if for some $\pmb{w}\in\mathbb{R}^N$ such that

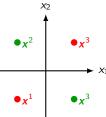
$$\xi^{\mu} = \operatorname{sgn}\left(\frac{oldsymbol{w} \cdot oldsymbol{x}^{\mu}}{\|oldsymbol{w}\|}\right), \qquad orall \mu = 1, \dots, p$$

 Example: the XOR function can not be computed with a single perceptron:

$$x^{1} = (-1, -1)$$
 $\xi^{1} = -1$
 $x^{2} = (-1, 1)$ $\xi^{2} = 1$
 $x^{3} = (1, -1)$ $\xi^{3} = 1$
 $x^{4} = (1, 1)$ $\xi^{4} = -1$



The XOR problem:



F. Rosenblatt, "The Perceptron: A perceiving and recognizing automaton", Tech. Rep. Inc. Report No. 85-460-1

Giovanni Gramegna

Classical perceptroi

perceptro Geometric approach

Statistical Physic Approach

Quantum Perceptron Methods For a large number of inputs $N \to \infty$, how many patterns can we store?

Giovanni Gramegna

Classical perceptro

Geometric approach

Statistical Physi Approach

Perceptron

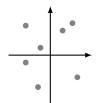
Methods

Results

For a large number of inputs $N \to \infty$, how many patterns can we store?

• Assume we have p patterns $\{x^{\mu}\}$, in "generic positions":

$$\{ {m x}^\mu, {m x}^
u \}$$
 are lin. ind. $orall \mu
eq
u$



Giovanni Gramegna

Classical

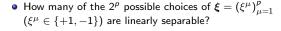
perceptron Geometric approach

Statistical Physic Approach

Quantum Perceptron Methods Results For a large number of inputs $N \to \infty$, how many patterns can we store?

• Assume we have p patterns $\{x^{\mu}\}$, in "generic positions":

$$\{ {m x}^\mu, {m x}^
u \}$$
 are lin. ind. $orall \mu
eq
u$



4 / 13

Giovanni Gramegna

Classical

perceptron Geometric approach

Statistical Physic Approach

Perceptron

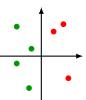
Methods

Results

For a large number of inputs $N \to \infty$, how many patterns can we store?

• Assume we have p patterns $\{x^{\mu}\}$, in "generic positions":

$$\{ {m x}^{\mu}, {m x}^{
u} \}$$
 are lin. ind. $orall \mu
eq
u$



Giovanni Gramegna

Classical

perceptron Geometric approach

Statistical Physic Approach

Perceptron

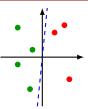
Methods

Results

For a large number of inputs $N \to \infty$, how many patterns can we store?

• Assume we have p patterns $\{x^{\mu}\}$, in "generic positions":

$$\{ {m x}^{\mu}, {m x}^{
u} \}$$
 are lin. ind. $orall \mu
eq
u$



Giovanni Gramegna

Classical

perceptron Geometric approach

Statistical Physic Approach

Perceptron

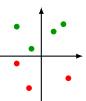
Methods

Results

For a large number of inputs $N \to \infty$, how many patterns can we store?

• Assume we have p patterns $\{x^{\mu}\}$, in "generic positions":

$$\{ {m x}^{\mu}, {m x}^{
u} \}$$
 are lin. ind. $orall \mu
eq
u$



Giovanni Gramegna

Classical

perceptron Geometric approach

Statistical Physi Approach

Perceptron

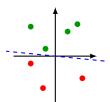
Methods

Results

For a large number of inputs $N \to \infty$, how many patterns can we store?

• Assume we have p patterns $\{x^{\mu}\}$, in "generic positions":

$$\{ {m x}^\mu, {m x}^
u \}$$
 are lin. ind. $orall \mu
eq
u$



Giovanni Gramegna

Classical

perceptron Geometric approach

Statistical Physic Approach

Perceptron

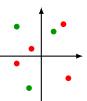
Methods

Results

For a large number of inputs $N \to \infty$, how many patterns can we store?

• Assume we have p patterns $\{x^{\mu}\}$, in "generic positions":

$$\{ {m x}^{\mu}, {m x}^{
u} \}$$
 are lin. ind. $orall \mu
eq
u$



Giovanni Gramegna

Classical

perceptron Geometric approach

Statistical Physic Approach

Quantum Perceptron Methods Results For a large number of inputs $N \to \infty$, how many patterns can we store?

• Assume we have p patterns $\{x^{\mu}\}$, in "generic positions":

$$\{ {m x}^{\mu}, {m x}^{
u} \}$$
 are lin. ind. $orall \mu
eq
u$

$$C(p, N) := \#\{\xi \in \{-1, 1\}^p : \xi^{\mu} = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x}^{\mu}) \ \forall \mu = 1, \dots, p, \ \mathbf{w} \in \mathbb{R}^N\}$$

Giovanni Gramegna

Classical perceptro

perceptron Geometric approach

Statistical Physic Approach

Perceptron Methods Results For a large number of inputs $N \to \infty$, how many patterns can we store?

• Assume we have p patterns $\{x^{\mu}\}$, in "generic positions":

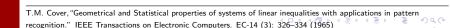
$$\{ {m x}^{\mu}, {m x}^{
u} \}$$
 are lin. ind. $orall \mu
eq
u$

• How many of the 2^p possible choices of $\pmb{\xi}=(\xi^\mu)_{\mu=1}^p$ ($\xi^\mu\in\{+1,-1\}$) are linearly separable?

$$\mu \in \{+1,-1\}$$
) are linearly separable?
$$C(p,N) := \#\{\xi \in \{-1,1\}^p : \xi^\mu = \operatorname{sgn}(\pmb{w} \cdot \pmb{x}^\mu) \ \forall \mu = 1,\dots,p, \ \pmb{w} \in \mathbb{R}^N\}$$

Recursive formula:

$$C(p,N)=C(p-1,N)+C(p,N-1)$$



4 / 13

Giovanni Gramegna

Classical perceptror

Geometric approach

Statistical Physics Approach

Quantum Perceptron Methods Results For a large number of inputs $N \to \infty$, how many patterns can we store?

• Assume we have p patterns $\{x^{\mu}\}$, in "generic positions":

$$\{ {m x}^{\mu}, {m x}^{
u} \}$$
 are lin. ind. $orall \mu
eq
u$

• How many of the 2^p possible choices of $\boldsymbol{\xi}=\left(\xi^{\mu}\right)_{\mu=1}^p$ $\left(\xi^{\mu}\in\{+1,-1\}\right)$ are linearly separable?

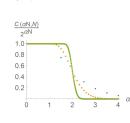
$$C(p, N) := \#\{\xi \in \{-1, 1\}^p : \xi^{\mu} = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x}^{\mu}) \ \forall \mu = 1, \dots, p, \ \mathbf{w} \in \mathbb{R}^N\}$$

• Recursive formula:

$$C(p, N) = C(p-1, N) + C(p, N-1)$$

$$\Rightarrow C(p, N) = 2\sum_{j=0}^{N-1} {p-1 \choose j}$$

(with the convention $\binom{n}{m} = 0$ for m > n)



• N=2

N=10

• N=100

T.M. Cover, "Geometrical and Statistical properties of systems of linear inequalities with applications in pattern recognition." IEEE Transactions on Electronic Computers. EC-14 (3): 326-334 (1965)

Geometric

For a large number of inputs $N \to \infty$, how many patterns can we store?

• Assume we have p patterns $\{x^{\mu}\}$, in "generic positions":

$$\{ {m x}^\mu, {m x}^
u \}$$
 are lin. ind. $orall \mu
eq
u$

• How many of the 2^p possible choices of $\boldsymbol{\xi} = (\xi^{\mu})_{\mu=1}^p$ $(\xi^{\mu} \in \{+1, -1\})$ are linearly separable?

$$C(p, N) := \#\{\xi \in \{-1, 1\}^p : \xi^{\mu} = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x}^{\mu}) \ \forall \mu = 1, \dots, p, \ \mathbf{w} \in \mathbb{R}^N\}$$

Recursive formula:

$$C(p, N) = C(p - 1, N) + C(p, N - 1)$$
$$\Rightarrow C(p, N) = 2 \sum_{i=0}^{N-1} {p-1 \choose i}$$

(with the convention $\binom{n}{m} = 0$ for m > n)

• Large N limit (keeping $\alpha = p/N$ fixed):

$$\frac{C(p,N)}{2^p} \xrightarrow{N \to \infty} \begin{cases} 1 & \text{if } \alpha < 2 \\ 0 & \text{if } \alpha > 2 \end{cases}$$

 $C(\alpha N, N)$ 2aN N=2 0.6 04 N=100 0.2

 $\alpha_c = \frac{p_c}{N} = 2$

"storage capacity"

T.M. Cover, "Geometrical and Statistical properties of systems of linear inequalities with applications in pattern recognition." IEEE Transactions on Electronic Computers. EC-14 (3): 326-334 (1965)

N=10

Statistical Physics Approach

Giovanni Gramegna

Classica

Geometric

Statistical Physics Approach

Quantum Perceptron Methods Gardner approach: relative volume of weights satisfying the classification condition

$$V_N\left(\left\{\xi^{\mu}, \boldsymbol{x}^{\mu}\right\}_{\mu=1}^{p}\right) = \int_{\mathbb{R}^N} \mathrm{d}\mu(\boldsymbol{w}) \prod_{\mu=1}^{p} \theta\left(\xi^{\mu} \frac{\boldsymbol{w} \cdot \boldsymbol{x}^{\mu}}{\|\boldsymbol{w}\|} - \kappa\right)$$

 $\kappa > 0$ stability parameter,

$$\mathrm{d}\mu(\mathbf{w}) = \left(\int_{\mathbb{R}^N} \mathrm{d}\mathbf{w} \delta(\|\mathbf{w}\|^2 - N)\right)^{-1} \delta(\|\mathbf{w}\|^2 - N)$$

Statistical Physics Approach

Giovanni Gramegna

Classical

erceptror Geometric approach

Statistical Physics Approach

Quantum Perceptron Methods Gardner approach: relative volume of weights satisfying the classification condition

$$V_N\left(\left\{\xi^{\mu}, \mathbf{x}^{\mu}\right\}_{\mu=1}^{p}\right) = \int_{\mathbb{R}^N} \mathrm{d}\mu(\mathbf{w}) \prod_{\mu=1}^{p} \theta\left(\xi^{\mu} \frac{\mathbf{w} \cdot \mathbf{x}^{\mu}}{\|\mathbf{w}\|} - \kappa\right)$$

 $\kappa > 0$ stability parameter,

$$\mathrm{d}\mu(\mathbf{w}) = \left(\int_{\mathbb{D}^N} \mathrm{d}\mathbf{w} \delta(\|\mathbf{w}\|^2 - N)\right)^{-1} \delta(\|\mathbf{w}\|^2 - N)$$

 V_N is a "low-temperature partition function":

$$V_{\mathcal{N}} = \lim_{eta o \infty} \int_{\mathbb{R}^{\mathcal{N}}} \mathrm{d}\mu(\mathbf{w}) \,\, \mathrm{e}^{-eta E(\mathbf{w})}, \quad E(\mathbf{w}) = \sum_{\mu=1}^{p} \left[1 - \theta \left(\xi^{\mu} rac{\mathbf{w} \cdot \mathbf{x}^{\mu}}{\|\mathbf{w}\|} - \kappa
ight)
ight]$$

Statistical Physics Approach

Giovanni Gramegna

Classical

erceptron Geometric approach

Statistical Physics Approach

Quantum Perceptron Methods Gardner approach: relative volume of weights satisfying the classification condition

$$V_N\left(\left\{\xi^{\mu}, \mathbf{x}^{\mu}\right\}_{\mu=1}^{p}\right) = \int_{\mathbb{R}^N} \mathrm{d}\mu(\mathbf{w}) \prod_{\mu=1}^{p} \theta\left(\xi^{\mu} \frac{\mathbf{w} \cdot \mathbf{x}^{\mu}}{\|\mathbf{w}\|} - \kappa\right)$$

 $\kappa > 0$ stability parameter,

$$\mathrm{d}\mu(\boldsymbol{w}) = \left(\int_{\mathbb{R}^N} \mathrm{d}\boldsymbol{w} \delta(\|\boldsymbol{w}\|^2 - N)\right)^{-1} \delta(\|\boldsymbol{w}\|^2 - N)$$

 V_N is a "low-temperature partition function":

$$V_N = \lim_{eta o \infty} \int_{\mathbb{R}^N} \mathrm{d}\mu(\mathbf{w}) \,\,\mathrm{e}^{-eta E(\mathbf{w})}, \quad E(\mathbf{w}) = \sum_{\mu=1}^p \left[1 - heta \left(\xi^\mu rac{\mathbf{w} \cdot \mathbf{x}^\mu}{\|\mathbf{w}\|} - \kappa
ight)
ight]$$

• Idea from spin glass theory: "average" V_N over random configurations of patterns and classifications $\{x^{\mu}, \xi^{\mu}\}_{\mu=1}^{p}$

$$P(x_i^{\mu} = \pm 1) = \frac{1}{2}, \qquad P(\xi^{\mu} = \pm 1) = \frac{1}{2}$$

Giovanni Gramegna

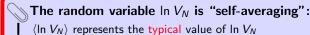
Classical perceptron Geometric

Statistical Physics Approach

Quantum Perceptron Methods ullet The statistical relevant quantity is $\langle \ln V_N \rangle$ ($\langle \cdot \rangle$: average over $\{ x^\mu, \xi^\mu \}_{\mu=1}^p \}$

Statistical Physics Approach

• The statistical relevant quantity is $\langle \ln V_N \rangle$ ($\langle \cdot \rangle$: average over $\{ \mathbf{x}^{\mu}, \xi^{\mu} \}_{\mu=1}^p \}$



 $\langle \ln V_N \rangle$ represents the typical value of $\ln V_N$

M. Shcherbina and B. Tirozzi, Rigorous Solution of the Gardner Problem, Commun. Math. Phys. 234, 383-422 (2003)

Giovanni Gramegna

Classical perceptron Geometric

Statistical Physics Approach

Quantum Perceptron • The statistical relevant quantity is $\langle \ln V_N \rangle$ ($\langle \cdot \rangle$: average over $\{x^\mu, \xi^\mu\}_{\mu=1}^p$)

The random variable $\ln V_N$ is "self-averaging":

 $\langle \ln V_N \rangle$ represents the typical value of $\ln V_N$

- A critical behaviour in $\alpha = \frac{p}{N}$ arises in the thermodynamic limit:
 - For $\alpha < \alpha_c(\kappa)$:

$$\lim_{N\to\infty} \frac{\langle \ln V_N \rangle}{N} = -\mathcal{F}(\alpha,\kappa) \quad \Rightarrow \quad V_N \simeq e^{-N\mathcal{F}(\alpha,\kappa)}$$

• For $\alpha > \alpha_c(\kappa)$:

$$\lim_{N\to\infty} \frac{\langle \ln V_N \rangle}{N} = -\infty \quad \Rightarrow \quad V_N \simeq o\left(\mathrm{e}^{-\mathcal{O}(N)}\right)$$

Giovanni Gramegna

Classical perceptron Geometric

Statistical Physics Approach

Quantum Perceptron Methods Results • The statistical relevant quantity is $\langle \ln V_N \rangle$ ($\langle \cdot \rangle$: average over $\{ \mathbf{x}^{\mu}, \xi^{\mu} \}_{\mu=1}^p$)

The random variable $\ln V_N$ is "self-averaging":

 $\langle \ln V_N \rangle$ represents the typical value of $\ln V_N$

- A critical behaviour in $\alpha = \frac{p}{N}$ arises in the thermodynamic limit:
 - For $\alpha < \alpha_c(\kappa)$:

$$\lim_{N\to\infty}\frac{\langle\ln V_N\rangle}{N}=-\mathcal{F}(\alpha,\kappa)\quad\Rightarrow\quad V_N\simeq\mathrm{e}^{-N\mathcal{F}(\alpha,\kappa)}$$

• For $\alpha > \alpha_c(\kappa)$:

$$\lim_{N\to\infty}\frac{\langle\ln V_N\rangle}{N}=-\infty\quad\Rightarrow\quad V_N\simeq o\left(\mathrm{e}^{-\mathcal{O}(N)}\right)$$

The critical value

$$lpha_c(\kappa) = \left[\int_{-\kappa}^{\infty} \frac{\mathrm{d}t}{\sqrt{2\pi}} \mathrm{e}^{-t^2/2} (t+\kappa)^2 \right]^{-1}$$

is the "storage capacity" of the perceptron.

1.5

Note: $\alpha_c(0) = 2$ \checkmark Cover result

Quantum perceptron: Model

Giovanni Gramegna

Classical
perceptron
Geometric
approach
Statistical Physics

Quantum Perceptron Methods Results • Input pattern x encoded in a gaussian state of the form:

$$|\Psi
angle = \bigotimes_{j=1}^{N} |x_j
angle, \qquad |x_j
angle = rac{1}{(2\pi\sigma_j^2)^{1/4}} \int_{-\infty}^{+\infty} dq_j \, \exp\left(-rac{(q_j- extbf{x}_j)^2}{4\sigma_j^2}
ight) |q_j
angle$$

Squeezing operator:

$$S_{j}(r_{j}) = e^{i r_{j} (q_{j}p_{j} + p_{j}q_{j})}, e^{-2r_{j}} = w_{j}$$

$$S_{j}(r) |q_{j}\rangle = \sqrt{w_{j}} |w_{j}q_{j}\rangle$$

$$(z_{j})$$

 $S_j(r)|q_j\rangle = \sqrt{w_j|w_j}$ • Controlled shift:

$$\mathrm{CX} := \mathsf{exp} \left(-\mathrm{i} \ q_j \otimes \pmb{p}_{j+1}
ight)$$

$$\mathrm{CX}\left|q_{j},q_{j+1}\right\rangle =\left|q_{j},q_{j}+q_{j+1}\right\rangle$$

Output state position eigenfunction:

$$\psi_{oldsymbol{w},oldsymbol{x}^{\mu}}(s) = rac{1}{(2\pi\sum_j w_j^2\sigma_j^2)^{1/4}} \exp\left(-rac{(s-oldsymbol{w}\cdotoldsymbol{x}^{\mu})^2}{4\sum_j w_j^2\sigma_j^2}
ight)$$

F. Benatti, S. Mancini and S. Mangini, Continuous variable quantum perceptron, International Journal of Quantum Information 17, 1941009 (2019)

Statistical partition function for the quantum perceptron

Giovanni Gramegna

Classical perceptron Geometric approach

approach Statistical Physic Approach

Quantum Perceptron Methods Results ullet The probability to correctly classify the pattern μ is:

$$R^{\mu}(\kappa) = \int_{-\infty}^{+\infty} \mathrm{d}s \ P_{\boldsymbol{w}, \boldsymbol{x}^{\mu}, \sigma}(s) \theta \left(\xi^{\mu} \frac{s}{\|\boldsymbol{w}\|} - \kappa \right),$$

where

$$P_{\boldsymbol{w},\boldsymbol{x}^{\mu},\sigma}(\boldsymbol{s}) = |\psi_{\boldsymbol{w},\boldsymbol{x}^{\mu},\sigma}(\boldsymbol{s})|^{2} = \frac{1}{\sqrt{2\pi} \|\boldsymbol{w}\|_{\sigma}} \exp\left(-\frac{(\boldsymbol{s} - \boldsymbol{w} \cdot \boldsymbol{x}^{\mu})^{2}}{2 \|\boldsymbol{w}\|^{2} \sigma^{2}}\right)$$

• Classical limit ($\sigma \rightarrow 0$):

$$P_{\mathbf{w},\mathbf{x}^{\mu},\sigma} \to \delta(\mathbf{s} - \mathbf{x} \cdot \mathbf{w}), \qquad R^{\mu}(\kappa) = \theta\left(\xi^{\mu} \frac{\mathbf{w} \cdot \mathbf{x}^{\mu}}{\|\mathbf{w}\|} - \kappa\right)$$

- ullet We introduce the upper bound ϵ on the acceptable error
- Relative volume in the quantum case:

$$V_{N}(\lbrace \boldsymbol{x}^{\mu}, \xi^{\mu} \rbrace_{\mu=1}^{p}) = \frac{1}{C_{N}} \int_{\mathbb{R}^{N}} d\boldsymbol{w} \, \, \delta(\Vert \boldsymbol{w} \Vert^{2} - N) \prod_{\nu=1}^{p} \theta \left(R^{\mu}(\kappa) - 1 + \epsilon \right)$$

The quantity $\langle \ln V_N \rangle$ is computed with the replica trick:

$$\langle \ln V_N \rangle = \lim_{n \to 0} \frac{\langle V_N^n \rangle - 1}{n}$$

• Compute $\langle V_N^n \rangle$ for *n* integer (*relatively easy*):

$$\langle V_{N}^{n}
angle = rac{1}{C_{N}^{n}} \left\langle \prod_{\gamma=1}^{n} \int_{\mathbb{R}^{N}} \mathrm{d}oldsymbol{w}^{\gamma} \,\, \delta(\|oldsymbol{w}^{\gamma}\|^{2} - N) \prod_{\mu=1}^{p} \theta\left(R_{\gamma}^{\mu}(\kappa) - 1 + \epsilon\right)
ight
angle$$

each \mathbf{w}^{γ} can be interpreted as a "replica"

• Take the limit $n \to 0$ as an "analytic continuation"

Methods: Replica method

Giovanni Gramegna

Classical perceptron Geometric

Geometric approach Statistical Physic Approach

Quantum Perceptron Methods Results The quantity $\langle \ln V_N \rangle$ is computed with the **replica trick**:

$$\langle \ln V_N \rangle = \lim_{n \to 0} \frac{\langle V_N^n \rangle - 1}{n}$$

• Compute $\langle V_N^n \rangle$ for *n* integer (*relatively easy*):

$$\langle V_{N}^{n}
angle = rac{1}{C_{N}^{n}} \left\langle \prod_{\gamma=1}^{n} \int_{\mathbb{R}^{N}} \mathrm{d} oldsymbol{w}^{\gamma} \, \, \delta(\|oldsymbol{w}^{\gamma}\|^{2} - N) \prod_{\mu=1}^{p} \theta \left(R_{\gamma}^{\mu}(\kappa) - 1 + \epsilon
ight)
ight
angle$$

each \mathbf{w}^{γ} can be interpreted as a "replica"

• Take the limit $n \to 0$ as an "analytic continuation"

Not mathematically rigorous, but successful!

Methods

$$\langle V_{N}^{n}
angle = rac{1}{C_{N}^{n}} \left\langle \prod_{\gamma=1}^{n} \int_{\mathbb{R}^{N}} \mathrm{d}oldsymbol{w}^{\gamma} \,\, \delta(\|oldsymbol{w}^{\gamma}\|^{2} - N) \prod_{\mu=1}^{p} heta \left(R_{\gamma}^{\mu}(\kappa) - 1 + \epsilon
ight)
ight
angle$$

Giovanni Gramegna

Classical

erceptron Geometric

Statistical Phys Approach

Quantum Perceptron Methods $\langle V_N^n \rangle = rac{1}{C_N^n} \left\langle \prod_{\gamma=1}^n \int_{\mathbb{R}^N} \mathrm{d} oldsymbol{w}^\gamma \, \, \delta(\|oldsymbol{w}^\gamma\|^2 - N) \prod_{\mu=1}^p heta \left(R_\gamma^\mu(\kappa) - 1 + \epsilon
ight)
ight
angle$

$$\theta\left(R_{\gamma}^{\mu}(\kappa)-1+\epsilon\right)=\int_{1-\epsilon}^{\infty}\frac{\mathrm{d}z_{\gamma}^{\mu}}{2\pi}\int_{-\infty}^{\infty}\mathrm{d}y_{\gamma}^{\mu}\;\mathrm{e}^{\mathrm{i}y_{\gamma}^{\mu}z_{\gamma}^{\mu}}\mathrm{e}^{-\mathrm{i}y_{\gamma}^{\mu}R_{\gamma}^{\mu}(\kappa)}$$

Methods

$$\langle V_{N}^{n}
angle = rac{1}{C_{N}^{n}} \left\langle \prod_{\gamma=1}^{n} \int_{\mathbb{R}^{N}} \mathrm{d}oldsymbol{w}^{\gamma} \,\, \delta(\|oldsymbol{w}^{\gamma}\|^{2} - N) \prod_{\mu=1}^{p} \theta\left(R_{\gamma}^{\mu}(\kappa) - 1 + \epsilon\right)
ight
angle$$

$$\theta\left(R_{\gamma}^{\mu}(\kappa)-1+\epsilon\right)=\int_{1-\epsilon}^{\infty}\frac{\mathrm{d}z_{\gamma}^{\mu}}{2\pi}\int_{-\infty}^{\infty}\mathrm{d}y_{\gamma}^{\mu}\;\mathrm{e}^{\mathrm{i}y_{\gamma}^{\mu}z_{\gamma}^{\mu}}\mathrm{e}^{-\mathrm{i}y_{\gamma}^{\mu}R_{\gamma}^{\mu}(\kappa)}$$

$$\delta \bigg(\sum_{j=1}^{N} (w_j^{\gamma})^2 - N \bigg) = \int_{-\infty}^{+\infty} \frac{\mathrm{d} E_{\gamma}}{4\pi} \, \mathrm{exp} \, \bigg[\mathrm{i} \frac{E_{\gamma}}{2} \bigg(N - \sum_{j=1}^{N} \big(w_j^{\gamma} \big)^2 \bigg) \bigg]$$

Methods

 $\left\langle V_{N}^{n}
ight
angle =rac{1}{C_{N}^{n}}\left\langle \prod_{i}^{n}\int_{\mathbb{R}^{N}}\mathrm{d}oldsymbol{w}^{\gamma}\left.\delta(\left\|oldsymbol{w}^{\gamma}
ight\|^{2}-N)\prod_{i}^{p} heta\left(R_{\gamma}^{\mu}(\kappa)-1+\epsilon
ight)
ight
angle .$

$$\theta\left(R_{\gamma}^{\mu}(\kappa) - 1 + \epsilon\right) = \int_{1 - \epsilon}^{\infty} \frac{\mathrm{d}z_{\gamma}^{\mu}}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}y_{\gamma}^{\mu} \, \mathrm{e}^{\mathrm{i}y_{\gamma}^{\mu}z_{\gamma}^{\mu}} \, \mathrm{e}^{-\mathrm{i}y_{\gamma}^{\mu}R_{\gamma}^{\mu}(\kappa)}$$

$$\delta\left(\sum_{j=1}^{N} (w_{j}^{\gamma})^{2} - N\right) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}E_{\gamma}}{4\pi} \, \mathrm{exp} \left[\mathrm{i}\frac{E_{\gamma}}{2} \left(N - \sum_{j=1}^{N} (w_{j}^{\gamma})^{2}\right)\right]$$

$$-\frac{1}{N} \sum_{j=1}^{N} w_{j}^{\gamma} w_{j}^{\delta} = N \int_{-\infty}^{+\infty} \frac{\mathrm{d}F_{\gamma\delta}}{2\pi} \, \mathrm{exp} \left(-\mathrm{i}Nq_{\gamma\delta}F_{\gamma\delta} + \mathrm{i}F_{\gamma\delta} \sum_{j=1}^{N} w_{j}^{\gamma} w_{j}^{\delta}\right)$$

$$\delta\left(q_{\gamma\delta} - \frac{1}{N}\sum_{j=1}^{N} w_{j}^{\gamma}w_{j}^{\delta}\right) = N \int_{-\infty}^{+\infty} \frac{\mathrm{d}F_{\gamma\delta}}{2\pi} \exp\left(-\mathrm{i}Nq_{\gamma\delta}F_{\gamma\delta} + \mathrm{i}F_{\gamma\delta}\sum_{j=1}^{N} w_{j}^{\gamma}w_{j}^{\delta}\right)$$

Giovanni Gramegna

Classical

Geometric approach Statistical Physic

Quantum
Perceptron
Methods
Results

$$\langle V_N^n \rangle = rac{1}{C_N^n} \left\langle \prod_{\gamma=1}^n \int_{\mathbb{R}^N} \mathrm{d} oldsymbol{w}^{\gamma} \, \, \delta(\|oldsymbol{w}^{\gamma}\|^2 - N) \prod_{\mu=1}^p \theta \left(R_{\gamma}^{\mu}(\kappa) - 1 + \epsilon
ight)
ight
angle$$

"Relatively easy":

$$\begin{split} \theta\left(R_{\gamma}^{\mu}(\kappa)-1+\epsilon\right) &= \int_{1-\epsilon}^{\infty} \frac{\mathrm{d}z_{\gamma}^{\mu}}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}y_{\gamma}^{\mu} \, \mathrm{e}^{\mathrm{i}y_{\gamma}^{\mu}z_{\gamma}^{\mu}} \, \mathrm{e}^{-\mathrm{i}y_{\gamma}^{\mu}R_{\gamma}^{\mu}(\kappa)} \\ \delta\left(\sum_{j=1}^{N} (w_{j}^{\gamma})^{2}-N\right) &= \int_{-\infty}^{+\infty} \frac{\mathrm{d}E_{\gamma}}{4\pi} \, \mathrm{exp} \left[\mathrm{i} \, \frac{E_{\gamma}}{2} \left(N-\sum_{j=1}^{N} (w_{j}^{\gamma})^{2}\right)\right] \\ \delta\left(q_{\gamma\delta}-\frac{1}{N}\sum_{i=1}^{N} w_{j}^{\gamma}w_{j}^{\delta}\right) &= N \int_{-\infty}^{+\infty} \frac{\mathrm{d}F_{\gamma\delta}}{2\pi} \, \mathrm{exp} \left(-\mathrm{i} Nq_{\gamma\delta}F_{\gamma\delta}+\mathrm{i}F_{\gamma\delta}\sum_{i=1}^{N} w_{j}^{\gamma}w_{j}^{\delta}\right) \end{split}$$

yields:

$$\langle V_N^n \rangle = \frac{1}{C_N^n} \int \Big(\prod_{\gamma=1}^n \mathrm{d} \mathbf{\mathcal{E}}_{\gamma} \Big) \Big(\prod_{\substack{\gamma, \delta = 1 \\ \gamma < \delta}}^n \mathrm{d} q_{\gamma \delta} \, \mathrm{d} F_{\gamma \delta} \Big) \, \mathrm{e}^{NG(\{q_{\gamma \delta}\}, \{F_{\gamma \delta}\}, \{\mathbf{\mathcal{E}}_{\gamma}\})}$$

Giovanni Gramegna

Classical

Geometric approach Statistical Physics

Quantum Perceptron Methods Results

$$\langle V_N^n
angle = rac{1}{C_N^n} \left\langle \prod_{\gamma=1}^n \int_{\mathbb{R}^N} \mathrm{d} oldsymbol{w}^\gamma \, \, \delta(\|oldsymbol{w}^\gamma\|^2 - N) \prod_{\mu=1}^p heta \left(R_\gamma^\mu(\kappa) - 1 + \epsilon
ight)
ight
angle$$

"Relatively easy":

$$\begin{split} \theta\left(R_{\gamma}^{\mu}(\kappa)-1+\epsilon\right) &= \int_{1-\epsilon}^{\infty} \frac{\mathrm{d}z_{\gamma}^{\mu}}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}y_{\gamma}^{\mu} \; \mathrm{e}^{\mathrm{i}y_{\gamma}^{\mu}z_{\gamma}^{\mu}} \, \mathrm{e}^{-\mathrm{i}y_{\gamma}^{\mu}R_{\gamma}^{\mu}(\kappa)} \\ \delta\bigg(\sum_{j=1}^{N} (w_{j}^{\gamma})^{2}-N\bigg) &= \int_{-\infty}^{+\infty} \frac{\mathrm{d}E_{\gamma}}{4\pi} \exp\bigg[\mathrm{i}\frac{E_{\gamma}}{2}\bigg(N-\sum_{j=1}^{N} (w_{j}^{\gamma})^{2}\bigg)\bigg] \end{split}$$

$$\delta\left(\mathbf{q}_{\gamma\delta} - \frac{1}{N}\sum_{j=1}^{N}w_{j}^{\gamma}w_{j}^{\delta}\right) = N\int_{-\infty}^{+\infty}\frac{\mathrm{d}F_{\gamma\delta}}{2\pi}\exp\left(-\mathrm{i}N\mathbf{q}_{\gamma\delta}F_{\gamma\delta} + \mathrm{i}F_{\gamma\delta}\sum_{j=1}^{N}w_{j}^{\gamma}w_{j}^{\delta}\right)$$

yields:

$$\langle V_N^n \rangle = \frac{1}{C_N^n} \int \left(\prod_{\gamma=1}^n \mathrm{d} \mathbf{\mathcal{E}}_{\gamma} \right) \left(\prod_{\substack{\gamma,\delta=1\\\gamma < \delta}}^n \mathrm{d} q_{\gamma\delta} \, \mathrm{d} F_{\gamma\delta} \right) \, \mathrm{e}^{NG(\{q_{\gamma\delta}\}, \{F_{\gamma\delta}\}, \{\mathbf{\mathcal{E}}_{\gamma}\})}$$

Saddle point approximation:

$$\langle V_N^n \rangle \simeq \frac{1}{C_N^n} \mathrm{e}^{NG(z_S)} \sqrt{\frac{2\pi}{N|\det G''(z_S)|}},$$

where z_S is the saddle point

Replica symmetry

Giovanni Gramegna

Classical

e<mark>rceptro</mark>i Geometric

Statistical Phys Approach

Quantum Perceptron

Perceptron Methods $G(\{q_{\gamma\delta}\}, \{F_{\gamma\delta}\}, \{E_{\gamma}\}) = \alpha G_1(\{q_{\gamma\delta}\}) + G_2(\{F_{\gamma\delta}\}, \{E_{\gamma}\}) + G_3(\{q_{\gamma\delta}\}, \{F_{\gamma\delta}\}, \{E_{\gamma}\})$

$$G(\{q_{\gamma\delta}\}, \{F_{\gamma\delta}\}, \{E_{\gamma}\}) = \alpha G_1(\{q_{\gamma\delta}\}) + G_2(\{F_{\gamma\delta}\}, \{E_{\gamma}\}) + G_3(\{q_{\gamma\delta}\}, \{F_{\gamma\delta}\}, \{E_{\gamma}\})$$

$$\begin{split} G_1(\{q_{\gamma\delta}\}) &= \ln \left[\int_{1-\epsilon}^{\infty} \left(\prod_{\gamma=1}^n \frac{\mathrm{d}z_{\gamma}}{2\pi} \right) \int \left(\prod_{\gamma=1}^n \frac{\mathrm{d}\lambda_{\gamma} \, \mathrm{d}y_{\gamma} \, \mathrm{d}\omega_{\gamma}}{2\pi} \right) \mathrm{e}^{K(\{\lambda_{\gamma}\}, \{y_{\gamma}\}, \{\omega_{\gamma}\}, \{q_{\gamma\delta}\})} \right] \\ K(\{\lambda_{\gamma}\}, \{y_{\gamma}\}, \{\omega_{\gamma}\}, \{q_{\gamma\delta}\}) &\equiv \mathrm{i} \sum_{\gamma=1}^n y_{\gamma} \left[z_{\gamma} - \Phi(\lambda_{\gamma}) \right] - \mathrm{i} \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma, \delta=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\delta} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\delta} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\delta} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\delta} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\delta} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\delta} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\delta} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\delta} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\delta} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\delta} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\delta} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\delta} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\gamma} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\gamma} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\gamma} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\gamma} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n q_{\gamma\delta} \omega_{\gamma} \omega_{\gamma} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^2} \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} + \frac{1}{2\sigma^2} \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} \\ &= \sum_{\gamma=1}^n \left(\frac{\kappa}{\sigma} + \lambda_{\gamma} \right) \omega_{\gamma}^{\mu} + \frac{1}{2\sigma^$$

$$G_2(\{F_{\gamma\delta}\},\{E_{\gamma}\}) = \ln \left[\int \left(\prod_{\gamma=1}^n \mathrm{d} w^{\gamma} \right) \exp \left(-\frac{\mathrm{i}}{2} \sum_{\gamma=1}^n E_{\gamma} (w^{\gamma})^2 + \mathrm{i} \sum_{\substack{\gamma,\delta=1\\\gamma<\delta}}^n F_{\gamma\delta} w^{\gamma} w^{\delta} \right) \right]$$

$$G_3(\{q_{\gamma\delta}\}, \{F_{\gamma\delta}\}, \{E_{\gamma}\}) = -i \sum_{\substack{\gamma, \delta = 1 \\ \gamma < \delta}}^{n} F_{\gamma\delta} q_{\gamma\delta} + \frac{i}{2} \sum_{\gamma = 1}^{n} E_{\gamma}.$$

Replica symmetry

Giovanni Gramegna

Classical perceptron Geometric

approach Statistical Physics Approach

Quantum Perceptron **Methods** Results

$$G(\{q_{\gamma\delta}\}, \{F_{\gamma\delta}\}, \{E_{\gamma}\}) = \alpha G_1(\{q_{\gamma\delta}\}) + G_2(\{F_{\gamma\delta}\}, \{E_{\gamma}\}) + G_3(\{q_{\gamma\delta}\}, \{F_{\gamma\delta}\}, \{E_{\gamma}\})$$

$$\begin{split} G_1(\{q_{\gamma\delta}\}) &= \ln\left[\int_{1-\epsilon}^{\infty} \left(\prod_{\gamma=1}^{n} \frac{\mathrm{d}z_{\gamma}}{2\pi}\right) \int \left(\prod_{\gamma=1}^{n} \frac{\mathrm{d}\lambda_{\gamma} \mathrm{d}y_{\gamma} \mathrm{d}\omega_{\gamma}}{2\pi}\right) \mathrm{e}^{K(\{\lambda_{\gamma}\},\{y_{\gamma}\},\{\omega_{\gamma}\},\{u_{\gamma}\},\{q_{\gamma\delta}\})}\right] \\ K(\{\lambda_{\gamma}\},\{y_{\gamma}\},\{\omega_{\gamma}\},\{q_{\gamma\delta}\}) &\equiv \mathrm{i} \sum_{\gamma=1}^{n} y_{\gamma} \left[z_{\gamma} - \Phi(\lambda_{\gamma})\right] - \mathrm{i} \sum_{\gamma=1}^{n} \left(\frac{\kappa}{\sigma} + \lambda_{\gamma}\right) \omega_{\gamma}^{\mu} - \frac{1}{2\sigma^{2}} \sum_{\gamma,\delta=1}^{n} q_{\gamma\delta}\omega_{\gamma}\omega_{\delta} \\ G_2(\{F_{\gamma\delta}\},\{E_{\gamma}\}) &= \ln\left[\int \left(\prod_{j=1}^{n} \mathrm{d}w^{\gamma}\right) \exp\left(-\frac{\mathrm{i}}{2} \sum_{j=1}^{n} E_{\gamma}(w^{\gamma})^{2} + \mathrm{i} \sum_{j=1}^{n} F_{\gamma\delta}w^{\gamma}w^{\delta}\right)\right] \end{split}$$

$$G_3(\{q_{\gamma\delta}\}, \{F_{\gamma\delta}\}, \{E_{\gamma}\}) = -i \sum_{\substack{\gamma, \delta = 1 \\ \gamma < \delta}}^{n} F_{\gamma\delta} q_{\gamma\delta} + \frac{i}{2} \sum_{\gamma = 1}^{n} E_{\gamma}.$$

Replica symmetry ansatz:

$$q_{\gamma\delta} = q$$
 $F_{\gamma\delta} = F$ $E_{\gamma} = E$

for all $\gamma, \delta = 1, \dots, n$, with $\gamma \neq \delta$

$$G^{\mathrm{RS}}(q, F, E) = \alpha G_1^{\mathrm{RS}}(q) + G_2^{\mathrm{RS}}(F, E) + G_3^{\mathrm{RS}}(q, F, E)$$

Quantum perceptron: Results

Results

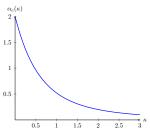
We find the quantum storage capacity:

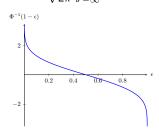
$$\alpha_c^q(\kappa, \epsilon, \sigma) = \alpha_c(\tilde{\kappa}), \qquad \alpha_c(\kappa) = \left[\int_{-\kappa}^{\infty} \frac{\mathrm{d}t}{\sqrt{2\pi}} \mathrm{e}^{-t^2/2} (t+\kappa)^2\right]^{-1}$$

where the "effective stability" parameter $\tilde{\kappa}$ is given by:

$$\widetilde{\kappa} = \kappa + \sigma \Phi^{-1} (1 - \epsilon),$$

$$\widetilde{\kappa} = \kappa + \sigma \Phi^{-1} (1 - \epsilon), \qquad \Phi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$





- The performances of the quantum perceptron are always worse in the meaningful regime $0 \le \epsilon \le 1/2$
- In the classical limit $\sigma \to 0$ we retrieve the previous results: $\widetilde{\kappa} \to \kappa$

Conclusions and Outlook

Giovanni Gramegna

Classical perceptron Geometric approach

Statistical Physic Approach

Quantum
Perceptror
Methods
Results

- The statistical approach is a powerful tool to compute the storage capacity of both classical and quantum perceptron
- The storage capacity of the quantum perceptron considered is always worse than its classical counterpart

Conclusions and Outlook

Giovanni Gramegna

Classical
perceptron
Geometric
approach
Statistical Physics
Approach

Quantum Perceptron Methods Results

- The statistical approach is a powerful tool to compute the storage capacity of both classical and quantum perceptron
- The storage capacity of the quantum perceptron considered is always worse than its classical counterpart

BUT:

- We have not considered other kinds of quantum advantages (e.g. learning speed)
- One might consider other models of quantum perceptron
 A. Gratsea, V. Kasper and M. Lewenstein, Storage properties of a quantum perceptron, https://arxiv.org/abs/2111.08414 (2021)
- When considering multiple-layer neural networks the build-up of quantum coherences might be advantageous
- If one allows for some patterns to be stored "unreliably", the quantum perceptron might still perform better

Conclusions and Outlook

Giovanni Gramegna

Classical
perceptron
Geometric
approach
Statistical Physic

Quantum Perceptron Methods Results

- The statistical approach is a powerful tool to compute the storage capacity of both classical and quantum perceptron
- The storage capacity of the quantum perceptron considered is always worse than its classical counterpart

BUT:

- We have not considered other kinds of quantum advantages (e.g: learning speed)
- One might consider other models of quantum perceptron
 A. Gratsea, V. Kasper and M. Lewenstein, Storage properties of a quantum perceptron, https://arxiv.org/abs/2111.08414 (2021)
- When considering multiple-layer neural networks the build-up of quantum coherences might be advantageous
- If one allows for some patterns to be stored "unreliably", the quantum perceptron might still perform better

Thanks for the attention!