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The classical perceptron

@ The classical perceptron realizes the mapping X2
Gt input-output x € RN - ¢ € {—1,1}, via 4

Classical
perceptron

Y

X1

F. Rosenblatt, “The Perceptron: A perceiving and recognizing automaton”, Tech. Rep. Inc. Report No. 85-460-1

(Cornell Aeronautical Laboratory, 1957)
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The classical perceptron

@ The classical perceptron realizes the mapping X2
Gt input-output x € RN - ¢ € {—1,1}, via N 4
Gramegna \ o=+1
N
1 N
Classical o= n wix; |, w
o () = | 2 B
J= N > Xi
where w € RV and sgn(z) is the sign function 1 N
e o=— \
@ A classification {x*,&"}, u=1,...,p can be N
realized by a classical perceptron if for some w € RV N
such that N
A Vp =1
¢ = sgn A H=254--P The XOR problem:
X2
@ Example: the XOR function can not be computed 4
with a single perceptron:
gle p p o)’ Y%
t=(-1-1)  g=-1
x> =(-1,1) ¢=1 > X1
3 3
x> =(1,-1 =1
L-1 ¢ o | e
x*=(1,1) =1
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A counting argument by Cover

For a large number of inputs N — oo, how many patterns
can we store?
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A counting argument by Cover

For a large number of inputs N — oo, how many patterns

A
P can we store? o °
Gramegna @ Assume we have p patterns {x*}, in “generic ®
positions’: PY
—>
Ceomtric {x*,x"} are lin. ind. Y £ v b
approach [ ]
@ How many of the 2P possible choices of £ = (5”)221 °
(&* € {+1,—1}) are linearly separable?
@ Recursive formula:
C(aN,N
C(p.N) = C(p— 1,N) + C(p, N — 1) s
1.0 o N=2
08 .
0.6 4 N=10
04 » N=100
02
(with the convention (,':7) =0 for m > n) -
o 1 2 3 4

T.M. Cover, “Geometrical and Statistical properties of systems of linear inequalities with applications in pattern

recognition.” |EEE Transactions on Electronic Computers. EC-14 (3): 326-334 (1965) /13



A counting argument by Cover

For a large number of inputs N — oo, how many patterns

A
— can we store? . °
Gramegna @ Assume we have p patterns {x*}, in “generic ®
positions’: )
. {x*,x"} are lin. ind. Vu # v ®
h [ ]
@ How many of the 2P possible choices of & = (5”)521 o
(&* € {+1,—1}) are linearly separable?
@ Recursive formula:
C(aN,N
C(p,N) = C(p—1,N) + C(p, N — 1) Sl
1.0 —_
08 : o N=2
0.6 i N=10
2‘2‘ » N=100
(with the convention () =0 for m > n) :
o 1 2 3 4
@ Large N limit (keeping oo = p/N fixed):
_ Pe _
C(p,N) Nooo [1 ifa<? e =" =2
0 if 2
2P o> “storage capacity”
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Statistical Physics Approach
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@ Gardner approach: relative volume of weights satisfying the classification condition

Vi (16 x,) = /RN du(w)}ié' (&“ "T‘;"'“ - R)

Kk > 0 stability parameter,

utw = ([, aws(ul? ) a(1wl? -

E. Gardner, “The space of interactions in neural network models”, J. Phys., A: Math. Gen. 21 257-270 (1988)
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@ Gardner approach: relative volume of weights satisfying the classification condition

[ Lo (s )

(1, wstiwl? =) s(iwi? -

Wi ({g",x#10y) =
Kk > 0 stability parameter,

dp(w) =

%VN is a “low-temperature partition function”:

VN = |im
B—ro0

RN

p

du(w) e 7 E(w) ="

p=1

ol

w -

xH

[[w

~n)]
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Statistical Physics Approach

@ Gardner approach: relative volume of weights satisfying the classification condition
Giovanni

ot P w - x#
Va (L€, %12, :/RN“‘“(W)EIQ@ )

Kk > 0 stability parameter,

utw = ([, aws(ul? ) a(1wl? -

%VN is a “low-temperature partition function”:

p

V= Jtim [ du(w) e, Ew) =Y {1 ) <§“ woxt K)}

wl]

o Idea from spin glass theory: “average” Vi over random configurations of
patterns and classifications {x*,&* Z:

P(Xj“:il):%, P(g“:il):1

E. Gardner, “The space of interactions in neural network models”, J. Phys., A: Math. Gen. 21 257-270 (1988)
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Storage capacity as a critical value
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The random variable In V) is “self-averaging”:
| (In Vi) represents the typical value of In Vy
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o The statistical relevant quantity is (In Viy) ((-) : average over {x",£"}"_))

The random variable In V) is “self-averaging”:
(In Vi) represents the typical value of In Viy

Stats @ A critical behaviour in oz = £ arises in the thermodynamic limit:
e For a < ac(k):
In V,
fim V) Flayr) = Vy e NF@R)
N— oo N
o For a > ac(k):
. (In Viv) _ —O(N)
im N T VN_o(e )
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@ The statistical relevant quantity is (In Vi) ({-)

: average over {x* ¢*}

i=1)

The random variable In V) is “self-averaging
(In Vi) represents the typical value of In Viy

Stats @ A critical behaviour in oz = £ arises in the thermodynamic limit:
e For a < ac(k):
In V,
lim {In Viv) =—F(a,k) = Wy ~ e~ NF(ar)
N— oo N
o For a > ac(k):
InV,
lim {In Viv) =—-00 = Wx~o (e_o(N)>
N— oo N
@ The critical value

als)

ac(k) = [ j: \ZL ~CP2(4 4 ) }‘1

is the “storage capacity” of the perceptron
Note: a.(0) =2 v Cover result

3

M. Shcherbina and B. Tirozzi, Rigorous Solution of the Gardner Problem, Commun. Math. Phys. 234, 383-422 (2003)
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Quantum perceptron: Model

@ Input pattern x encoded in a gaussian state of the form:

. 1 e (@ — )
v =) lx),  Ix) = (2m?)1/4/ dqj exp | =, ||q)
j=1 J —oo

@ Squeezing operator: @

Giovanni

Gramegna

() — Sl gpiteia) =2
Quantum SJ(,«J)_eJ PRTRAD eT N = wj; @

Perceptron
Si(r)lay) = v/ws [w;qj) ()

o Controlled shift:

CX :=exp(—igq ® pj+1)

®

CXlqj, gjr1) = 1g5, g + gj+1)
o Output state position eigenfunction:

B 1 (s —w-x")?
Y (s) = (2m 3, wioz)L/ &P <_ 4% wio}

F. Benatti, S. Mancini and S. Mangini, Continuous variable quantum perceptron, International Journal of Quantum

Information 17, 1941009 (2019)
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Statistical partition function for the quantum perceptron

Giovanni @ The probability to correctly classify the pattern p is:

400 s
RM (1) = / ds Puxn.o(s)0 (gﬂi - ,-e) 7

oo [[will

where

Quantum

Perceptron Pw,x”,o(s) = |¢W,X“,U(s)‘2

1 (s —w-x")?
= oo - P\ T o2
Ver|wlo 2|wl]*o

o Classical limit (o — 0):

vl
Puxiio — (s —x-w),  R'(k)=0 (g“ "|’|W’|‘| - K>

@ We introduce the upper bound ¢ on the acceptable error

@ Relative volume in the quantum case:

Vu({x" € Yms) = &= [ aw (1wl = ) [T (R" () =1 +)
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Methods: Replica method

G The quantity (In Vi) is computed with the replica trick:

(V) — 1

(In V) = rlm p

e Compute (V) for n integer (relatively easy):

Methods n . i u 0% ¥ 2 _ P n _
Vi = & <H/dw L VUCIOR

each w” can be interpreted as a “replica”

@ Take the limit n — 0 as an “analytic continuation”
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Methods: Replica method

G The quantity (In Vi) is computed with the replica trick:

(V) — 1

(In V) = rlm p

e Compute (V) for n integer (relatively easy):
1 /{8 £
Methods n o Y oY 2 m
(Vi) = o H/RNdW S(f|w? || fm)ge(&(n)flﬂ)

each w” can be interpreted as a “replica”

@ Take the limit n — 0 as an “analytic continuation”

Not mathematically rigorous, but successful!

M. Mézard, G. Parisi, and M. A. Virasoro, “Spin glass theory and beyond: An Introduction to the Replica Method and
Its Applications”, Vol. 9. World Scientific Publishing Company, 1987
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Saddle-point approximation
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Vi = & <H/ dw? 8(1w | = M) T 6 (R ()~ 1+ e)>

“Relatively easy":

Methods
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dz _
e(Rg(n)_He - [TE /“du )
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Saddle-point approximation

Cromegns n 1/ 2 -
wir= & (T, ow s =TT 0w 109
~y=1 p=1
“Relatively easy":
O(R,‘YL(H)—lJre = o dzy /ood“ ik 2 iy R (%)

5(%(%7)2 - N) _ ﬁ: d:': exp [i%(N - jé('ﬂﬁ)z)]

Methods .
Jj=1
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Saddle-point approximation

S w1 /T , P
=g H/RNCW S(w(* = N) [T 0 (R (k) =1 +¢)
=1 pu=1
“Relatively easy”:
B oo
6 (Ri(k)—1+¢) = /1 dzy / dys A A RE ()

N

(30 -w) = [ e [i%<~ -3 0]

Jj=1

1 N . +oo dF s
o(ons =) = [ T e (= s S

10/13



Saddle-point approximation

(Vi) = = <H/ dw” §(lw”|* = N) [T 0 (RY (w) — 1 +e)>
N \~y=1 RN p=1
“Relatively easy":

dZ“ oo . )
Q(Rs(ﬁ)—1+e):/17 / dyt N ¢ IARY ()

N

o) = [ e (e
Methods 5(;(% ) N) N -/—oo 4r oR | 2 N Z(WJ )
1 +oo dF. s
6(q75—ﬁzv.,j“f%5> :N/ ﬁexp( 1Nq,75F(>+1FW;ZW w; )
=1 i
yields:
n
(Vi) = /(HdE V(TT das dFys) eetonsh (Faanen
v,6=1
y<s
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Saddle-point approximation

e no_ 1 - ¥ 712 — : B e)
Vi) = = <H/dw o(Iwl N)ge(&(n) L+¢)

“Relatively easy":

oo dz“ oo ) i

0 (Ri(k) —1+¢) = / dyt A IR ()
N >~ dE

) E w72—N>:/ 7 ex ['—7<N—E wf’z)]

Methods <j:1( ! ) —oo AT i 2 j:l( ! )

N N

1 toodF, s
o8\ V6 . L v o5
6(%5 - N,; w;'w; ) = N/_<>C . &P ( —iNgys5Fys +iFs j; w;'w; )

yields:

(V) = /(HdE )( ﬁ dqmden’,(;) oNG({ays} (s (D)

v,6=1
y<s

Saddle point approximation:
< Vn> 1 NG(zs) 2m

= N[ det G (zs)]’

where zs is the saddle point
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Replica symmetry

G({ays} {Fys} {E}) = aGi({gys}) + G2({Fys b {Ey}) + G3({gs}: {Fys ) { B4 )

Methods
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Replica symmetry
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G({ays} {Fys} {E}) = aGi({gys}) + G2({Fys b {Ey}) + G3({gs}: {Fys ) { B4 )

=1 =1

nod o dA~dy~d
cten=s [ (11 3) 1 (fy ) oo o o]

K b {wm b {ags D =15 v, [Z’Y*‘b()w)}*iZ(i*)"v) - = S aysemes
y=1 =17

Methods ~,o=1

G ({Fys}, {E4})=1In |:/<Hdw’y> exp(— 7ZE (W’Y) +i Z )}
=1

'yél
y<48

G3({a~5} {Fys}, {Ex}) = —i § 5q.y,5+ § Ey.
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Replica symmetry

G({ays} {Fys} {E}) = aGi({gys}) + G2({Fys b {Ey}) + G3({gs}: {Fys ) { B4 )

nod o dA~dy~d
cten=s [ (11 3) 1 (fy ) oo o o]

=1 =1

KO} D (b (0201 =1 5 o = 00)] =1 3 (Ean) et - = S aysemes
y=1 =17

Methods ~,o=1

G ({Fys}, {E4})=1In |:/<Hdw’y> exp(— 7ZE (W’Y) +i Z )}
=1

'yél
y<48

G3({a~5} {Fys}, {Ex}) = —i Z 89ys + = Z:EAY
v,6=1 254
y<8
Replica symmetry ansatz:
qvs = 49 F’y(SZF E,=E,
forallv,6 =1,...,n, withy #§

G"5(q,F,E) = aG{*S(q) + G3*S(F, E) + G35(q, F, E)
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Quantum perceptron: Results

We find the quantum storage capacity:
Gramens B © dqr -1
al(k,e,0) = ac(k), ac(k) = { - \/7 f /2(t + k) ]
where the “effective stability” parameter & is given by:

1 x 2
R=k+od '(1—e¢), d(x) = — e /%At
V2T J o

(k)

2
Results
LS K
€
0.f

@ The performances of the quantum perceptron are always worse in the
meaningful regime 0 < e < 1/2
@ In the classical limit & — 0 we retrieve the previous results: kK — &

&

F. Benatti, G. Gramegna, and S. Mancini, Journal of Physics A: Mathematical and; Theoretical 55,-155301-(2022)
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Conclusions and Outlook
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Results

@ The statistical approach is a powerful tool to compute the storage capacity
of both classical and quantum perceptron

@ The storage capacity of the quantum perceptron considered is always worse
than its classical counterpart
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BUT:

@ We have not considered other kinds of quantum advantages
(e.g: learning speed)

Results

@ One might consider other models of quantum perceptron
A. Gratsea, V. Kasper and M. Lewenstein, Storage properties of a quantum perceptron,

https://arxiv.org/abs/2111.08414 (2021)

@ When considering multiple-layer neural networks the build-up of quantum
coherences might be advantageous

@ If one allows for some patterns to be stored “unreliably”, the quantum
perceptron might still perform better
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@ The storage capacity of the quantum perceptron considered is always worse
than its classical counterpart

BUT:

@ We have not considered other kinds of quantum advantages

(e.g: learning speed)
et @ One might consider other models of quantum perceptron

A. Gratsea, V. Kasper and M. Lewenstein, Storage properties of a quantum perceptron,
https://arxiv.org/abs/2111.08414 (2021)

@ When considering multiple-layer neural networks the build-up of quantum
coherences might be advantageous

@ If one allows for some patterns to be stored “unreliably”, the quantum
perceptron might still perform better

Thanks for the attention!
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